

Aug 19, 2024 – 07:45 PM EDT

F	DB ID	:	8V3W
EN	ÍDB ID	:	EMD-42956
	Title	:	CryoEM Structure of Diffocin - precontracted - Baseplate - focused refinement
			on triplex region
I	Authors	:	Cai, X.Y.; He, Y.; Zhou, Z.H.
Depos	sited on	:	2023-11-28
Res	solution	:	2.90 Å(reported)
_			
	This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.90 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

154571

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions ${<}{=}5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

4023

3826

Mol	Chain	Length	Quality of chain	
1	0	350	81%	
1	0	000	78%	••
1	3	350	95%	• •
			82%	
1	A	350	95%	• •
			78%	
1	Е	350	96%	••
			82%	
1	J	350	96%	• •
			79%	
1	М	350	96%	••
			82%	
1	U	350	95%	••
			75%	
1	Y	350	96%	••
			82%	
1	e	350	96%	••

Conti	nued fron	n previous	page							
Mol	Chain	Length	Quality of chain							
1	h	350	78% 95% •	•						
1	r	350	81% 95% · ·							
1	v	350	78% 95%	•						
2	4	232	60% · 36%							
2	6	232	59% 5% 36%	-						
2	Ν	232	61% · 36%	-						
2	Q	232	59% • 36%	-						
2	i	232	60% • 36%	-						
2	1	232	60% · 36%	-						
3	С	108	• 99%	•						
3	W	108	• 99%	•						
3	t	108	99%	•						
4	В	817	• 97%	-						
4	V	817	• 97%	-						
4	s	817	• 97%	-						
5	G	140	95%	•						
5	Т	140	99%	•						
5	Ζ	140	96% ·	•						
5	О	140	99%	•						
5	W	140	96% ·	·						
5	У	140	99%	•						
6	2	142	92% · 6%	6						
6	F	142	93% • 6%	6						
6	L	142	92% · 6%	6						
6	Ο	142	93% · 6%	6						

Mol	Chain	Length	Quality of chain	
6	g	142	<u>6%</u> 92%	• 6%
6	;	149	·	
0	J	142	94%	• 6%
7	1	354	97%	•••
7	8	354	97%	•
7	AA	354	98%	•
7	D	354	98%	•••
7	K	354	98%	
7	S	354	8%	
	6		8%	··
7	X	354	98%	
7	с	354	97%	•
7	f	354	98%	
7	n	354	98%	.
7	a	354	<mark>6%</mark> 97%	
	9	254	8%	
(u	354	97%	••
8	5	142	96%	••
8	7	142	97%	••
8	9	142	99%	
8	Ι	142	99%	
8	р	142	07%	
	D	140		
8	R	142	98%	••
8	a	142	97%	••
8	d	142	99%	
8	k	142	96%	••
8	m	142	97%	
8	р	142	99%	

α \cdots 1	e		
Continued	trom	nremons	ทกกค
Continucu	JIONE	precoudus	page

Mol	Chain	Length	Quality of chain	
8	Z	142	99%	
			46%	
9	Н	581	99%	•
			46%	_
9	b	581	98%	•
			46%	
9	Х	581	98%	•

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 116790 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	AltConf	Trace			
1	Е	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	А	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	J	346	Total 2751	C 1736	N 452	O 555	${ m S} 8$	0	0
1	М	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	v	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	r	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	0	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	3	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	Y	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	U	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	е	346	Total 2751	C 1736	N 452	O 555	S 8	0	0
1	h	346	Total 2751	C 1736	$\begin{array}{c} \mathrm{N} \\ 452 \end{array}$	O 555	${f S} 8$	0	0

• Molecule 1 is a protein called TRI-2 (CD1371).

• Molecule 2 is a protein called TRI-1 (CD1372).

Mol	Chain	Residues		At	oms	AltConf	Trace		
0	N	1/19	Total	С	Ν	0	S	0	0
	1	140	1214	774	192	240	8	0	0
0	0	1/19	Total	С	Ν	0	S	0	0
	Q	Q 140	1214	774	192	240	8		
2	4	1/19	Total	С	Ν	0	S	0	0
	4	140	1214	774	192	240	8		

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
0	6	148	Total	С	Ν	Ο	S	0	0
2	0	140	1214	774	192	240	8	0	0
0	;	1.49	Total	С	Ν	0	S	0	0
2	1	140	1214	774	192	240	8		0
2	1	1.49	Total	С	Ν	0	S	0	0
	1	140	1214	774	192	240	8	0	0

• Molecule 3 is a protein called Spike (CD1369).

Mol	Chain	Residues		At	oms	AltConf	Trace		
3	C	107	Total	С	Ν	0	\mathbf{S}	0	0
0	U	101	879	564	144	168	3	Ŭ	0
9	+	t 107	Total	С	Ν	0	\mathbf{S}	0	0
0	U		879	564	144	168	3	0	
3	XX7	107	Total	С	Ν	0	S	0	0
	VV	107	879	564	144	168	3	0	0

• Molecule 4 is a protein called Tape measure protein (CD1366).

Mol	Chain	Residues	Atoms				AltConf	Trace
4	В	93	Total	С	Ν	0	0	0
4	D	20	165	106	27	32	0	0
4	5	93	Total	С	Ν	0	0	0
4	G	20	165	106	27	32	0	0
4	V	93	Total	С	Ν	0	0	0
4	v	23	165	106	27	32	0	U

• Molecule 5 is a protein called Tube tail (CD1367).

