

wwPDB X-ray Structure Validation Summary Report (i)

Oct 30, 2024 – 05:25 AM EDT

PDB ID	:	4V7Y
Title	:	Structure of the Thermus thermophilus 70S ribosome complexed with
		azithromycin.
Authors	:	Bulkley, D.P.; Innis, C.A.; Blaha, G.; Steitz, T.A.
Deposited on	:	2010-08-18
Resolution	:	3.00 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	3.0
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	164625	2511 (3.00-3.00)
Clashscore	180529	2866 (3.00-3.00)
Ramachandran outliers	177936	2778 (3.00-3.00)
Sidechain outliers	177891	2781 (3.00-3.00)
RSRZ outliers	164620	2523 (3.00-3.00)
RNA backbone	3690	1019 (3.20-2.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain							
1	AA	1522	26%	57%	15% •						
1	CA	1522	26%	56%	16% •						
2	AB	256	17% 34%	44%	12% • 8%						
2	CB	256	15% 36%	43%	12% • 8%						

Chain Length Quality of chain Mol 10% AC 3 23941% 38% 8% 13% 17% 3 CC23941% 7% 38% 13% 19% AD 2094 35% 49% 15% • 18% CD2094 50% 34% 14% 12% 5AE 16233% 46% 14% • 7% 12% CE 516245% • 7% 34% 14% 13% \mathbf{AF} 1016 57% 29% 14% 13% CF 6 10128% 57% 15% 24% AG 715652% 45% . . 23% CG 7 15651% 45% . . 12% 8 AH 13839% 53% 7% • 14% CH 8 13841% 51% 7% • 32% 9 AI 12838% 53% 9% • 38% CI 9 12834% 55% 9% • 31% AJ 10 10537% 50% 6% 8% 30% 10 CJ 10537% 50% 6% 8% 22% AK 12911 39% 47% 5% • 8% 19% CK 11 12945% 40% 6% • 8% 19% AL 1213534% 50% 9% 7% 23% 12 CL 13535% 49% 9% 7% 28% 13AM 12643% 40% 8% 9% 33% CM1261340% 44% 7% 9% 34% AN 61 1446% 46% 7%• 25% CN1461 46% 5%• 48% 20% AO 15 89 40% 47% 11% •

Continued from previous page...

Continued from previous page...

Mol	Chain	Length		Quali	ity of cha	in		
15	CO	80	9%					
10	0	89	30%			46%		11% •
16	AP	88	27%		55%		10%	• 5%
-			27%					
16	CP	88	26%		56%		11%	• 5%
17	10	105	17%					
11	AQ	105	13%			40%	Ę	5% 5%
17	CQ	105	51%			40%		• 5%
10	4.D	0.0	10%					
18	AR	88	24%		49%	7%	20%	0
18	CR	88	26%		45%	8%	20%	
			26%					
19	AS	93	35%		39%	11%	1	5%
10	CS	03	24%		070/	09	,	150/
15	00	50	40%		37%	9%	0	15%
20	AT	106	28%		53%		12%	7%
20	CT	100	25%					
20	CI	100	32%	81%	49%		12%	7%
21	AU	27	52%			37%		7%
				74%				
21	CU	27	52%			37%	•	7%
22	B0	85	36%		/8%		1/1	2/-
	20		15%		4070			70 ·
22	D0	85	39%		47	7%	1	3% •
<u> </u>	D1	00	30%					
20	DI	90	22%	38%		24%	6%	9%
23	D1	98	22%	37%		24%	7%	9%
2.4	Da		42%					
24	B2	72	10% 29%		29%	•	29%	
24	D2	72	8% 35%		24%	•	29%	
			17%					
25	B3	60	47%			45%		8%
25	50	60	3%			500/		00/
20	D0	00	38% 17%			<u>აა</u> %		ō%
26	B4	71	18% 13%	14%		55%		
90	D 4	71	14%					
20	D4	(1	17% 14%	14%		55%		
27	B5	60	25%		47%	2:	2%	5%
			12%					
27	D5	60	27%		47%		20%	5% •

<i>a</i> 1	c		
Continued	trom	previous	<i>paae</i>
00100010000	<i>J</i> · <i>c</i> · · · <i>c</i>	proceed as	P ~ 9 0 · · · ·

Mol	Chain	Length	Quality of chain						
			31%						
28	B6	54	6% 26% 28%	43%	9%	17%			
28	D6	54	6% 28%	43%	7%	17%			
29	B7	49	43%	43%		14%			
29	D7	49	43%	45%		12%			
30	B8	65	<u>32%</u> 23%	43%	28%	5% •			
30	D8	65	26%	40%	28%				
31	BA	2787	5%	44%	23%	5% •			
31	DA	2787	4%	45%	25%				
32	BB	122	26%	48%	26%				
32	DB	122	19%	52%	27%				
33	BD	276	8%	54%	1	7% ••			
33	DD	276	5%	49%	18% ••				
34	BE	206	29%	46%	21%	•			
34	DE	206	28%	47%	21% •				
35	BF	210	9%	47%	17% ••				
35	DF	210	6%	46%	16% ••				
36	BG	182	35% 27%	57%		14% ••			
36	DG	182	33%	55%		16% ••			
37	BH	180	34%	37%	16% •	11%			
37	DH	180	31%	39%	15% •	11%			
38	BI	148	29%	52%	20%	, . .			
38	DI	148	24%	53%	20%	, . .			
39	BN	140	20%	49%	23%	6 • •			
39	DN	140	28%	47%	23%	6 • •			
40	BO	122	^{2%} 34%	50%		15% •			

Mol	Chain	Length	Quality of chain					
40	DO	122	6% 39%		44%	16% •		
41	BP	150	29% 15%	33%	35%	14% •		
41	DP	150	24% 15%	37%	31%	15% •		
42	BQ	141	19% 28%	519	6	16% • •		
42	DQ	141	25%	53%		17% • •		
43	BR	118	28%	53	%	14% • •		
43	DR	118	23%	55%		18% ••		
44	BS	112	23%	34%	24%	7% 12%		
44	DS	112	22%	34%	25%	7% 12%		
45	BT	146	18%	43%	25%	5% 10%		
45	DT	146	18%	47%	22%	• 10%		
46	BU	118	36%		43%	20% •		
46	DU	118	35%		44%	19% ••		
47	BV	101	14%	41%	39%	7%		
47	DV	101	16%	38%	39%	8%		
48	BW	113	40%		40%	20%		
48	DW	113	34%		49%	16% •		
49	BX	96	16%	48%	24%	9% •		
49	DX	96	16%	48%	24%	9% •		
50	BY	110	14%	37%	35%	5% 8%		
50	DY	110	14% 21%	36%	36%	5% 8%		
51	BZ	206	25% 16%	46%	13%	• 14%		
51	DZ	206	26%	46%	14%	• 14%		

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
52	MG	AA	1622	-	-	-	Х
52	MG	AA	1646	-	-	-	Х
52	MG	BA	3330	-	-	-	Х
52	MG	CA	1611	-	-	-	Х
52	MG	CA	1633	-	-	-	Х
52	MG	CA	1641	-	-	-	Х
52	MG	DA	3179	-	-	-	Х
52	MG	DA	3216	-	-	-	Х
52	MG	DA	3247	-	-	-	Х
52	MG	DA	3280	-	-	-	Х
52	MG	DA	3289	-	-	-	Х
52	MG	DA	3302	-	-	-	Х
54	K	DA	3310	-	-	-	Х

2 Entry composition (i)

There are 55 unique types of molecules in this entry. The entry contains 278000 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		I	Atoms		ZeroOcc	AltConf	Trace	
1		1504	Total	С	Ν	0	Р	0	0	
1 AA	1504	32329	14390	5992	10444	1503	0	0	0	
1	CA	1504	Total	С	Ν	0	Р	0	0	0
	1304	32329	14390	5992	10444	1503	0	0	0	

• Molecule 1 is a RNA chain called 16S rRNA.

• Molecule 2 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
2	2 AB	235	Total	С	Ν	0	S	0	0	1
Z AD	200	1901	1213	342	341	5	0	0	T	
9	a CD	225	Total	С	Ν	0	\mathbf{S}	0	0	1
	230	1901	1213	342	341	5		U		

• Molecule 3 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	oms		ZeroOcc	AltConf	Trace	
3		207	Total	С	Ν	Ο	S	0	0	1
3 AU	201	1613	1016	315	281	1	0	0	1	
2	2 CC	207	Total	С	Ν	0	S	0	0	1
3 00	207	1613	1016	315	281	1	U	0	1	

• Molecule 4 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4		208	Total	С	Ν	Ο	\mathbf{S}	0	0	0
4	AD	208	1703	1066	339	291	7	0	0	0
4	CD	208	Total	С	Ν	0	S	0	0	0
4	CD	208	1703	1066	339	291	7	0	0	0

• Molecule 5 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
5	٨F	151	Total	С	Ν	0	\mathbf{S}	0	0	1
0	AL	101	1147	724	218	201	4	0	0	1
5	CF	151	Total	С	Ν	0	S	0	0	1
5	UE	101	1147	724	218	201	4	0	0	1

• Molecule 6 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	٨F	101	Total	С	Ν	0	S	0	0	0
0	AF	101	843	531	155	154	3	0	0	0
6	CF	101	Total	С	Ν	0	S	0	0	0
0	UГ	101	843	531	155	154	3	0	0	0

• Molecule 7 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	AG	155	Total 1257	C 781	N 252	0 218	S 6	0	0	0
7	CG	155	Total 1257	C 781	N 252	0 218	S 6	0	0	0

• Molecule 8 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	ΛЦ	128	Total	С	Ν	0	\mathbf{S}	0	0	0
0	AII	130	1116	705	215	193	3	0	0	0
0	СН	128	Total	С	Ν	0	S	0	0	0
0	UII	130	1116	705	215	193	3	0	0	0

• Molecule 9 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
0	ΔŢ	197	Total	С	Ν	Ο	0	0	0
9	AI	127	1011	639	198	174	0	0	0
0	CI	197	Total	С	Ν	Ο	0	0	0
9	UI	127	1011	639	198	174	0	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AI	58	ARG	HIS	conflict	UNP P80374
CI	58	ARG	HIS	conflict	UNP P80374

• Molecule 10 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
10	ΛΤ	00	Total	С	Ν	Ο	S	0	0	1
10	AJ	99	795	499	157	138	1	0	0	
10	CI	00	Total	С	Ν	0	S	0	0	1
10	CJ	99	795	499	157	138	1	0	0	1

• Molecule 11 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
11	AK	110	Total	С	Ν	0	S	0	0	0
	AN	119	885	549	168	165	3	0	0	0
11	CK	110	Total	С	Ν	0	S	0	0	0
	UN	119	885	549	168	165	3		0	U

• Molecule 12 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	ΔT	195	Total	С	Ν	0	S	0	0	1
12	AL	120	971	611	196	163	1	0	0	T
19	CI	195	Total	С	Ν	0	S	0	0	1
		120	971	611	196	163	1		U	

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AL	2	VAL	-	insertion	UNP Q5SHN3
AL	3	ALA	-	insertion	UNP Q5SHN3
AL	4	LEU	-	insertion	UNP Q5SHN3
CL	2	VAL	-	insertion	UNP Q5SHN3
CL	3	ALA	-	insertion	UNP Q5SHN3
CL	4	LEU	-	insertion	UNP Q5SHN3

• Molecule 13 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
12	АМ	115	Total	С	Ν	0	S	0	0	0
10	AW	115	921	569	190	160	2	0	0	0
12	CM	115	Total	С	Ν	0	S	0	0	0
10	UM	110	921	569	190	160	2	0	0	0

• Molecule 14 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
14	AN	60	Total	С	Ν	Ο	S	0	0	0
14	AIN	00	492	312	104	72	4	0	0	0
14	CN	60	Total	С	Ν	Ο	S	0	0	0
14		00	492	312	104	72	4	0	U	

• Molecule 15 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
15	10	00	Total	С	Ν	0	S	0	0	0
1.5	AU	00	734	459	147	126	2	0	0	0
15	CO	00	Total	С	Ν	0	S	0	0	0
10		00	734	459	147	126	2			U

• Molecule 16 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
16	ΔP	84	Total	С	Ν	Ο	S	0	0	1
10	ΠΙ	04	701	443	140	117	1	0	0	T
16	CP	84	Total	С	Ν	Ο	\mathbf{S}	0	0	1
10	UI	04	701	443	140	117	1	0	0	T

• Molecule 17 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
17		100	Total	С	Ν	0	\mathbf{S}	0	0	1
11	лų	100	824	528	152	142	2	0	0	T
17	CO	100	Total	С	Ν	0	S	0	0	1
11		100	824	528	152	142	2			

• Molecule 18 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ator	ns		ZeroOcc	AltConf	Trace
19	٨D	70	Total	С	Ν	0	0	0	0
10	An	70	574	367	112	95	0	0	0
19	CP	70	Total	С	Ν	0	0	0	0
10	UN	70	574	367	112	95	0	0	0

• Molecule 19 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	AS	79	Total 630	C 403	N 115	O 110	${ m S} { m 2}$	0	0	1

Continued from previous page...

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
19	CS	79	Total 630	C 403	N 115	O 110	${ m S} { m 2}$	0	0	1

• Molecule 20 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20	AT	99	Total 763	C 470	N 162	0 129	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0	0
20	CT	99	Total 763	$\begin{array}{c} \mathrm{C} \\ 470 \end{array}$	N 162	O 129	${ m S} { m 2}$	0	0	0

• Molecule 21 is a protein called 30S ribosomal protein Thx.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
91		25	Total	С	Ν	0	0	0	1
21	AU	20	209	128	51	30	0	0	L
21	CU	25	Total	С	Ν	0	0	0	1
		20	209	128	51	30		U	

• Molecule 22 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
22	BU	85	Total	С	Ν	0	S	0	0	0
	DU	85	650	401	137	111	1	0	0	0
	D0	95	Total	С	Ν	0	S	0	0	0
	D0	00	650	401	137	111	1	0	0	0

• Molecule 23 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
93	B1	80	Total	С	Ν	Ο	0	0	1
23	DI	09	693	435	140	118	0	0	L
93	D1	80	Total	С	Ν	Ο	0	0	1
23		89	693	435	140	118	0	0	1

• Molecule 24 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
24	Bo	51	Total	С	Ν	0	\mathbf{S}	0	0	1
24	D2	51	421	263	85	72	1	0	0	1
24	<u>р</u> 9	51	Total	С	Ν	0	S	0	0	1
24		51	421	263	85	72	1	0	0	1

• Molecule 25 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
25	B3	60	Total	С	Ν	0	S	0	0	1
20	D0	00	468	298	91	78	1	0	0	L
25	D3	60	Total	С	Ν	0	S	0	0	1
20	D3	00	468	298	91	78	1		U	

• Molecule 26 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Ator	ns		ZeroOcc	AltConf	Trace
26	B4	32	Total 157	C 93	N 32	O 32	0	0	0
26	D4	32	Total 157	C 93	N 32	O 32	0	0	0

• Molecule 27 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
27	B5	59	Total 459	C 288	N 90	O 76	${ m S}{ m 5}$	9	0	0
27	D5	59	Total 459	C 288	N 90	O 76	${S \atop 5}$	9	0	0

• Molecule 28 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf	Trace
28	R6	45	Total	С	Ν	Ο	\mathbf{S}	0	0	1
20	DU	40	381	235	78	64	4	0	0	T
<u> </u>	De	45	Total	С	Ν	Ο	S	0	0	1
20	D0	40	381	235	78	64	4	0	0	1

• Molecule 29 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
20	B7	40	Total	С	Ν	Ο	\mathbf{S}	0	0	1
29	Di	49	419	257	105	55	2	0	0	1
20	D7	40	Total	С	Ν	Ο	\mathbf{S}	0	0	1
29		49	419	257	105	55	2	0	U	

• Molecule 30 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
30	B	64	Total	С	Ν	Ο	\mathbf{S}	0	0	1
- 50	Do	04	508	326	102	78	2	0	0	1
20	D9	64	Total	С	Ν	0	S	0	0	1
- 30	Do	04	508	326	102	78	2	0	0	1

• Molecule 31 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			Atoms			ZeroOcc	AltConf	Trace
31	BA	2725	Total 58698	C 26124	N 10986	O 18864	Р 2724	0	0	0
31	DA	2725	Total 58698	C 26124	N 10986	O 18864	Р 2724	0	0	0

• Molecule 32 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
32	BB	119	Total 2551	C 1136	N 471	O 826	Р 118	0	0	0
32	DB	119	Total 2551	C 1136	N 471	O 826	Р 118	0	0	0

• Molecule 33 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
22	ВD	272	Total	С	Ν	0	S	0	0	1
55		212	2105	1329	417	356	3	0	0	1
22	מת	070	Total	С	Ν	0	S	0	0	1
- JJ	עע	212	2105	1329	417	356	3	0	0	

• Molecule 34 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
34	BE	205	Total	С	Ν	0	S	0	0	1
- 54	DĽ	200	1564	988	300	270	6	0	0	1
34	DF	205	Total	С	Ν	0	S	0	0	1
- 54	DE	200	1564	988	300	270	6	0	0	T

• Molecule 35 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
35	BF	208	Total 1624	C 1035	N 304	0 282	S 3	0	0	1
			1624	1035	304	282	3			

Continued from previous page...

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
35	DF	208	Total 1624	C 1035	N 304	O 282	${ m S} { m 3}$	0	0	1

• Molecule 36 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
36	BG	181	Total 1474	C 942	N 268	O 260	$\frac{S}{4}$	0	0	0
36	DG	181	Total 1474	C 942	N 268	O 260	$\frac{S}{4}$	0	0	0

• Molecule 37 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
27	рЦ	160	Total	С	Ν	0	S	0	0	1
57	DII	100	1223	773	229	220	1	0	0	1
27	рц	160	Total	С	Ν	0	S	0	0	1
51	ЪΠ	100	1223	773	229	220	1	0	0	1

• Molecule 38 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
38	BI	146	Total 1132	C 723	N 201	O 207	S 1	0	0	1
38	DI	146	Total 1132	C 723	N 201	O 207	S 1	0	0	1

• Molecule 39 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
39	BN	139	Total 1105	C 712	N 207	O 182	$\frac{S}{4}$	0	0	1
39	DN	139	Total 1105	C 712	N 207	0 182	$\frac{S}{4}$	0	0	1

• Molecule 40 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
40	BO	199	Total	С	Ν	0	S	0	0	0
40	DO	122	933	588	171	170	4	0	0	0
40	DO	199	Total	С	Ν	0	S	0	0	0
40	DO	122	933	588	171	170	4	0	0	0

• Molecule 41 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
41	PD	146	Total	С	Ν	0	S	0	0	0
41	DI	140	1114	692	227	193	2	0	0	0
41	пр	146	Total	С	Ν	0	S	0	0	0
41		140	1114	692	227	193	2			U

• Molecule 42 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
49	BO	126	Total	С	Ν	0	S	0	0	0
42	ЪQ	130	1080	688	204	183	5	0	0	0
49	DO	196	Total	С	Ν	0	S	0	0	0
42	DQ	130	1080	688	204	183	5	0		U

• Molecule 43 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		Ato	\mathbf{ms}		ZeroOcc	AltConf	Trace
/3	BB	117	Total	С	Ν	Ο	0	0	0
40	DR	111	960	599	202	159	0	0	0
43	DB	117	Total	С	Ν	Ο	0	0	0
40	DR	111	960	599	202	159	0	0	0

• Molecule 44 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	\mathbf{ms}		ZeroOcc	AltConf	Trace
44	BS	00	Total	С	Ν	Ο	0	0	1
44	00	99	771	486	155	130	0	0	L
44	סס	00	Total	С	Ν	Ο	0	0	1
44	DB	99	771	486	155	130	0	0	1

• Molecule 45 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
45	BT	139	Total	С	Ν	Ο	S	0	0	0
40	DI	152	1100	686	227	186	1	0	0	0
45	та	139	Total	С	Ν	Ο	S	0	0	0
40		132	1100	686	227	186	1	0	0	U

• Molecule 46 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
46	DII	117	Total	С	Ν	0	\mathbf{S}	0	0	0
40	DU	117	958	604	202	151	1	0	0	0
46	DU	117	Total	С	Ν	0	S	0	0	0
40	DU	111	958	604	202	151	1	0	0	0

• Molecule 47 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
47	BV	101	Total	С	Ν	0	S	0	0	0
41	DV	101	779	501	142	135	1	0	0	0
47	DV	101	Total	С	Ν	0	S	0	0	0
41	DV	101	779	501	142	135	1	0	0	0

• Molecule 48 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
48	BW	113	Total 896	C 563	N 176	0 155	${S \over 2}$	0	0	0
48	DW	113	Total 896	C 563	N 176	0 155	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0	0

• Molecule 49 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
49	BX	93	Total 726	C 471	N 132	O 123	0	0	1
49	DX	93	Total 726	C 471	N 132	O 123	0	0	1

• Molecule 50 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
50	BV	Y 101	Total	С	Ν	0	S	0	0	1
50	50 D I		776	500	149	123	4	0	0	
50	DV	101	Total	С	Ν	0	S	0	0	1
- 50	DY DY	101	776	500	149	123	4	0	0	1

• Molecule 51 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
51	BZ	177	Total 1404	C 897	N 253	O 252	${ m S} { m 2}$	0	0	1

Continued from previous page...