Mol	Chain	Residues		At	oms			AltConf	Trace
5	С	136	Total	С	Ν	0	S	0	0
0	G	150	1111	723	177	205	6	0	0
5	***	126	Total	С	Ν	0	S	0	0
0	W	150	1111	723	177	205	6	0	
5	Т	128	Total	С	Ν	0	S	0	0
0	1	138	1125	732	179	208	6	0	
5	17	128	Total	С	Ν	0	S	0	0
0	У	130	1125	732	179	208	6	0	0
Б	7	196	Total	С	Ν	0	S	0	0
5		130	1111	723	177	205	6	0	0
5	0	128	Total	С	Ν	0	S	0	0
0 6	138	1125	732	179	208	6	0	0	

- \mathbf{Mol} Chain Residues Atoms AltConf Trace Ν С S Total Ο 0 6L 1340 11087261712101 Ν Total \mathbf{C} Ο \mathbf{S} 6 $\mathbf{2}$ 0 0 13472611081712101 С S Total Ν Ο 6 Ο 0 0 13411087261712101 \mathbf{S} Total С Ν Ο 6 1340 0 g 21011087261711 Total S С Ν Ο F 6 0 0 13411087261712101 Total С S Ν Ο j 6 0 0 13411087261712101
- Molecule 6 is a protein called Sheath initiator (CD1370).

• Molecule 7 is a protein called Sheath (CD1363).

Mol	Chain	Residues		At	oms			AltConf	Trace
7	0	252	Total	С	Ν	0	S	0	0
· ·	С	202	2743	1750	444	540	9	0	0
7	Л	250	Total	С	Ν	0	S	0	0
1	D	332	2738	1747	443	539	9	0	0
7	q	353	Total	С	Ν	Ο	\mathbf{S}	0	0
1	U U	000	2743	1750	444	540	9	0	0
7	K	350	Total	С	Ν	Ο	\mathbf{S}	0	0
	Γ	552	2738	1747	443	539	9	0	0
7	ΔΔ	353	Total	С	Ν	Ο	S	0	0
1	ЛЛ	000	2743	1750	444	540	9	0	0
7	11	359	Total	С	Ν	Ο	\mathbf{S}	0	0
1	u	552	2738	1747	443	539	9	0	0
7	8	353	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
-	0	000	2743	1750	444	540	9	0	
7	1	352	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
-	1	002	2738	1747	443	539	9	0	0
7	a	353	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
·	Ч	000	2743	1750	444	540	9	0	0
7	x	352	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
· ·	1	002	2738	1747	443	539	9	0	0
7	n	353	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
'	11	000	2743	1750	444	540	9		0
7	f	352	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
'	L	002	2738	1747	443	539	9		U

• Molecule 8 is a protein called Tube (CD1364).

Mol	Chain	Residues		At	oms			AltConf	Trace
0		140	Total	С	Ν	0	S	0	0
0	a	140	1111	711	183	211	6	0	0
8	т	140	Total	С	Ν	0	S	0	0
0	L	140	1111	711	183	211	6	0	0
8	В	140	Total	С	Ν	Ο	\mathbf{S}	0	0
0	п	140	1111	711	183	211	6	0	0
8	Р	140	Total	С	Ν	Ο	\mathbf{S}	0	0
0	T	140	1111	711	183	211	6	0	0
8	Q	140	Total	С	Ν	Ο	\mathbf{S}	0	0
0	5	140	1111	711	183	211	6	0	0
8	7	140	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	2	140	1111	711	183	211	6	0	0
8	7	140	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
0	'	140	1111	711	183	211	6	0	
8	5	140	Total	С	Ν	Ο	\mathbf{S}	0	0
	0	140	1111	711	183	211	6	0	0
8	n	140	Total	С	Ν	Ο	\mathbf{S}	0	0
	Р	140	1111	711	183	211	6	0	0
8	d	140	Total	С	Ν	Ο	\mathbf{S}	0	0
	u	140	1111	711	183	211	6	0	0
8	m	140	Total	С	Ν	Ο	\mathbf{S}	0	0
		110	1111	711	183	211	6	0	0
8	k	140	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	IX .	110	1111	711	183	211	6		

• Molecule 9 is a protein called Hub-Hydrolase (CD1368).

Mol	Chain	Residues	Atoms				AltConf	Trace	
0	Ц	581	Total	С	Ν	Ο	\mathbf{S}	0	0
9	11	561	4596	2913	768	895	20	0	0
0	37	591	Total	С	Ν	Ο	\mathbf{S}	0	0
9	X	301	4596	2913	768	895	20	0	0
0	h	591	Total	С	Ν	0	S	0	0
9	U	561	4596	2913	768	895	20	U	U

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: TRI-2 (CD1371)

• Molecule 1: TRI-2 (CD1371)

• Molecule 1: TRI-2 (CD1371)

• Molecule 1: TRI-2 (CD1371)

 \bullet Molecule 1: TRI-2 (CD1371)

• Molecule 1: TRI-2 (CD1371)

F111 V112 1148 LEU ASP LYS SER MET VAL • Molecule 2: TRI-1 (CD1372) 42% Chain 6: 59% 5% 36% 7109 LEU ASP LYS SER MET VAL TYR CYS GLY GLY GLY MET VAL SERVES SERVES SERVES SERVES SERVES SERVES PPRO CCVS SERVES SE GLU ASN VAL VAL VAL TYR PRO LYS SER SER GLU VAL VAL • Molecule 2: TRI-1 (CD1372) 39% Chain i: 60% 36% K62 E63 Y 122 K123 T124 L125 L126 D127 I116 A117 N118 N118 N119 T105 K103 V104 Y105 S106 D107 E108 F109 F111 0120 H139 1148 LEU ASP LYS SER MET VAL VAL VAL CYS GLY GLY GLY VAL GLU ASN VAL VAL TYR PRO LYS SER GLU VAL VAL • Molecule 2: TRI-1 (CD1372) 41% Chain 1: 60% 36% I 88 K89 S90 S90 C92 C93 A94 A94 T96 T96 K97 S98 S98 (62 363 I 85 E 86 V 87 D65 F66 D67 I73 171 80 L57 C58 172 K74 A75 K76 873