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
51	DZ	177	Total 1404	C 897	N 253	O 252	${ m S} { m 2}$	0	0	1

• Molecule 52 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
52	AA	51	$\begin{array}{cc} \text{Total} & \text{Mg} \\ 51 & 51 \end{array}$	0	0
52	B0	1	Total Mg 1 1	0	0
52	B1	1	Total Mg 1 1	0	0
52	B5	2	Total Mg 2 2	0	0
52	B7	1	Total Mg 1 1	0	0
52	ВА	349	Total Mg 349 349	0	0
52	BB	5	Total Mg 5 5	0	0
52	BD	1	Total Mg 1 1	0	0
52	BE	1	Total Mg 1 1	0	0
52	BF	1	Total Mg 1 1	0	0
52	BP	3	Total Mg 3 3	0	0
52	BQ	2	Total Mg 2 2	0	0
52	BR	1	Total Mg 1 1	0	0
52	BU	1	Total Mg 1 1	0	0
52	BX	1	Total Mg 1 1	0	0
52	CA	48	TotalMg4848	0	0
52	D0	1	Total Mg 1 1	0	0
52	D1	1	Total Mg 1 1	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
52	D5	2	Total Mg 2 2	0	0
52	D7	1	Total Mg 1 1	0	0
52	DA	309	Total Mg 309 309	0	0
52	DB	3	Total Mg 3 3	0	0
52	DD	1	Total Mg 1 1	0	0
52	DE	1	Total Mg 1 1	0	0
52	DF	1	Total Mg 1 1	0	0
52	DP	1	Total Mg 1 1	0	0
52	DQ	1	Total Mg 1 1	0	0
52	DR	1	Total Mg 1 1	0	0
52	DU	1	Total Mg 1 1	0	0
52	DX	1	Total Mg 1 1	0	0

Continued from previous page...

• Molecule 53 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
53	AD	1	Total Zn 1 1	0	0
53	AN	1	Total Zn 1 1	0	0
53	CD	1	Total Zn 1 1	0	0
53	CN	1	Total Zn 1 1	0	0

• Molecule 54 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
54	ВА	1	Total K 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
54	DA	1	Total K 1 1	0	0

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
55	ВА	1	Total 52	C 38	N 2	0 12	0	0
55	DA	1	Total 52	C 38	N 2	O 12	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S rRNA

• Molecule 1: 16S rRNA

• Molecule 4: 30S ribosomal protein S4

• Molecule 4: 30S ribosomal protein S4

33%

Chain AE:

46%

14%

• 7%

 \bullet Molecule 7: 30S ribosomal protein S7

• Molecule 8: 30S ribosomal protein S8

• Molecule 8: 30S ribosomal protein S8

• Molecule 9: 30S ribosomal protein S9

• Molecule 16: 30S ribosomal protein S16

• Molecule 29: 50S ribosomal protein L34

U271K	U271L G271M	U27 1N	C2710	C271P G2710	G271R	G271S		U271Y	C271Z	G272B	G272C	G272D	C.27.2G	C272H	U272I	C272J	G2/4	C279	C280	6281	A 202 A 783	U284	C285	C286	C287	0700	C292	1.098	A299	A300	G302	U303	G 304	G307	G308	4309 4310	A311	G312	C313 4314	G315	C316	G317	A320	<mark>G3</mark> 21 A322
-	G325 G326	G327	U328	G329 A330	A331	A332 7333	0005	G338	U339	A 34 U	C343	G344	A 345 A 346	A347	G348	0.00	G352 G353	G354	G355	6356 A 267	A 30 / 1135.8	A359		U362	G363 A 262 A	6363B	G363C	G363D II363E	A363F	C364	C366	G370	A371 G370	U373	A374	C376 C376	C377	C378	G379 11380	G381		U384 C385	C 386	U387 G388
<mark>G389</mark>	C393	A394	U395	G396 G397		0403 C404	0405 U405	G406	G407	C409	G410	G411	A412 C413	C414	A415	C416	C417 C418		A428	A429	0430 11431	A432	-	C435	C436	G442	A443	C444 C445	G446	A447	0449	G450	C451	C453	A454	C456	A457	G458	0459 A460	C461	C462	G463 11464	G465	A466 G467
G468	G469 A470	A471	A472	6473 6474	U475	G476	A478	A479	A480	6481 A482	A483	C484	C486	C487	G488	G489	6491 4497	G493	G494	(4 <u>9</u> 5	6498	U499	G500		U504	G506	A507	6508 C509	C510	U511 CE12	A513	A514	CE 17	G5 18	U519	CE23	U524	U525	A526 C527	A528	A529	G530 C531	4532	G533 U534
C535	A536 C537	G538	6539 2710	C540 C541	C542	C543	A548	G549	6551	G553	U554	<u>0555</u>	11557	G558	G559	C560	(561 11562	G563	C564	C565 11566	0500 4567	U568	U569	G570	A571	G573	C574	A575 II576	G577	A578	C580	C581	G582	A586	C587	0589 C589	A590	C591	G592 C593	U594	<mark>C595</mark>	G596 U597	G598	6699 G600
C601	G602 A603	G604	C605	U606 11607		G610 C611	C612	G613	U614	0014A G614B	A614C	G615	G619	G620	A621	G622	G623 C624	G625	U626	A627	4020 G629	G630	A631	A632	A633	C635	G636	A637 G638	U639	C640	6642	A643	A644 C645	A646	G647	6649 G649	CGEO	G651	C652 C656	U657	C658	C659 C650	C661	G662
U667	G668 G669	A670	C671	C672 C673	G674	A675 A676	AG77	C678	C679	G681	G682	C683	G084 A685	G686		A689	G690	C692	C693	0694 7205	6695 6696	C697	C698	A699	G700	TOP	G704	A705 A706	G707	C7 08		G7 17	A718 C719	C720	C721	A1 22 G723	U7 24	G7 25	G726	G728	G7 29	C730 C731	C732	G733 A734
A735	C736 C737	G738		G743 G744	G745	A746	G748	C749	A750	A752	C753	C754	C756		G760	A761	0762 G763	A764		0.760	6160 6769	G770		U773	A774	G776 G776	A777	G778 11779	G780	A781 A760	A783	A784	G785 C786	U787	A788	A / 69 C790	C791	G792	A793 G794	C795	<mark>C796</mark>	C797 G798)	<mark>G801</mark> A802
U803	A804 G805	C806	U807	6808	U810	U811 Ce12	U813	C814	C815	C810 C817	G818	A819	A820 A821	U822	G823	A824	C825 11826	U827	U828	A829	G831	G832	<mark>U833</mark>	C834	A835	0030 C837	C838	0839 C840	A841	G842	C844 C844	G845	C846 1847	G848	A849	118.51		G854	<mark>(855</mark> (855	C857	U858	G859	4861	<mark>G862</mark> A863
G 864	C865 A866	C867	U868	G869 A870	U871	A872	G875	C876	U877	G879	G880		G883 C884	G892	<mark>C893</mark>	C894	0895 4896	C897	C898	A899	A901	C902	C903		6906 11007	000 C908	A909	A910 A911	C912	0913 0014		A917	A918	G920	G921	0922 0923	C924	C925	A926	G928	U930	6931 6932	A933	G934
1937	G938 G939	G940	A941	G942 11943	G944	A945 Cove	6340 6947	G948	C949	6950 C951	G952	A953	G955	<mark>G956</mark>	A957	U958	A959 4960	C961		6966 797	6301		C971	G972	A973	G975	G975A	1979	A980		A984	C985	C986 C987	A988	G989	A 330	C992	G993	C994 C995	A996	C997	C998 11999	A1000	A1001 G1002
G1003	C1004 C1005	C1006		A1009 A1010	G1011	U1012	U1014	G1015	G1016	G1018	U1019	A1020	A1021 G1022	U1023	G1024	G1025	01026	A1028	A1029	G1030	41032	U1033		G1037	C1038	G1039 C1040	C1041	G1042 C1043	G1044	A1045	G1047	A1048		G1051	C1052	A1106	G1107	U1108	C1109 G1110	A1111	G1112	U1113 G1114	G1115	C1116 G1117
C1118	C1121	G1122	C1123	C1124 G1125	A1126	0-1-10 0	N1129 U1130	G1131	A1132	01133 C1135	G1136	G1137	G1138 G1139	C1140	U1141	U1142	A1142A	G1144	C1145	C1 146	0114/ A1148	G1149	C1150		A1155	G1157 G1157	C1158	01159 G1160	C1161	G1162 C1163	G1164 G1164	U1165	C1160	G1170	G1171	A1174	U1175	G1176	A1177	C1179	C1180	C1181 A1182		C1185 G1186
G1187	U1188 A1189	G1190	G1191	G1 195		U1198	C1200	C1201	C1202	61203 A1204		C1207	C1 208	A1210	U1211	G1212	A1213 A1914		C1218	61219 41220	A1 220	C1221A	C1222		G1225	C1230		G1235 G1236	A1237	G1 238	A1241	A1242	61243 61243	G1245	A1246	1 47 TH	G1250	C1251	G1252 A1253	A1254	U1255	G1256 C1257	C1258	G1259 G1260