D101 1102 K103 V104 Y105 D107 E108 F108 F108 F110 F111 F111 F115 F111 F115 F115 F115	1124 1125 1126 1127 128 128 128 139 132 132 132 133 132 133 133 133 133 133	L144 E145 P146 P146 P146 P146 C148 ASP L120 ASP L124 ASP C138 C138 C138 C138 C138 C138 C138 C138
VAL VAL SER GLU VAL UNS VAL UNS PRO GLU PRO GLU PRO GLU VAL UNS CVS SER ALA ALA ALA ALA ALA SER SER SER SER SER SER SER SER SER SER	ARG ARG CULU CLU CLU CLU CLU CLU CLU CLU CLU CL	ASN THR GLY VAL
CLU VAL VAL TYAL TYAR PRO CUU VAL VAL		
• Molecule 3: Spike (CD1369)		
Chain C:	99% ·	
MET A2 N69 C70 E71 L108		
• Molecule 3: Spike (CD1369)		
Chain t:	9% .	
MET A2 B55 E67 E67 E67 L108		
• Molecule 3: Spike (CD1369)		
Chain W:	99%	
MET A2 D35 L108		
• Molecule 4: Tape measure protein (CD	1366)	
Chain B: •	97%	
MET GLY ASN ASN ASN CLU ASN CLU CLU CLU CLU ASN ASN CLU CLU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ARG ARG ARG ARG ARG ARG VAL VAL VAL CEU SER SER SER SER SER SER SER SER SER SER	SER ASN ARG VAL
ASN LEU LEU SER SER ASN ASN ASN ASN ASN VAL THR THR THR THR THR THR THR THR THR SER SER SER SER SER ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	VAL SER VAL TLE CLY CLY CLY CLE CLE CLE CLE CLE CLE CLE CLE CLE CLE	APHE ASH
LAYS LAYS LAYS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	LEU CLEU CLEU LLAN ASN ASN CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	SER SER LEU LEU
GLY LEU LYS CLEU CTS CLN VAL CTYR CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LEVS LEVS MET PHHE LTU PHHE LTVS LTNS TRP PHE TRP PHE TRP PHE CTVS CLVS CLVS CLVS CLVS CLVS CLVS CLVS CL	VAL PHE PRO LVS
LEU LEU LEU ARG CLY CLEU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	ASP ASP ASP ASP ASP ASP ASP ASP ASP CLV ASP CLV ASP CLV ASP CLV ASP CLV ASP CLV ASP CLV ASP CLV ASP CLV ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	L VAL VAL LEU LEU
0.LU NET VALL MET LIYS ASN ASN VAL ASN VAL ASP VAL ASP VAL ASP VAL ASP VAL ASP VAL ASP VAL ASP VAL ASN VAL ASP VAL ASP VAL ASP ASP VAL ASN ASN VAL ASN ASN ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN VAL ASN ASN VAL ASN ASN VAL ASN ASN VAL ASN VA ASN VA ASN VA ASN VA ASN VA ASN VA ASN VA ASN VA VA ASN VA ASN VA VA ASN VA VA VA VA VA ASN VA VA VA VA VA VA VA VA VA VA VA VA VA	PRO PRO ASP PRO ASP VAL ASP VAL AASP VAL AASP THR NAL AAIA AAIA AAIA AAIA AAIA AAIA ACIY CUY SER ASN ACIY CUY CUY CUY CUY CUY CUY CUY CUY CUY CU	LIYS ASP TILE THR

• Molecule 4: Tape measure protein (CD1366)

THR ALLANDA OF CONTRACT OF CON

TRP 111.2. 111.2

• Molecule 4: Tape measure protein (CD1366)

• Molecule 5: Tube tail	(CD1367)	
Chain G:	95%	
M1 Q7 M11 M101 M101 M101 M101 M135 M135 M135 M135 M135 M101		
• Molecule 5: Tube tail	(CD1367)	
Chain w:	96%	•••
M1 R11 K135 V136 V136 CLN GLN		
• Molecule 5: Tube tail	(CD1367)	
Chain T:	99%	
M1 P138 L138 GLN		
• Molecule 5: Tube tail	(CD1367)	
Chain y:	99%	
M1 P138 L73 GLN GLN		
• Molecule 5: Tube tail	(CD1367)	
Chain Z:	96%	•••
M1 Q7 R11 F133 F133 F133 F133 V136 V136 V136 C133		
• Molecule 5: Tube tail	(CD1367)	
Chain o:	99%	
M1 P138 LYS GLN		
• Molecule 6: Sheath ini	itiator (CD1370)	
Chain L:	92%	• 6%

•	•		
S317	Y318	M319	I354

• Molecule 8: Tube (CD1364) Chain a: •• 97% • Molecule 8: Tube (CD1364) Chain I: 99% MET ALA • Molecule 8: Tube (CD1364) Chain R: •• 98% • Molecule 8: Tube (CD1364) Chain P: 97% MET • Molecule 8: Tube (CD1364) Chain 9: 99% MET • Molecule 8: Tube (CD1364) Chain z: 99%

• Molecule 8: Tube (CD1364)

Chain 7:	97%	••
MET ALA B13 D137 T142		
• Molecule 8: Tube (CD1364)		
Chain 5:	96%	
MET ALA M3 M4 M3 M5 D20 D13 T142		
• Molecule 8: Tube (CD1364)		
Chain p:	99%	-
MET ALA		
• Molecule 8: Tube (CD1364)		
Chain d:	99%	
MET ALA N3 142		
• Molecule 8: Tube (CD1364)		
Chain m:	97%	
MET ALA B137 D137 1142		
• Molecule 8: Tube (CD1364)		
Chain k:	96%	
MET ALA D20 D112 D112 D112		
• Molecule 9: Hub-Hydrolase (CD1368))	
46% Chain H:	99%	
M1 D18 R34 S44 F45 S44 F45 S319 C321 C321 C321 C321 C321 C321 C321 C321 C321 C321 C321 C321 C321 C322 C3	E328 E329 N330 L331 G332 G332 E334 C335 C335 C335 C335 C335 C335 C335 C	T347 Y349 Y349 P351 P351 R355 K355 E355 E355 C355 C355 C355 C355 C355 C

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	116539	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.195	Depositor
Minimum map value	-0.107	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.012	Depositor
Recommended contour level	0.03	Depositor
Map size (Å)	330.0, 330.0, 330.0	wwPDB
Map dimensions	300, 300, 300	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.1, 1.1, 1.1	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond	l angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	0	0.26	0/2795	0.50	0/3784
1	3	0.27	0/2795	0.50	0/3784
1	А	0.26	0/2795	0.50	0/3784
1	Е	0.27	0/2795	0.51	0/3784
1	J	0.26	0/2795	0.50	0/3784
1	М	0.27	0/2795	0.50	0/3784
1	U	0.26	0/2795	0.50	0/3784
1	Y	0.27	0/2795	0.50	0/3784
1	е	0.26	0/2795	0.50	0/3784
1	h	0.27	0/2795	0.50	0/3784
1	r	0.26	0/2795	0.50	0/3784
1	V	0.27	0/2795	0.51	0/3784
2	4	0.25	0/1235	0.47	0/1668
2	6	0.27	0/1235	0.49	0/1668
2	Ν	0.25	0/1235	0.46	0/1668
2	Q	0.28	0/1235	0.49	0/1668
2	i	0.25	0/1235	0.47	0/1668
2	l	0.26	0/1235	0.47	0/1668
3	С	0.27	0/896	0.49	0/1206
3	W	0.27	0/896	0.49	0/1206
3	t	0.28	0/896	0.49	0/1206
4	В	0.26	0/164	0.41	0/220
4	V	0.26	0/164	0.41	0/220
4	s	0.26	0/164	0.41	0/220
5	G	0.32	0/1139	0.53	0/1534
5	Т	0.32	0/1154	0.52	0/1556
5	Ζ	0.32	$0/1\overline{139}$	0.53	$0/1\overline{534}$
5	0	0.32	0/1154	0.52	0/1556
5	W	0.33	0/1139	0.52	$0/1\overline{534}$
5	У	0.32	$0/1\overline{154}$	0.51	$0/1\overline{556}$
6	2	0.30	0/1133	0.48	0/1532
6	F	0.29	0/1133	0.46	0/1532
6	L	0.30	0/1133	0.47	0/1532
6	0	0.30	$0/1\overline{133}$	0.45	0/1532