C1261	A1262 U1263	G1264	G1266	U1267 A1268	A1269	G1270 G1271	A1272	U1273	A1275	A1276	G1277 A1278	G1279		U1282	G1285	A1286	N126/ U1288	C1289	C1290	C1291 11793	C1293	U1294	C1207	C1298	G1299	01300 A1301	A1302	G1303 C1304	C1305	C1306	A1307 A1308	G1309	61310 61311	U1312	U1313	C1315	U1316	A1317	G1319	C1320	A1322	U1323
G1324	01326 01326	C1327	U1329	C1330 A1331	G1332	C1333	A1336	G1337 C1338	G1339	U1340	U1341 A1342	G1343	G1344	C1345	G1348	A1349	C1351	U1352	A1353	A1354 C1355	G1356	U1357	G1358 A1350	A1360	G1361	C1362 C1363	G1364	A1365 A1366	A1367	G1368	C1370	G1371	01372 A1373	G1374	C1375	G1377	A1378	A1379	G1381	G1382	A1384	G1385
C1386	G1388 G1388	G1389		U1394 A1395	U1396	G1400	G1401	C1402	C1404	U1405	01406 C1407	C1408	C1409	G1410	C1411 A1412	G1413	U1415	G1416	C1417	G1418 A1210	01420	G1421	G1422 C1423		A1427	C1428 G1429	C1430	01431 C1432	01433	A1434	G1435 G1436	C1437	01438 A1439	G1440	G1441	G1443 G1443	G1444	A1445	G1448	A1449	C1450A	C1451
2 2 2 2	004Th	C1458 C1450	A1460	G1461 C1462	C1463	G1465	G1466	C1467	A1469	G1470	A1471 A1472	G1473	C1474	G1475	A1477	G1478	G1480	U1481	G1482	G1484 C1485	A1486	G1487	G1488 111 A80	A1490	G1491	G1492 C1493	A1494	A1495 A1496	U1497	C1498	G1500	C1501	C1502 U1503	C1504	C1505	01500 A1507	A1508	C1509	A1509B	G1510 C1 E1 1	U1512	C1513
U1514	C1516	G1517 11510	G1519 G1519	G1520	G1525	G1527	A1528	A1528A	C1530	C1531	C1 532	C1543	A1544	A1545	C1547	C1548	C1550	C1551	G1552	A1553 A1554	E-OO TW	C1557	A1558 C1550	00010	A1562	G1563 C1564	C1565	A1566 A1567	G1568	A1569		A1572	G15/3 C1574	C1575	U1576		A1579	A1580	C1582	A1583	A1586	A1587
C1588	01590	G1591	G1593	G1594 G1595		C1598 C1599	C1600	G1601 111602	A1603	C1604	C1605	C1607	A1608	A1609 A1610	C1611	C1612	A1614	C1615	A1616	C1617 A1618	G1619	G1620	01621 61622	G1623	G1624	C1625 G1626	G1627	G1628 111629	G1630		ZCOTW	G1635	C1636 A1637	C1638	U1639	01640 A1641		C1646	C1648	G1649	G1651	A1652
G1653 44654	FCOLA	C1657	01000 01659	C1660 G1661	C1662	C1663 A1664	A1665	G1666	A1668	A1669	C1670	C1672	U1673	G1674	A1676	A1677	01679 U1679	U1680	G1681	G1682 C1683	C1684	C1685	C1686	U1688	A1689	01693	C1694	G1695 G1696	G1697	A1698	A1700	A1701	61702 61703		C1708	C1710	C1711	C1712 11713	61719 61714	1710	U1720	G1721
A1722	G1740	A1741	C1743	C1744 C1745	C1745A	61/46 61747	G1747A	G1748 A1740	G1750		G1756 111757	G1758		C1761	G1763	G1764	U1766	C1767	U1768	G1769 G1770	C1771	G1772	A1773	U1777	U1778	01//9 A1780	C1781	C1782 41783	A1784	A1785	A1787	C1788	A1789 C1790	A1791	G1792		U1 796	C1797	61199 G1799	C1800	A1802	A1803
C1804	01805 C1806	G1807 111000	A1809	A1810 G1811	A1812	G1813 G1814	A1815	G1816	U1818	A1819	01820 01821	G1822	G1823	G1824	G1826	C1827	A1829	C1830	G1831	C1832 111833	U1834	G1835	C1836 C1835	C1838	G1839	C1843	C1844	A1847		U1851	01002 A1853	A1854	G1855 G1856	G1857	G1858	61860	G1861	G1862	U1864	G1865	A1876	A1877
G1878	C18/9 C1880	C1881	G1883	A1884 A1885	C1886	G1887 G1888	A1889	A1890 C1801	C1892	C1893	C1894 C1895		G1899	A1900	C1902	G1903	G1905	G1906	G1907	C1908	G1910	U1911	A1912 A1913	C1914	U1915	A1916 U1917	A1918	A1919	C1925	U1926	A192/ A1928	G1929	G1930 U1931		C1934	41936 A1936	A1937	A1938	01939 U1940	114046	C1947	G1948
G1949	A1952	A1953	01955	U1956 C1957	C1958	61909	C1962	U1963 C1964	FOCTO	C1967	G1968 A1969	A1970	A1971	A1972	C1974	G1975	A1977	A1978	C1979	G1980 A1981	C1982	C1983	G1984 C1085	A1986	G1987	G1989	C1990	U1991 (1992	U1993	C1994	C1996	G1997	G1998 C1999	G2000	A2001	C2007	C2008	G2009	U2010	G2012	A2014	A2015
U2016	G2018	A2019	C2021	U2022 G2023	G2024	C2025 C2026	G2027	U2028 22029	A2030	A2031	62032 AD033	U2034	G2035	C2036	G2038	C2039	U2040 U2041	A2042	C2043	C2048	G2049	C2050	A2051	G2053	A2054	G2056	A2057	A2058 A2059	A2060	G2061	C2063	<mark>C2064</mark>	C2065	<mark>G2067</mark>	U2068	G2070	-	C2073	U2075		G2080	C2081
A2082	G2084	C2085	G2087	U2091	U2092	G2094	C2095	U2096	U2098	U2099	G2100	U2102	C2103	G2104	G2106	0 0	2	0.0	U I	5 11	A	ß	ტ ა	n	Ä		n	5 5	, ಅ	A	50	C	_ Ľ	5	00	50	U	5 0	9 D	ლ <	A A	A

C998	00014	A1001	G1002	G1003	C1005	C1006	A 1010	G1011	U1012	C1013	01014 G1015	G1016		U1019	A1020 A1021	G1022	U1023	G1024 G1025	U1026	A1027 A1028	A1029	G1030	A1032	U1033	G1034 U1035	G1036	G1037 C1038	G1039	C1040 C1041	G1042	C1043 G1044	A1045 A1046	G1047	A1048	01073 A1050	G1051	C1053	A1106	U1108	C1109 G1110	A1111 G1112
U1113	G1114 C1115	C1116 C1116	G1117	C1118	C1121	G1122	C1123	G1125 G1125	A1126	00111	01130 C1131	A1132	U1133	C1135 C1136	G1137 G1137	G1138	G1 139	C1140 U1141	U1142	A1142A A1143	G1144	C1145	C1140 C1147	A1148	G1149 C1150	G1151	C1152 C1153	G1154 A1155	A1156 A1156	G1157	C1158 U1159	G1160 C1161	G1162	G1163 C1164	U1165	C1166	G1169	G1170 C1171	G1173	A1174 II1175	G1176 A1177
C1178	C1179	C1181	A1182	C118F	G1186 G1186	G1187	U1188 A1189	G1190	G1191	G1192	61193 41194	G1195		U1198	C1200	C1201		A1204	C1207	C1208 G1209	A1210	U1211	A1213 A1213	A1214	C1218	G1219	A1220 C1221	C1221A	C1224	G1225	A1226 G1227	G1228 G1229		U1234 C1735	G1236	A1237	G1239	U1240	A1241 A1242	G1243 G1244	G1245 A1246
A1247		C1251	G1252	A1253 A1254	01255	G1256	C1257	G1259 G1259	G1260	C1261	A1262 111263	G1264 G1264	A1265	G1266	01207 A1268	A1269	C1270	61271 A1272	U1273	A1274 A1275	A1276	G1277	G1279 G1279	G1280	61281	A1 <mark>2</mark> 84	G1285 A1286	A1287	C1289	C1290	01291 01292	C1293	C1297	C1298 C1298	001300 01300	A1301	G1303	C1304	C1308	A1307 A1308	G1309 G1310
G1311	U1312	C1314	C1315	U1316 A1317	C1318	G1319	C1320	A1321 A1322	U1323	G1324	61325 111326	C1327	G1328	U1329	A1331	G1332	C1333	61334 U1335	A1336	G1337 G1338	G1339	U1340	A1342	G1343	G1344 C1345	-	G1348 A1349	C1350	U1352	A1353	A1354 G1355	G1356 111357	G1358	A1359 A1360	G1361	C1362 C1363	G1364	A1365	A1367	G1368 G1369	C1370 C1371 G1371
U1372	A1373	C1375	<mark>C1376</mark>	G1377 A1278	A1379	G1380	G1381	C1383	A1384	G1385	C1386	G1388		U1394	M1396 U1396	-	C1399	G1400 G1401	C1402	C1403 C1404	01405	U1406	C1400 C1408	C1409	G1410 C1411	A1412	G1413	G1416	C141/ G1418	A1419	01420 G1421	A1427	C1428	G1429	01430 U1431	C1432 11433	A1434	G1435	C1437	U1438 A1439	G1440 G1441
G1442	61443	41445 A1445		G1448 A1440	G1450	C1450A	C1451	G1455	-	C1458	G1459 A1460	G1461	C1462	C1463	G1465	G1466	C1467	C1468 A1469	G1470	A1471 A1472	G1473	C1474	01775	G1478	G1479 G1480	U1481	G1482 G1484	G1485	A1400 G1487	G1488	01489 A1490	G1491 C1492	C1493	A1494 A1495	A1496	U1497 C1498	C1499	G1500	C1502	U1503 C1504	C1505 C1506
A1507	A1508	A1509A	A1509B	G1510 C1511	U1512	C1513	U1514 C1515	C1516 C1516	G1517	U1518	G1519 C1520	01523 01523	G1524	G1525 61526	G1527	A1528	A1528A	G1529 C1530	C1531	C1532 G1533	C1543	A1544	C1546	C1547	C1548 C1549	C1550	C1551 G1552	A1553	500 TV	C1557	A1558 G1559	G1560	G1563	C1564	00010	G1568 A1569	A1570	A1571	G1573	C1574 C1575	U1576 C1577
U1578	A1579 A1590	G1581	C1582	A1583	A1586	A1587	C1588	U1590	G1591	C1592	G1593 C1594	G1595		C1598	C1600	G1601	U1602	A1603 C1604	C1605	G1607 C1607	A1608	A1609 A1610	C1611	C1612	G1613 A1614	C1615	A1616 C1617	A1618	STOT D	G1622	G1623 G1624	C1625 G1626	G1627	G1628	62010	A1632	A1634	G1635 61636	01030 A1637	C1638 111639	C1640 A1641
	C1646 C1647	C1648	G1649	G1650 C1651	A1652	G1653	A1654	C1656	C1657	C1658	01659	G1661		A1664	G1666	G1667	A1668	A1669 C1670	U1671	C1672 U1673	G1674	C1675	G1678	U1679	01680 G1681	G1682	C1683 C1684	C1685 C1686	G1687	U1688	A1689	U1693 C1694	G1695	G1696 C1607	A1698	G1699 A1700	A1701	G1702	00.15	C1708 111709	C1710 C1711
C1712	01713		G1719	01720 61721	A1722	U1739	G1740 A1771	61742	C1743	C1744	C1 745	G1746	G1747	G1747A	05/15	C1751		G1757 U1757	G1758	A1762	G1763	G1764	U1766	C1767	U1768	C1771	G1772 A1773	C1774	G1776 G1776	U1777 111777	01/18 01779	A1780 C1781	C1782	A1783 A1784	A1785	A1786	C1788	A1789	A1791	G1792 C1793	U1794 C1795
U1796	C1797	G1799 G1799	C1800	G1801 A1802	A1802 A1803	C1804	111 808	01 80 8 A1 80 9	A1810	G1811	A1812 C1813	G1814	A1815	G1816	U1818	A1819	U1820	A1821 G1822	G1823	G1824 A1825	G1826	C1827	A1829	C1830	G1831 C1832	U1833	U1834 G1835	C1836	C1838	G1839	G1840	C1843 C1844		A1847 A1848	OLOTV	U1851 C1852	A1853	A1854	G1856	G1857 C1858	A1859 G1860
G1861	G1862 C1062	U1864	G1865	C1866 A1876	A1877	G1878	C1 88.7	G1883	A1884	A1885	C1886 C1887	G1888	A1889	A1890	C1892	-	C1895	61896	G1899	A1900 A1901	C1902	G1903	C1905	G1906	G1907 C1908	C1909	G1910 U1911	A1912	C1914 C1914	U1915	A1916 U1917	A1918	C1920	G1921	77610	C1925 111 926	A1927	A1928	G1930	U1931 A1932	G1933 C1934
G1935	A1936 A1027	A1938	U1939	U1940	U1946	C1947	G1948 C1040	G1950	U1951	A1952	A1953	U1955	U1956	C1957	000010	C1962	U1963	G1965 C1965	A1966	C1967 G1968	A1969	A1970	A1972	G1973	C1974	G1980	A1981 C1982	C1983 C1084	G1985	A1986	G1987 C1988	G1989 C1990	U1991	G1992 111 003	C1994	U1 995 C1 996	G1997	G1998 C1000	G2000	C2006	C2007 C2008
																							(R			BAN	E												