Mol Chain		Bond	lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
6	g	0.30	0/1133	0.47	0/1532	
6	j	0.29	0/1133	0.45	0/1532	
7	1	0.26	0/2766	0.48	0/3729	
7	8	0.28	0/2771	0.48	0/3736	
7	AA	0.28	0/2771	0.47	0/3736	
7	D	0.26	0/2766	0.47	0/3729	
7	Κ	0.26	0/2766	0.47	0/3729	
7	S	0.28	0/2771	0.48	0/3736	
7	Х	0.26	0/2766	0.47	0/3729	
7	с	0.28	0/2771	0.47	0/3736	
7	f	0.26	0/2766	0.47	0/3729	
7	n	0.28	0/2771	0.47	0/3736	
7	q	0.27	0/2771	0.46	0/3736	
7	u	0.26	0/2766	0.47	0/3729	
8	5	0.30	0/1133	0.50	0/1522	
8	7	0.30	0/1133	0.50	0/1522	
8	9	0.30	0/1133	0.52	0/1522	
8	Ι	0.30	0/1133	0.49	0/1522	
8	Р	0.30	0/1133	0.50	0/1522	
8	R	0.30	0/1133	0.50	0/1522	
8	a	0.32	0/1133	0.52	0/1522	
8	d	0.30	0/1133	0.49	0/1522	
8	k	0.30	0/1133	0.50	0/1522	
8	m	0.30	0/1133	0.50	0/1522	
8	р	0.30	0/1133	0.52	0/1522	
8	Z	0.30	0/1133	0.49	0/1522	
9	Н	0.29	0/4678	0.48	0/6286	
9	b	0.28	0/4678	0.48	0/6286	
9	Х	0.29	0/4678	0.48	0/6286	
All	All	0.28	0/118659	0.49	0/160068	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	0	344/350~(98%)	332~(96%)	12 (4%)	0	100	100
1	3	344/350~(98%)	331~(96%)	13 (4%)	0	100	100
1	А	344/350~(98%)	336~(98%)	8 (2%)	0	100	100
1	Ε	344/350~(98%)	336~(98%)	8 (2%)	0	100	100
1	J	344/350~(98%)	334 (97%)	10 (3%)	0	100	100
1	М	344/350~(98%)	330~(96%)	14 (4%)	0	100	100
1	U	344/350~(98%)	335~(97%)	9 (3%)	0	100	100
1	Y	344/350~(98%)	335~(97%)	9 (3%)	0	100	100
1	e	344/350~(98%)	333~(97%)	11 (3%)	0	100	100
1	h	344/350~(98%)	332 (96%)	12 (4%)	0	100	100
1	r	344/350~(98%)	338~(98%)	6 (2%)	0	100	100
1	V	344/350~(98%)	335~(97%)	9 (3%)	0	100	100
2	4	146/232~(63%)	145 (99%)	1 (1%)	0	100	100
2	6	146/232~(63%)	145 (99%)	1 (1%)	0	100	100
2	Ν	146/232~(63%)	145 (99%)	1 (1%)	0	100	100
2	Q	146/232~(63%)	145 (99%)	1 (1%)	0	100	100
2	i	146/232~(63%)	146 (100%)	0	0	100	100
2	1	146/232~(63%)	144 (99%)	2 (1%)	0	100	100
3	С	105/108~(97%)	104 (99%)	1 (1%)	0	100	100
3	W	105/108~(97%)	104 (99%)	1 (1%)	0	100	100
3	t	105/108~(97%)	104 (99%)	1 (1%)	0	100	100
4	В	21/817~(3%)	21 (100%)	0	0	100	100
4	V	21/817 (3%)	21 (100%)	0	0	100	100
4	s	21/817 (3%)	21 (100%)	0	0	100	100
5	G	$\overline{134/140}~(96\%)$	130 (97%)	4 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
5	Т	136/140~(97%)	131 (96%)	5 (4%)	0	100	100
5	Ζ	134/140~(96%)	130 (97%)	4 (3%)	0	100	100
5	О	136/140~(97%)	129 (95%)	7 (5%)	0	100	100
5	W	134/140~(96%)	130 (97%)	4 (3%)	0	100	100
5	У	136/140~(97%)	132 (97%)	4 (3%)	0	100	100
6	2	132/142~(93%)	129 (98%)	3 (2%)	0	100	100
6	F	132/142~(93%)	131 (99%)	1 (1%)	0	100	100
6	L	132/142~(93%)	130 (98%)	2 (2%)	0	100	100
6	Ο	132/142~(93%)	130 (98%)	2 (2%)	0	100	100
6	g	132/142~(93%)	129 (98%)	3 (2%)	0	100	100
6	j	132/142~(93%)	130 (98%)	2 (2%)	0	100	100
7	1	350/354~(99%)	334 (95%)	16 (5%)	0	100	100
7	8	351/354~(99%)	342 (97%)	9 (3%)	0	100	100
7	AA	351/354~(99%)	342 (97%)	9 (3%)	0	100	100
7	D	350/354~(99%)	337 (96%)	13 (4%)	0	100	100
7	K	350/354~(99%)	332 (95%)	18 (5%)	0	100	100
7	S	351/354~(99%)	342 (97%)	9 (3%)	0	100	100
7	Х	350/354~(99%)	337 (96%)	13 (4%)	0	100	100
7	с	351/354~(99%)	340 (97%)	11 (3%)	0	100	100
7	f	350/354~(99%)	333 (95%)	17 (5%)	0	100	100
7	n	351/354~(99%)	342 (97%)	9 (3%)	0	100	100
7	q	351/354~(99%)	342 (97%)	9 (3%)	0	100	100
7	u	350/354~(99%)	337 (96%)	13 (4%)	0	100	100
8	5	138/142~(97%)	135 (98%)	3 (2%)	0	100	100
8	7	138/142~(97%)	134 (97%)	4 (3%)	0	100	100
8	9	138/142~(97%)	132 (96%)	6 (4%)	0	100	100
8	Ι	138/142~(97%)	135 (98%)	3 (2%)	0	100	100
8	Р	138/142~(97%)	135 (98%)	3 (2%)	0	100	100
8	R	138/142~(97%)	134 (97%)	4 (3%)	0	100	100
8	a	138/142~(97%)	133 (96%)	5 (4%)	0	100	100
8	d	138/142~(97%)	135 (98%)	3 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
8	k	138/142~(97%)	135~(98%)	3 (2%)	0	100	100
8	m	138/142~(97%)	135~(98%)	3 (2%)	0	100	100
8	р	138/142~(97%)	131~(95%)	7 (5%)	0	100	100
8	Z	138/142~(97%)	135~(98%)	3 (2%)	0	100	100
9	Н	579/581~(100%)	553~(96%)	26 (4%)	0	100	100
9	b	579/581~(100%)	556~(96%)	23~(4%)	0	100	100
9	х	579/581~(100%)	559~(96%)	20 (4%)	0	100	100
All	All	14583/17754~(82%)	14150 (97%)	433 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	0	313/317~(99%)	302~(96%)	11 (4%)	36 70
1	3	313/317~(99%)	300~(96%)	13~(4%)	30 63
1	А	313/317~(99%)	299~(96%)	14 (4%)	27 61
1	Ε	313/317~(99%)	303~(97%)	10 (3%)	39 73
1	J	313/317~(99%)	303~(97%)	10 (3%)	39 73
1	М	313/317~(99%)	302~(96%)	11 (4%)	36 70
1	U	313/317~(99%)	299~(96%)	14 (4%)	27 61
1	Y	313/317~(99%)	302~(96%)	11 (4%)	36 70
1	е	313/317~(99%)	302~(96%)	11 (4%)	36 70
1	h	313/317~(99%)	301~(96%)	12 (4%)	33 67
1	r	313/317~(99%)	301~(96%)	12 (4%)	33 67
1	v	313/317~(99%)	301~(96%)	12~(4%)	33 67
2	4	139/213~(65%)	$1\overline{30}\ (94\%)$	9(6%)	17 45
2	6	139/213~(65%)	127~(91%)	12 (9%)	10 30

α $\cdot \cdot$ 1	e		
Continued	trom	previous	page
	5	1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	Ν	139/213~(65%)	132 (95%)	7(5%)	24	57
2	Q	139/213~(65%)	129 (93%)	10 (7%)	14	39
2	i	139/213~(65%)	131 (94%)	8 (6%)	20	50
2	1	139/213~(65%)	130 (94%)	9 (6%)	17	45
3	С	100/101~(99%)	100 (100%)	0	100	100
3	W	100/101~(99%)	100 (100%)	0	100	100
3	t	100/101~(99%)	100 (100%)	0	100	100
4	В	18/694~(3%)	18 (100%)	0	100	100
4	V	18/694~(3%)	18 (100%)	0	100	100
4	s	18/694~(3%)	18 (100%)	0	100	100
5	G	123/127~(97%)	120 (98%)	3 (2%)	49	79
5	Т	125/127~(98%)	125 (100%)	0	100	100
5	Ζ	123/127~(97%)	121 (98%)	2 (2%)	62	86
5	О	125/127~(98%)	125 (100%)	0	100	100
5	W	123/127~(97%)	121 (98%)	2 (2%)	62	86
5	У	125/127~(98%)	125 (100%)	0	100	100
6	2	123/130~(95%)	120 (98%)	3 (2%)	49	79
6	F	123/130~(95%)	121 (98%)	2(2%)	62	86
6	L	123/130~(95%)	120 (98%)	3 (2%)	49	79
6	Ο	123/130~(95%)	121 (98%)	2(2%)	62	86
6	g	123/130~(95%)	120 (98%)	3 (2%)	49	79
6	j	123/130~(95%)	122 (99%)	1 (1%)	81	94
7	1	308/309~(100%)	300 (97%)	8 (3%)	46	77
7	8	308/309~(100%)	300 (97%)	8 (3%)	46	77
7	AA	308/309~(100%)	301 (98%)	7 (2%)	50	80
7	D	308/309~(100%)	303 (98%)	5 (2%)	62	86
7	Κ	308/309~(100%)	303 (98%)	5 (2%)	62	86
7	S	308/309~(100%)	302 (98%)	6 (2%)	57	84
7	Х	308/309~(100%)	304 (99%)	4 (1%)	69	90
7	с	308/309~(100%)	299 (97%)	9 (3%)	42	76
7	f	308/309~(100%)	303 (98%)	5 (2%)	62	86

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
7	n	308/309~(100%)	301 (98%)	7 (2%)	50	80
7	q	308/309~(100%)	300~(97%)	8 (3%)	46	77
7	u	308/309~(100%)	301~(98%)	7 (2%)	50	80
8	5	117/118~(99%)	113~(97%)	4 (3%)	37	71
8	7	117/118~(99%)	115 (98%)	2 (2%)	60	86
8	9	117/118~(99%)	117 (100%)	0	100	100
8	Ι	117/118~(99%)	117 (100%)	0	100	100
8	Р	117/118~(99%)	115 (98%)	2 (2%)	60	86
8	R	117/118~(99%)	116 (99%)	1 (1%)	78	93
8	a	117/118~(99%)	115 (98%)	2 (2%)	60	86
8	d	117/118~(99%)	117 (100%)	0	100	100
8	k	117/118~(99%)	114 (97%)	3(3%)	46	77
8	m	117/118~(99%)	115 (98%)	2 (2%)	60	86
8	р	117/118~(99%)	117 (100%)	0	100	100
8	Z	117/118~(99%)	117 (100%)	0	100	100
9	Н	513/513~(100%)	506 (99%)	7 (1%)	67	89
9	b	513/513~(100%)	503~(98%)	10 (2%)	57	84
9	X	513/513~(100%)	502 (98%)	11 (2%)	53	81
All	All	13065/15672~(83%)	12725 (97%)	340 (3%)	49	77

All (340) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	Е	78	LEU
1	Е	160	ARG
1	Е	177	ARG
1	Е	227	ASN
1	Е	238	ARG
1	Е	241	GLN
1	Е	259	LEU
1	Е	269	MET
1	Е	293	ARG
1	Е	317	LEU
1	А	38	ASN
1	А	63	GLN
1	А	135	LYS

Mol	Chain	Res	Type
1	А	177	ARG
1	А	180	LYS
1	А	183	ARG
1	А	212	ARG
1	А	213	TRP
1	А	226	LYS
1	А	269	MET
1	А	293	ARG
1	А	296	ARG
1	А	305	MET
1	А	315	HIS
2	N	1	MET
2	Ν	39	ASN
2	N	62	LYS
2	N	63	GLU
2	N	111	PHE
2	N	128	CYS
2	N	139	HIS
5	G	7	GLN
5	G	11	ARG
5	G	101	MET
6	L	41	LYS
6	L	116	LYS
6	L	117	SER
7	с	21	GLU
7	с	22	ARG
7	с	25	ARG
7	с	126	LYS
7	с	150	ASP
7	с	190	ASP
7	с	218	ARG
7	с	244	ASP
7	с	254	ARG
8	a	77	GLU
8	a	140	ASP
7	D	130	LYS
7	D	218	ARG
7	D	236	MET
7	D	295	ASP
7	D	319	MET
9	H	18	ASP
9	Н	34	ARG