G2009	G2012	A2013	A2014	A2015 112016	U2017	G2018	A2019 A2020	C2021	U2022	G2024	C2025	C2026	U2028	<mark>G2029</mark>	A2030	A2031	A2033	U2034	G2035 C2036	G2037	G2038	C2039	U2041	A2042	C2043	C2045 C2045		G2048 G2049	C2050	A2051	G2053 G2053	A2054	G2056	A2057	A2058	A2059 A2060	G2061	A2062	C2064	C2065	C2066 C2067	U2068	G2069 G2070
	C2073 112074	U2075		C2078	G2080	C2081	A 2082 G 2083	C2084	C2085	02087 G2087		G2090	U2092	G2093	G2094	0.2096	C2097	U2098	02039	G2101	U2102	C2103	C2105	G2106	υι	o o	5 5	ບບ	n	A	5 13	A 	A V	G	B	0 0	ß	ۍ د	4 U	C	0	5 13	თ დ
5 5	ບບ	0 0	5	ם ט	Å	Å	A U	U	ບ <	C P	U	0:	ი ლ	IJ	C2183	G2184 C2185	G2186	G2187		G2190	G2191	G2192 C2193	G2194	C2195	C2196 1121.07	A2198	A2199	C2200 C2201	C2202	U2203	G2206	G2207	A2208 U2218	G2219		G2224 G2224	A2225	C2226	G2228	<mark>C2229</mark>	G2230	U2232	U2233 G2234
G2235	C2236 G2237	G2238	G2239	C2240	U2243	U2244	0.2245 G2246	A2247	C2248	02249 G2250	G2251	G2252	G2254	<mark>G2255</mark>	G2256	CO RO	00445	U2262	C2203	0220 1 02265	A2266	A2267	00774	G2271	U2272	A2274	C2275	<u>62276</u>	G2280	C2281	G2283	C2284	02200 A2286	A2287	A2288	G2290	U2291	C2292 C2202	C2294 C2294	C2295		62299	<mark>G2300</mark> C2301
G2302	G2303 G2304	A2305	C2306	G2307 C2308	A2309	A2310	A2311 U2312	C2313	C2314	62316 C2316	C2317	G2318	42319 A2320	G2321	A2322	G2323	G2325	C2326	A232/ A2328	G2329	G2330	G2331 112332	A2333	G2334	A2335	G2337	G2338	G2339 G2340		C2343	023 45 G2345	A2346	U2348	G2349	C2350	42351 A2352	G2353	G2354 C7355	C2356	U2357	G2358	A2360	A2361 G2362
C2363	C2365 G2365	A2366	1	62371 62371	G2373	C2374	42375 A2376	A2377	A2378	62379 C2380	C2381	G2382	G2384	C2385	C2386	0238/ 102388	G2389	U2390	62391 19300	A2393	C2394	C2395		G2399	G2400	C2402	C2403	C2404 G2405	U2406	G2407	02409 G2409	G2410	474 TT	G2415	C2416	62417 A2418	U2419	C2420	42422 A2422	U2423	C2424	A2426	<mark>C2427 G2428</mark>
G2429	A2430 U2431	A2432	A2433	A2434 A7A35	G2436	U2437	02438 A2439	C2440	C2441	C2442 C2443	G2444	100	G2447 A2448	U2449	A2450	A2451 C2452	A2453	G2454	62455 70456	000	U2462	C2463	C2465	C2466	C2467	42469 A2469	G2470	C2471 G2472	U2473	C2474	02410 A2476	C2477	62479	C2480	G2481	G2483	G2484	G2485 C7485	G2487	A2488	G2489	u2491	U2492 U2493
12494	2495 22496	12497	2498	22499 17500	2501	2502 2502	12504	12505	12506	2508 12508	2509	2510	2515	12516	2517 2516	12518 19519	2520	2521 DE00	2522	2524	12525	12526 12527	12528	12529	12530 12531	12532	2533	12534 12535	12536	12537 12537	2539 12539	22540 0544	2541 12542	2543	2544	12547	2548	12549 DEE0	12551 12551	12552	12553 10664	12555	22556 12557
2558 2558	2562	2563	2564 C	2565 2565	2567	2568		2571 0	2572 L	2574 2574	2575	2576	2578	2579	2580	2581 2582	2583	2584 0	2585	2587	2588	2589	2591	2592	2593 /	2595	2596	2597 C	2599		2603	2604 2605	2606	2607 0	2608	2610 L	2611	2612 2612	2614	2615 L	2616 2617	2618	2619 2620
21 C	222	325 U	526 AS		330	331 20 20		336 CI	337 A.	339 339	340 C	341 G	343 G	544 CC	345 U	0460 24.7	348	349 UT		553 AC	354 G2	355 • A2	02 057 CC	558 G		<u>61</u> ●	362 U	563 G2 564 A2	365 G	966	572 G	573 UT	378 378	5 <mark>79</mark>	880 891	001 002 002	583 U.	384 Sof	886 AS	387 U.	2388 200	000 CT	91 CC CC
94 A20	95 96	97 G2(08 02	66 VU	01 G26	02 626	03 A21	07 U2(10 12(11 A20	12 G2(12A G2(13 G2(15 G2(16 17 10 10	1/ CZ(18	19 C2(20 U2(21 20	23 026	24 A20	25 G26	27 A20	C2	30 31 31	32 G2(33 A20	34 626	38 A20	39 39	41 G2	42 G2(43 44 C2(45 A2(46 C2	4 / 02(48	49 C2(50 U2(52 G26	53 U2(54 U2(EE U2)	56 C2(57 C2(
G26	C26	G26	026	C26	C27	U27 007	CZ	G27	1 CJ	A27	U27	A27	627 G27	C27	U27 007	120	G27	127 127		C27	C27		G27			627	A27	A27	A • A27	027	A21 A27	C27	G27 G27	C27	U27 C27	A27	A27	A27	C27	A27	U27	U27	A27 A27
G2759	C2760 G2761	G2762	G2763	A2764 A2765	G2766	C2767	C2769 C2769	G2770	C2771	C2773	C2774	A2775	A2110 G2777	A2778	0270	G2/80	G2782	G2783	0.27.84	C2787	C2788	C2789	C2791	G2792	G2793	G2795	U2796	C2799 A2801	A2801.	G2802	C2804	G2805	U2808	A2809	A2810	G2812	A2813	C2814	C2816 C2816	G2817	G2818 C2810	A2820	A2821 G2822
A2823	C2827	C2828	C2829	G2830	U2832	G2833	G2834 A2835	U2836	G2837	C2840	C2841	G2842	G2844 G2844	G2845	G2846	02847	U2849	A2850	COREA	C2855	C2856	CORFO	A2860	G2861	G2862	G2864	U2865	U2866 G2867	A2868	G2869	C2871	G2872	C2874	C2875	G2876	U2878	C2879	C2880	A2882	A2883	U2884 C7885	G2886	U2887 C2888

L195 V196 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1197 1200 1200 1200 1200 1200 1200 1200

 \bullet Molecule 35: 50S ribosomal protein L4

 \bullet Molecule 39: 50S ribosomal protein L13

• Molecule 42: 50S ribosomal protein L16

 \bullet Molecule 42: 50S ribosomal protein L16

 \bullet Molecule 43: 50S ribosomal protein L17

 \bullet Molecule 49: 50S ribosomal protein L23

• Molecule 50: 50S ribosomal protein L24

 \bullet Molecule 50: 50S ribosomal protein L24

ILLE GLU GLU GLU GLU GLU GLU GLU GLU GLU

• Molecule 51: 50S ribosomal protein L25

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	210.22Å 450.25Å 623.81Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	49.80 - 3.00	Depositor
Resolution (A)	49.80 - 3.00	EDS
% Data completeness	(Not available) (49.80-3.00)	Depositor
(in resolution range)	88.7 (49.80-3.00)	EDS
R_{merge}	0.24	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.09 (at 3.01 \text{\AA})$	Xtriage
Refinement program	PHENIX	Depositor
P. P.	0.235 , 0.269	Depositor
n, n_{free}	0.232 , 0.265	DCC
R_{free} test set	51892 reflections $(5.01%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	73.9	Xtriage
Anisotropy	0.352	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.28 , 101.0	EDS
L-test for $twinning^2$	$ < L >=0.43, < L^2>=0.25$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.90	EDS
Total number of atoms	278000	wwPDB-VP
Average B, all atoms $(Å^2)$	101.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.49% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: K, ZN, MG, ZIT