Mol	Chain	Res	Type
9	Н	45	PHE
9	Н	377	MET
9	Н	501	TYR
9	Н	536	PHE
9	Н	564	LYS
7	S	21	GLU
7	S	30	MET
7	S	179	SER
7	S	294	SER
7	S	316	LEU
7	S	331	SER
8	R	137	ASP
8	Р	20	ASP
8	Р	59	LYS
7	K	36	LYS
7	K	126	LYS
7	K	163	PHE
7	Κ	202	ARG
7	K	221	ARG
1	J	1	MET
1	J	63	GLN
1	J	68	ARG
1	J	75	TYR
1	J	108	LEU
1	J	116	THR
1	J	160	ARG
1	J	269	MET
1	J	293	ARG
1	J	317	LEU
1	М	52	HIS
1	М	53	LYS
1	М	105	ARG
1	М	178	PHE
1	М	184	ASN
1	М	185	GLN
1	М	227	ASN
1	М	269	MET
1	М	293	ARG
1	М	296	ARG
1	М	305	MET
2	Q	1	MET
2	Q	12	ARG

Mol	Chain	Res	Type
2	Q	52	MET
2	Q	60	GLU
2	Q	62	LYS
2	Q	80	ARG
2	Q	89	LYS
2	Q	95	TYR
2	Q	131	MET
2	Q	134	ARG
1	V	33	MET
1	V	51	MET
1	V	177	ARG
1	V	185	GLN
1	v	212	ARG
1	V	227	ASN
1	V	238	ARG
1	V	241	GLN
1	V	269	MET
1	V	291	TYR
1	V	293	ARG
1	V	317	LEU
1	r	38	ASN
1	r	135	LYS
1	r	177	ARG
1	r	180	LYS
1	r	183	ARG
1	r	212	ARG
1	r	213	TRP
1	r	226	LYS
1	r	293	ARG
1	r	296	ARG
1	r	305	MET
1	r	315	HIS
2	4	1	MET
2	4	39	ASN
2	4	62	LYS
2	4	63	GLU
2	4	77	MET
2	4	111	PHE
2	4	122	TYR
2	4	128	CYS
2	4	139	HIS
5	W	7	GLN

Mol	Chain	Res	Type
5	W	11	ARG
6	2	41	LYS
6	2	116	LYS
6	2	117	SER
7	AA	21	GLU
7	AA	25	ARG
7	AA	126	LYS
7	AA	202	ARG
7	AA	218	ARG
7	AA	244	ASP
7	AA	254	ARG
7	u	30	MET
7	u	66	MET
7	u	87	GLN
7	u	130	LYS
7	u	218	ARG
7	u	236	MET
7	u	295	ASP
9	Х	18	ASP
9	Х	34	ARG
9	Х	45	PHE
9	Х	73	MET
9	Х	169	ASN
9	Х	170	LEU
9	Х	377	MET
9	Х	485	TRP
9	Х	501	TYR
9	Х	502	CYS
9	Х	571	ARG
7	8	21	GLU
7	8	30	MET
7	8	45	GLU
7	8	179	SER
7	8	190	ASP
7	8	236	MET
7	8	294	SER
7	8	331	SER
8	7	39	GLU
8	7	137	ASP
8	5	4	MET
8	5	20	ASP
8	5	59	LYS

Mol	Chain	Res	Type
8	5	137	ASP
7	1	30	MET
7	1	36	LYS
7	1	126	LYS
7	1	163	PHE
7	1	202	ARG
7	1	221	ARG
7	1	236	MET
7	1	319	MET
6	0	117	SER
6	0	122	ARG
1	0	1	MET
1	0	63	GLN
1	0	68	ARG
1	0	75	TYR
1	0	106	ASP
1	0	108	LEU
1	0	116	THR
1	0	160	ARG
1	0	269	MET
1	0	293	ARG
1	0	305	MET
1	3	52	HIS
1	3	53	LYS
1	3	105	ARG
1	3	146	LEU
1	3	178	PHE
1	3	184	ASN
1	3	185	GLN
1	3	213	TRP
1	3	227	ASN
1	3	269	MET
1	3	293	ARG
1	3	296	ARG
1	3	305	MET
2	6	1	MET
2	6	12	ARG
2	6	52	MET
2	6	60	GLU
2	6	62	LYS
2	6	72	ASN
2	6	80	ARG

Mol	Chain	Res	Type
2	6	89	LYS
2	6	95	TYR
2	6	109	PHE
2	6	131	MET
2	6	134	ARG
1	Y	1	MET
1	Y	33	MET
1	Y	51	MET
1	Y	177	ARG
1	Y	212	ARG
1	Y	227	ASN
1	Y	241	GLN
1	Y	269	MET
1	Y	293	ARG
1	Y	317	LEU
1	Y	343	ASN
1	U	38	ASN
1	U	63	GLN
1	U	135	LYS
1	U	177	ARG
1	U	180	LYS
1	U	183	ARG
1	U	210	TYR
1	U	212	ARG
1	U	213	TRP
1	U	226	LYS
1	U	293	ARG
1	U	296	ARG
1	U	305	MET
1	U	315	HIS
2	i	1	MET
2	i	39	ASN
2	i	62	LYS
2	i	63	GLU
2	i	111	PHE
2	i	122	TYR
2	i	128	CYS
2	i	139	HIS
5	Ζ	7	GLN
5	Z	11	ARG
6	g	41	LYS
6	g	116	LYS