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	-	Bond angles
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	AA	0.51	0/36190	0.87	34/56486~(0.1%)
1	CA	0.50	0/36190	0.88	40/56486~(0.1%)
2	AB	0.29	0/1936	0.51	0/2611
2	CB	0.29	0/1936	0.50	0/2611
3	AC	0.27	0/1637	0.45	0/2207
3	CC	0.27	0/1637	0.45	0/2207
4	AD	0.34	0/1733	0.52	0/2318
4	CD	0.34	0/1733	0.53	0/2318
5	AE	0.34	0/1163	0.55	0/1566
5	CE	0.34	0/1163	0.55	0/1566
6	AF	0.35	0/856	0.54	0/1154
6	CF	0.36	0/856	0.54	0/1154
7	AG	0.25	0/1276	0.44	0/1709
7	CG	0.26	0/1276	0.44	0/1709
8	AH	0.34	0/1136	0.55	0/1527
8	CH	0.33	0/1136	0.54	0/1527
9	AI	0.27	0/1028	0.44	0/1375
9	CI	0.27	0/1028	0.44	0/1375
10	AJ	0.29	0/808	0.48	0/1087
10	CJ	0.29	0/808	0.48	0/1087
11	AK	0.32	0/900	0.52	0/1213
11	CK	0.32	0/900	0.52	0/1213
12	AL	0.38	0/987	0.61	1/1322~(0.1%)
12	CL	0.39	0/987	0.62	0/1322
13	AM	0.26	0/928	0.47	0/1238
13	CM	0.27	0/928	0.47	0/1238
14	AN	0.27	0/501	0.45	$0/\overline{664}$
14	CN	0.28	0/501	0.44	0/664
15	AO	0.35	0/745	0.56	0/992
15	CO	0.33	0/745	0.56	0/992
16	AP	0.33	$0/\overline{717}$	0.55	0/965
16	CP	0.33	0/717	0.55	0/965

4 1 1 1

7.4		B	ond lengths		Bond angles
Mol	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
17	AQ	0.33	0/837	0.57	0/1119
17	CQ	0.34	0/837	0.56	0/1119
18	AR	0.35	0/579	0.57	0/768
18	CR	0.37	0/579	0.57	0/768
19	AS	0.28	0/643	0.46	0/867
19	CS	0.28	0/643	0.46	0/867
20	AT	0.34	0/765	0.56	0/1007
20	CT	0.34	0/765	0.55	0/1007
21	AU	0.27	0/213	0.43	0/279
21	CU	0.28	0/213	0.43	0/279
22	B0	0.58	0/658	0.76	1/878~(0.1%)
22	D0	0.52	0/658	0.74	0/878
23	B1	0.74	0/700	0.98	0/931
23	D1	0.65	0/700	0.95	1/931~(0.1%)
24	B2	0.68	0/423	0.92	0/560
24	D2	0.59	0/423	0.89	0/560
25	B3	0.62	0/473	0.71	0/636
25	D3	0.47	0/473	0.69	0/636
26	B4	0.31	0/156	0.59	0/215
26	D4	0.33	0/156	0.57	0/215
27	B5	0.86	1/473~(0.2%)	1.17	2/639~(0.3%)
27	D5	0.74	0/473	1.07	2/639~(0.3%)
28	B6	0.86	1/387~(0.3%)	1.05	2/517~(0.4%)
28	D6	0.70	0/387	0.97	1/517~(0.2%)
29	B7	0.65	0/427	0.79	0/563
29	D7	0.59	0/427	0.78	0/563
30	B8	0.76	0/516	1.08	3/681~(0.4%)
30	D8	0.64	0/516	1.02	3/681~(0.4%)
31	BA	1.11	98/65745~(0.1%)	1.45	1072/102639~(1.0%)
31	DA	0.84	36/65745~(0.1%)	1.38	904/102639~(0.9%)
32	BB	0.87	0/2853	1.26	29/4451~(0.7%)
32	DB	0.69	0/2853	1.18	27/4451~(0.6%)
33	BD	0.61	0/2155	0.82	1/2907~(0.0%)
33	DD	0.56	0/2155	0.80	1/2907~(0.0%)
34	BE	0.64	0/1597	0.82	2/2155~(0.1%)
34	DE	0.57	$\overline{0/1597}$	0.80	$\overline{0/2155}$
35	BF	0.63	1/1659~(0.1%)	0.77	$0/2\overline{246}$
35	DF	0.53	$\overline{0/1659}$	0.75	$2/22\overline{46}\ (0.1\%)$
36	BG	0.33	0/1498	0.55	0/2013
36	DG	0.31	0/1498	0.53	0/2013
37	BH	0.64	0/1246	0.77	0/1684
37	DH	0.47	0/1246	0.70	$0/1\overline{684}$
38	BI	0.39	$0/1\overline{147}$	0.64	$0/1\overline{553}$

Mal	Chain	B	Bond lengths		Bond angles
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
38	DI	0.38	0/1147	0.63	0/1553
39	BN	0.70	0/1132	0.88	1/1527~(0.1%)
39	DN	0.54	0/1132	0.79	0/1527
40	BO	0.57	0/943	0.71	0/1269
40	DO	0.50	0/943	0.69	0/1269
41	BP	0.72	1/1131~(0.1%)	1.03	4/1504~(0.3%)
41	DP	0.63	0/1131	0.95	4/1504~(0.3%)
42	BQ	0.65	0/1100	0.84	1/1470~(0.1%)
42	DQ	0.58	0/1100	0.80	0/1470
43	BR	0.63	0/974	0.91	4/1302~(0.3%)
43	DR	0.56	0/974	0.87	3/1302~(0.2%)
44	BS	0.56	0/779	0.83	0/1038
44	DS	0.49	0/779	0.78	0/1038
45	BT	0.58	0/1114	0.83	1/1488~(0.1%)
45	DT	0.53	0/1114	0.80	0/1488
46	BU	0.71	0/975	0.77	0/1297
46	DU	0.59	0/975	0.71	0/1297
47	BV	0.76	0/789	0.96	1/1054~(0.1%)
47	DV	0.58	0/789	0.89	1/1054~(0.1%)
48	BW	0.67	0/907	0.84	0/1216
48	DW	0.58	0/907	0.79	0/1216
49	BX	0.74	0/740	0.99	$3\overline{/995(0.3\%)}$
49	DX	0.64	0/740	0.90	$2\overline{/995}~(0.2\%)$
50	BY	0.67	1/789~(0.1%)	0.88	1/1053~(0.1%)
50	DY	0.56	0/789	0.82	1/1053~(0.1%)
51	BZ	0.46	0/1436	0.64	2/1951~(0.1%)
51	DZ	0.40	0/1436	0.62	2/1951~(0.1%)
All	All	0.75	$13\overline{9/301000}~(0.0\%)$	1.13	$21\overline{59/449812}~(0.5\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
23	B1	0	1
23	D1	0	1
24	B2	0	3
24	D2	0	1
27	B5	0	1
27	D5	0	1
31	BA	21	0

Mol	Chain	#Chirality outliers	#Planarity outliers
31	DA	21	0
33	BD	0	2
33	DD	0	2
34	BE	0	2
34	DE	0	2
35	BF	0	1
37	BH	0	2
37	DH	0	2
41	BP	0	5
41	DP	0	4
42	BQ	0	1
42	DQ	0	1
43	BR	0	1
43	DR	0	1
44	BS	0	1
44	DS	0	1
45	BT	0	1
45	DT	0	1
47	BV	0	1
47	DV	0	2
49	BX	0	3
49	DX	0	3
All	All	42	47

The worst 5 of 139 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
31	BA	783	A	N9-C4	-12.00	1.30	1.37
31	BA	669	G	C4'-C3'	-11.54	1.40	1.53
31	DA	528	A	N9-C4	-11.40	1.31	1.37
31	BA	2346	А	N3-C4	-10.07	1.28	1.34
31	DA	669	G	C4'-C3'	-9.54	1.42	1.53

The worst 5 of 2159 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	DA	1779	U	C5-C6-N1	-19.83	112.78	122.70
31	DA	2447	G	N1-C6-O6	16.89	130.03	119.90
31	BA	1779	U	C5-C6-N1	-16.70	114.35	122.70
31	DA	2447	G	C5-C6-O6	-16.69	118.58	128.60
31	BA	676	А	C5-N7-C8	-15.75	96.03	103.90

Mol	Chain	\mathbf{Res}	Type	Atom
31	BA	100	G	C1'
31	BA	472	А	C3'
31	BA	669	G	C4',C3',C1'
31	BA	945	А	C1'
31	BA	1300	U	C4',C3',C1'

5 of 42 chirality outliers are listed below:

5 of 47 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
23	B1	30	VAL	Peptide
24	B2	55	ARG	Peptide
24	B2	56	GLN	Peptide
24	B2	57	ILE	Peptide
27	B5	51	TYR	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	AA	32329	0	16318	1409	0
1	CA	32329	0	16318	1381	0
2	AB	1901	0	1951	169	0
2	CB	1901	0	1951	167	0
3	AC	1613	0	1677	116	0
3	CC	1613	0	1677	117	0
4	AD	1703	0	1763	158	0
4	CD	1703	0	1763	160	0
5	AE	1147	0	1207	103	0
5	CE	1147	0	1207	107	0
6	AF	843	0	857	80	0
6	CF	843	0	857	86	0
7	AG	1257	0	1296	60	0
7	CG	1257	0	1296	62	0
8	AH	1116	0	1177	83	0
8	CH	1116	0	1177	82	0
9	AI	1011	0	1042	84	0
9	CI	1011	0	1042	85	0

4V7Y	
------	--

Mol		Non-H	$\mathbf{H}(\mathbf{model})$	H(added)	Clashes	Symm-Clashes
10	AJ	795	0	840	80	0
10	CJ	795	0	840	82	0
11	AK	885	0	904	64	0
11	CK	885	0	904	69	0
12	AL	971	0	1057	104	0
12	CL	971	0	1057	106	0
13	AM	921	0	976	60	0
13	СМ	921	0	976	63	0
14	AN	492	0	530	35	0
14	CN	492	0	529	33	0
15	AO	734	0	771	54	0
15	CO	734	0	771	56	0
16	AP	701	0	720	88	0
16	CP	701	0	720	91	0
17	AQ	824	0	891	46	0
17	CQ	824	0	891	49	0
18	AR	574	0	644	63	0
18	CR	574	0	644	64	0
19	AS	630	0	652	40	0
19	CS	630	0	652	34	0
20	AT	763	0	861	78	0
20	CT	763	0	861	75	0
21	AU	209	0	221	11	0
21	CU	209	0	221	11	0
22	B0	650	0	654	67	0
22	D0	650	0	654	64	0
23	B1	693	0	764	143	0
23	D1	693	0	764	144	0
24	B2	421	0	461	119	1
24	D2	421	0	461	125	0
25	B3	468	0	523	37	0
25	D3	468	0	523	56	0
26	B4	157	0	69	12	0
26	D4	157	0	69	12	0
27	B5	459	0	478	82	0
27	D5	459	0	480	85	0
28	B6	381	0	390	96	0
28	D6	381	0	390	92	0
29	B7	419	0	467	37	0
29	D7	419	0	467	38	0
30	B8	508	0	576	156	0
30	D8	508	0	576	144	0
Continued on next page						

WORLDWIDE PROTEIN DATA BANK

4V7Y	
------	--

	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
21	RA BA	58608		20500	2302	
21		58608	0	29590	2578	1
31	BB	2551	0	1205	156	0
32	DB	2551	0	1295	173	0
32	BD	2001	0	2189	336	0
22	םם	2105	0	2102	333	0
34	BE	1564	0	1620		0
34	DE	1564	0	1629	214	0
35	BE	1624	0	1625	171	0
35	DF	1624	0	1677	171	0
36	BC	1024	0	153/	1/0	0
36	DG	1474	0	1534	149	0
37	BH	1993	0	1994	143	0
37	DH DH	1220	0	1282	141	0
30	BI	1223	0	1282	149	0
- 30 - 20		1102	0	1210	142	0
- 30 - 20	DI	1152	0	1210	100	0
20		1105	0	1100	104	0
39	DN PO	022	0	006	100	0
40	DO	900	0	990	00 76	0
40		955	0	990	10	0
41		1114	0	1107	271	0
41	Dr	1114	0	1107	200	0
42		1080	0	1127	107	0
42		1080	0	1127	102	0
43		900	0	1021	110	0
45		900	0	1021	117	0
44		771	0	002	140	0
44		1100	0	002	100	0
40		1100	0	1104	166	0
40		059	0	1015	149	0
40		958	0	1015	142	0
40	DU	938	0	1015 951	210	0
47		770	0	001 951	210	0
41		119 806	0	052	215	0
40		806	0	955	<u>70</u> 80	0
40	BV	796	0	900 779	162	0
49	DA DV	726	0	110	100	0
49 50	DA DV	120	0	110 870	100	0
50		776	0	010 970	107	0
50	DI P7	1404	0	0/0	10/	0
		1404	0	1432	140	0
16	DZ	1404	U	1452	139	U

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
52	AA	51	0	0	0	0
52	B0	1	0	0	0	0
52	B1	1	0	0	0	0
52	B5	2	0	0	0	0
52	B7	1	0	0	0	0
52	BA	349	0	0	0	0
52	BB	5	0	0	0	0
52	BD	1	0	0	0	0
52	BE	1	0	0	0	0
52	BF	1	0	0	0	0
52	BP	3	0	0	0	0
52	BQ	2	0	0	0	0
52	BR	1	0	0	0	0
52	BU	1	0	0	0	0
52	BX	1	0	0	0	0
52	CA	48	0	0	0	0
52	D0	1	0	0	0	0
52	D1	1	0	0	0	0
52	D5	2	0	0	0	0
52	D7	1	0	0	0	0
52	DA	309	0	0	0	0
52	DB	3	0	0	0	0
52	DD	1	0	0	0	0
52	DE	1	0	0	0	0
52	DF	1	0	0	0	0
52	DP	1	0	0	0	0
52	DQ	1	0	0	0	0
52	DR	1	0	0	0	0
52	DU	1	0	0	0	0
52	DX	1	0	0	0	0
53	AD	1	0	0	0	0
53	AN	1	0	0	0	0
53	CD	1	0	0	0	0
53	CN	1	0	0	0	0
54	BA	1	0	0	0	0
54	DA	1	0	0	0	0
55	BA	52	0	72	3	0
55	DA	52	0	72	3	0
All	All	278000	0	189246	17418	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 37.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
42:BQ:81:VAL:O	42:BQ:82:ARG:HG2	1.13	1.31
42:DQ:81:VAL:O	42:DQ:82:ARG:HG2	1.25	1.27
41:BP:59:LEU:HA	41:BP:61:ARG:NH1	1.49	1.25
41:DP:59:LEU:HA	41:DP:61:ARG:NH1	1.55	1.20
31:DA:2206:G:N2	31:DA:2207:G:H5'	1.58	1.19

The worst 5 of 17418 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
24:B2:12:GLU:CB	31:DA:306:U:OP1[1_455]	2.15	0.05	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
2	AB	233/256~(91%)	178 (76%)	38~(16%)	17 (7%)	1 4
2	CB	233/256~(91%)	177 (76%)	39~(17%)	17~(7%)	1 4
3	AC	205/239~(86%)	155 (76%)	36~(18%)	14 (7%)	1 5
3	CC	205/239~(86%)	155~(76%)	37~(18%)	13~(6%)	1 6
4	AD	206/209~(99%)	138~(67%)	52~(25%)	16 (8%)	1 4
4	CD	206/209~(99%)	137~(66%)	55~(27%)	14 (7%)	1 5
5	AE	149/162~(92%)	105 (70%)	31 (21%)	13~(9%)	0 3
5	CE	149/162~(92%)	103 (69%)	33~(22%)	13~(9%)	0 3
6	AF	99/101~(98%)	76 (77%)	15~(15%)	8 (8%)	1 3
6	CF	99/101~(98%)	76 (77%)	14 (14%)	9 (9%)	0 2
7	AG	153/156~(98%)	130 (85%)	19(12%)	4 (3%)	4 23

a 1	C		
Continued	trom	previous	page
	J	1	1

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
7	CG	153/156~(98%)	131 (86%)	18~(12%)	4(3%)	4	23
8	AH	136/138~(99%)	98 (72%)	31~(23%)	7~(5%)	1	10
8	CH	136/138~(99%)	98 (72%)	31~(23%)	7~(5%)	1	10
9	AI	123/128~(96%)	92 (75%)	24 (20%)	7~(6%)	1	8
9	CI	123/128~(96%)	94 (76%)	22~(18%)	7~(6%)	1	8
10	AJ	97/105~(92%)	81 (84%)	11 (11%)	5 (5%)	1	9
10	CJ	97/105~(92%)	81 (84%)	11 (11%)	5 (5%)	1	9
11	AK	117/129~(91%)	87 (74%)	26~(22%)	4(3%)	3	17
11	CK	117/129~(91%)	86 (74%)	27~(23%)	4(3%)	3	17
12	AL	123/135~(91%)	82 (67%)	31~(25%)	10 (8%)	1	3
12	CL	123/135~(91%)	83~(68%)	29~(24%)	11 (9%)	0	2
13	AM	107/126~(85%)	84 (78%)	17~(16%)	6~(6%)	1	8
13	CM	107/126~(85%)	84 (78%)	17~(16%)	6~(6%)	1	8
14	AN	58/61~(95%)	45 (78%)	11~(19%)	2~(3%)	3	17
14	CN	58/61~(95%)	44 (76%)	12 (21%)	2(3%)	3	17
15	AO	86/89~(97%)	62 (72%)	19 (22%)	5~(6%)	1	8
15	CO	86/89~(97%)	61 (71%)	21 (24%)	4 (5%)	2	11
16	AP	82/88~(93%)	48 (58%)	27 (33%)	7~(8%)	0	3
16	CP	82/88~(93%)	47 (57%)	29~(35%)	6 (7%)	1	4
17	AQ	98/105~(93%)	74 (76%)	18 (18%)	6~(6%)	1	7
17	CQ	98/105~(93%)	73 (74%)	19~(19%)	6~(6%)	1	7
18	AR	68/88~(77%)	52 (76%)	11 (16%)	5(7%)	1	4
18	CR	68/88~(77%)	51 (75%)	13~(19%)	4~(6%)	1	7
19	AS	77/93~(83%)	58 (75%)	13~(17%)	6 (8%)	1	4
19	CS	77/93~(83%)	59 (77%)	12~(16%)	6 (8%)	1	4
20	AT	97/106~(92%)	69 (71%)	19 (20%)	9~(9%)	0	2
20	CT	97/106~(92%)	65~(67%)	23~(24%)	9~(9%)	0	2
21	AU	$23/\overline{27(85\%)}$	18 (78%)	4(17%)	1 (4%)	2	13
21	CU	23/27~(85%)	18 (78%)	4 (17%)	1 (4%)	2	13
22	B0	$83/\overline{85~(98\%)}$	65(78%)	14(17%)	4 (5%)	2	11
22	D0	83/85 (98%)	64 (77%)	15 (18%)	4 (5%)	2	11