Mol	Chain	Res	Type
6	g	117	SER
6	F	34	LYS
6	F	80	SER
7	q	21	GLU
7	q	22	ARG
7	q	25	ARG
7	q	126	LYS
7	q	150	ASP
7	q	218	ARG
7	q	244	ASP
7	q	254	ARG
7	Х	66	MET
7	Х	130	LYS
7	Х	218	ARG
7	Х	295	ASP
9	b	18	ASP
9	b	34	ARG
9	b	45	PHE
9	b	377	MET
9	b	450	ARG
9	b	485	TRP
9	b	501	TYR
9	b	519	LYS
9	b	536	PHE
9	b	564	LYS
7	n	21	GLU
7	n	45	GLU
7	n	179	SER
7	n	190	ASP
7	n	294	SER
7	n	318	TYR
7	n	331	SER
8	m	39	GLU
8	m	137	ASP
8	k	20	ASP
8	k	59	LYS
8	k	112	ASP
7	f	126	LYS
7	f	163	PHE
7	f	202	ARG
7	f	221	ARG
7	f	319	MET

Mol	Chain	Res	Type
6	j	117	SER
1	е	1	MET
1	е	61	TYR
1	е	63	GLN
1	е	68	ARG
1	е	75	TYR
1	е	106	ASP
1	е	108	LEU
1	е	116	THR
1	е	160	ARG
1	е	269	MET
1	е	293	ARG
1	h	52	HIS
1	h	53	LYS
1	h	54	MET
1	h	105	ARG
1	h	178	PHE
1	h	184	ASN
1	h	185	GLN
1	h	227	ASN
1	h	269	MET
1	h	293	ARG
1	h	296	ARG
1	h	305	MET
2	1	1	MET
2	1	12	ARG
2	1	60	GLU
2	1	62	LYS
2	1	77	MET
2	1	80	ARG
2	1	89	LYS
2	1	95	TYR
2	1	131	MET

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (42) such sidechains are listed below:

Mol	Chain	Res	Type
1	Е	229	GLN
1	Е	310	ASN
8	а	8	ASN
9	Н	330	ASN
7	S	99	ASN

Mol	Chain	Res	Type
7	K	204	ASN
1	J	227	ASN
1	J	289	ASN
1	J	310	ASN
1	М	52	HIS
2	Q	13	ASN
1	V	229	GLN
1	V	310	ASN
1	r	63	GLN
1	r	227	ASN
8	9	8	ASN
9	х	214	GLN
7	8	99	ASN
7	1	204	ASN
1	0	62	ASN
1	0	227	ASN
1	0	289	ASN
1	0	310	ASN
1	0	332	ASN
1	3	52	HIS
1	3	193	HIS
1	3	242	HIS
2	6	13	ASN
2	6	72	ASN
1	Y	229	GLN
1	Y	310	ASN
1	U	63	GLN
8	р	8	ASN
9	b	214	GLN
7	n	99	ASN
7	f	204	ASN
1	e	58	GLN
1	е	227	ASN
1	e	289	ASN
1	е	310	ASN
1	h	52	HIS
2	1	13	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-42956. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 150

Y Index: 150

Z Index: 150

6.2.2 Raw map

X Index: 150

Y Index: 150

Z Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 169

Z Index: 108

6.3.2 Raw map

X Index: 169

Y Index: 171

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.03. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_42956_msk_1.map (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 748 $\rm nm^3;$ this corresponds to an approximate mass of 676 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.345 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.345 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.90	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.10	3.62	3.18

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-42956 and PDB model 8V3W. Per-residue inclusion information can be found in section 3 on page 10.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.03 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.03).

9.4 Atom inclusion (i)

At the recommended contour level, 66% of all backbone atoms, 59% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.03) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.5920	0.4720
0	0.2120	0.2450
1	0.7300	0.5630
2	0.8490	0.6050
3	0.2390	0.2770
4	0.3670	0.3590
5	0.9490	0.6690
6	0.3260	0.3250
7	0.9150	0.6540
8	0.7840	0.5730
9	0.9160	0.6570
A	0.2120	0.2520
AA	0.7800	0.5750
В	0.8790	0.6290
С	0.8280	0.5910
D	0.7290	0.5590
E	0.2330	0.2820
F	0.8660	0.6160
G	0.9390	0.6690
Н	0.5210	0.4210
Ι	0.9470	0.6740
J	0.2160	0.2460
K	0.7290	0.5620
L	0.8410	0.6050
М	0.2480	0.2770
N	0.3640	0.3580
О	0.8580	0.6160
Р	0.9520	0.6660
Q	0.3270	0.3230
R	0.9090	0.6510
S	0.7860	0.5720
Т	0.9530	0.6750
U	0.2120	0.2580
V	0.8850	0.6250
W	0.8390	0.5990

Chain	Atom inclusion	Q-score
Х	0.7320	0.5630
Y	0.2360	0.2840
Z	0.9450	0.6730
a	0.9170	0.6580
b	0.5250	0.4260
С	0.7760	0.5720
d	0.9460	0.6740
е	0.2120	0.2500
f	0.7290	0.5630
g	0.8460	0.6100
h	0.2560	0.2840
i	0.3790	0.3610
j	0.8650	0.6190
k	0.9530	0.6720
1	0.3360	0.3270
m	0.9120	0.6570
n	0.7840	0.5750
0	0.9540	0.6750
р	0.9170	0.6600
q	0.7790	0.5760
r	0.2150	0.2560
S	0.8850	0.6240
t	0.8370	0.5980
u	0.7270	0.5600
V	0.2360	0.2860
W	0.9420	0.6700
x	0.5210	0.4240
У	0.9600	0.6760
Z	0.9470	0.6710