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
23	B1	87/98~(89%)	48 (55%)	17 (20%)	22~(25%)	0 0
23	D1	87/98~(89%)	45 (52%)	19~(22%)	23~(26%)	0 0
24	B2	49/72~(68%)	23 (47%)	19 (39%)	7(14%)	0 1
24	D2	49/72~(68%)	23 (47%)	18 (37%)	8 (16%)	0 0
25	B3	58/60~(97%)	52 (90%)	4 (7%)	2(3%)	3 17
25	D3	58/60~(97%)	51 (88%)	5~(9%)	2(3%)	3 17
26	B4	30/71~(42%)	5 (17%)	11 (37%)	14~(47%)	0
26	D4	30/71~(42%)	5 (17%)	10 (33%)	15~(50%)	0 0
27	B5	57/60~(95%)	38 (67%)	11~(19%)	8 (14%)	0 1
27	D5	57/60~(95%)	36 (63%)	14 (25%)	7~(12%)	0 1
28	B6	41/54~(76%)	21 (51%)	6 (15%)	14 (34%)	0 0
28	D6	41/54~(76%)	19 (46%)	8 (20%)	14 (34%)	0 0
29	B7	47/49~(96%)	41 (87%)	4 (8%)	2(4%)	2 13
29	D7	47/49~(96%)	40 (85%)	4 (8%)	3~(6%)	1 6
30	B8	62/65~(95%)	42 (68%)	11 (18%)	9 (14%)	0 1
30	D8	62/65~(95%)	41 (66%)	12 (19%)	9 (14%)	0 1
33	BD	270/276~(98%)	208 (77%)	45~(17%)	17~(6%)	1 6
33	DD	270/276~(98%)	207 (77%)	47 (17%)	16 (6%)	1 7
34	BE	203/206~(98%)	138 (68%)	37~(18%)	28~(14%)	0 1
34	DE	203/206~(98%)	138 (68%)	38~(19%)	27~(13%)	0 1
35	BF	206/210~(98%)	160 (78%)	30~(15%)	16 (8%)	1 4
35	DF	206/210~(98%)	156 (76%)	33~(16%)	17 (8%)	0 3
36	BG	177/182~(97%)	128 (72%)	35~(20%)	14 (8%)	1 3
36	DG	177/182~(97%)	127 (72%)	36~(20%)	14 (8%)	1 3
37	BH	158/180~(88%)	92 (58%)	41 (26%)	25~(16%)	0 0
37	DH	158/180~(88%)	93 (59%)	39~(25%)	26 (16%)	0 0
38	BI	144/148~(97%)	88 (61%)	32~(22%)	24 (17%)	0 0
38	DI	144/148~(97%)	87 (60%)	35 (24%)	22 (15%)	0 0
39	BN	$\overline{137/140}\ (98\%)$	87 (64%)	32(23%)	18 (13%)	0 1
39	DN	137/140~(98%)	88 (64%)	32~(23%)	17 (12%)	0 1
40	BO	120/122 (98%)	101 (84%)	16 (13%)	3(2%)	4 24

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
40	DO	120/122~(98%)	99~(82%)	17~(14%)	4 (3%)	3	18
41	BP	144/150~(96%)	77 (54%)	17~(12%)	50~(35%)	0	0
41	DP	144/150~(96%)	76 (53%)	18 (12%)	50 (35%)	0	0
42	BQ	134/141~(95%)	92~(69%)	28 (21%)	14 (10%)	0	2
42	DQ	134/141~(95%)	96 (72%)	23~(17%)	15 (11%)	0	1
43	BR	115/118~(98%)	78~(68%)	29~(25%)	8 (7%)	1	4
43	DR	115/118~(98%)	82 (71%)	24 (21%)	9~(8%)	1	4
44	BS	97/112~(87%)	49 (50%)	24 (25%)	24 (25%)	0	0
44	DS	97/112~(87%)	49 (50%)	23~(24%)	25~(26%)	0	0
45	BT	130/146~(89%)	89~(68%)	21~(16%)	20~(15%)	0	0
45	DT	130/146~(89%)	90 (69%)	21 (16%)	19~(15%)	0	1
46	BU	115/118~(98%)	77~(67%)	27~(24%)	11 (10%)	0	2
46	DU	115/118~(98%)	74 (64%)	29~(25%)	12 (10%)	0	2
47	BV	97/101~(96%)	54 (56%)	15~(16%)	28 (29%)	0	0
47	DV	97/101~(96%)	52 (54%)	18 (19%)	27~(28%)	0	0
48	BW	111/113~(98%)	88 (79%)	15~(14%)	8 (7%)	1	4
48	DW	111/113~(98%)	89 (80%)	15 (14%)	7~(6%)	1	6
49	BX	91/96~(95%)	47 (52%)	22 (24%)	22~(24%)	0	0
49	DX	91/96~(95%)	48 (53%)	22 (24%)	21 (23%)	0	0
50	BY	99/110~(90%)	45 (46%)	22~(22%)	32 (32%)	0	0
50	DY	99/110~(90%)	46 (46%)	21 (21%)	32 (32%)	0	0
51	BZ	175/206~(85%)	113 (65%)	43 (25%)	19 (11%)	0	1
51	DZ	175/206~(85%)	113 (65%)	44 (25%)	18 (10%)	0	2
All	All	11148/12060 (92%)	7735 (69%)	2187 (20%)	1226 (11%)	0	1

5 of 1226 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	AB	15	VAL
2	AB	24	TRP
2	AB	154	LEU
2	AB	165	VAL
2	AB	194	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	
2	AB	202/220~(92%)	176 (87%)	26~(13%)	3	16
2	CB	202/220~(92%)	176 (87%)	26~(13%)	3	16
3	AC	160/188~(85%)	152 (95%)	8 (5%)	20	53
3	CC	160/188~(85%)	152 (95%)	8~(5%)	20	53
4	AD	180/181~(99%)	157 (87%)	23~(13%)	3	16
4	CD	180/181 (99%)	156 (87%)	24 (13%)	3	15
5	AE	115/123 (94%)	100 (87%)	15 (13%)	3	16
5	CE	115/123~(94%)	100 (87%)	15 (13%)	3	16
6	AF	90/90~(100%)	79~(88%)	11 (12%)	4	18
6	CF	90/90~(100%)	79~(88%)	11 (12%)	4	18
7	AG	126/127~(99%)	121 (96%)	5 (4%)	27	61
7	CG	126/127~(99%)	121 (96%)	5 (4%)	27	61
8	AH	119/119~(100%)	107 (90%)	12 (10%)	6	25
8	CH	119/119~(100%)	107 (90%)	12 (10%)	6	25
9	AI	98/99~(99%)	88 (90%)	10 (10%)	6	24
9	CI	98/99~(99%)	88 (90%)	10 (10%)	6	24
10	AJ	88/92~(96%)	81 (92%)	7 (8%)	10	35
10	CJ	88/92~(96%)	81 (92%)	7 (8%)	10	35
11	AK	90/99~(91%)	79~(88%)	11 (12%)	4	18
11	CK	90/99~(91%)	80 (89%)	10 (11%)	5	21
12	AL	104/111 (94%)	96 (92%)	8 (8%)	10	37
12	CL	104/111 (94%)	96 (92%)	8 (8%)	10	37
13	AM	$\overline{93/101}\ (92\%)$	86 (92%)	7 (8%)	11	38
13	СМ	93/101~(92%)	86 (92%)	7(8%)	11	38
14	AN	49/50 (98%)	46 (94%)	3 (6%)	15	46
14	CN	49/50~(98%)	47 (96%)	2(4%)	26	60

4	V	7	Υ	

Conti	nued from	n previous page		-			
Mol	Chain	Analysed	Rotameric	Outliers	Perce	entile	es
15	AO	79/80~(99%)	69 (87%)	10 (13%)	3	17	
15	CO	79/80~(99%)	69 (87%)	10 (13%)	3	17	
16	AP	72/74~(97%)	60 (83%)	12 (17%)	2	9	
16	CP	72/74~(97%)	60 (83%)	12~(17%)	2	9	
17	AQ	94/97~(97%)	91~(97%)	3~(3%)	34	67	
17	CQ	94/97~(97%)	91~(97%)	3~(3%)	34	67	
18	AR	61/77~(79%)	56 (92%)	5 (8%)	9	34	
18	CR	61/77~(79%)	55 (90%)	6 (10%)	6	26	
19	AS	69/80~(86%)	62 (90%)	7~(10%)	6	25	
19	CS	69/80~(86%)	62 (90%)	7 (10%)	6	25	
20	AT	76/82~(93%)	65 (86%)	11 (14%)	2	13	
20	CT	76/82~(93%)	66 (87%)	10 (13%)	3	15	
21	AU	19/22~(86%)	19 (100%)	0	100	100)
21	CU	19/22~(86%)	19 (100%)	0	100	100)
22	B0	61/67~(91%)	49 (80%)	12 (20%)	1	6	
22	D0	61/67~(91%)	47 (77%)	14 (23%)	0	3	
23	B1	73/83~(88%)	55 (75%)	18 (25%)	0	2	
23	D1	73/83~(88%)	55 (75%)	18 (25%)	0	2	
24	B2	46/67~(69%)	29 (63%)	17 (37%)	0	0	
24	D2	46/67~(69%)	30 (65%)	16 (35%)	0	1	
25	B3	51/52~(98%)	44 (86%)	7 (14%)	3	14	
25	D3	51/52~(98%)	44 (86%)	7 (14%)	3	14	
27	B5	51/52~(98%)	38 (74%)	13 (26%)	0	2	
27	D5	51/52~(98%)	36 (71%)	15 (29%)	0	1	
28	B6	43/52~(83%)	27 (63%)	16 (37%)	0	0	
28	D6	43/52~(83%)	27 (63%)	16 (37%)	0	0	
29	B7	41/42~(98%)	35 (85%)	6 (15%)	2	12	
29	D7	41/42~(98%)	35 (85%)	6 (15%)	2	12	
30	B8	53/55~(96%)	38 (72%)	15 (28%)	0	1	
30	D8	53/55~(96%)	41 (77%)	12(23%)	1	3	
33	BD	213/218~(98%)	163 (76%)	50 (24%)	0	3	

α \cdot \cdot \cdot	C	•	
Continued	trom	nremous	ทกกค
Contentaca	JIONU	precious	pagem

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
33	DD	213/218~(98%)	162 (76%)	51 (24%)	0 3
34	BE	165/166~(99%)	126 (76%)	39~(24%)	0 3
34	DE	165/166~(99%)	126 (76%)	39~(24%)	0 3
35	BF	165/166~(99%)	132 (80%)	33~(20%)	1 5
35	DF	165/166~(99%)	135 (82%)	30~(18%)	1 7
36	BG	155/156~(99%)	132 (85%)	23~(15%)	2 12
36	DG	155/156~(99%)	131 (84%)	24~(16%)	2 11
37	BH	132/148~(89%)	107 (81%)	25~(19%)	1 7
37	DH	132/148~(89%)	108 (82%)	24 (18%)	1 7
38	BI	122/124~(98%)	103 (84%)	19 (16%)	2 11
38	DI	122/124~(98%)	103 (84%)	19 (16%)	2 11
39	BN	117/119~(98%)	93 (80%)	24 (20%)	1 5
39	DN	117/119~(98%)	92 (79%)	25 (21%)	1 4
40	BO	100/100~(100%)	75 (75%)	25~(25%)	0 2
40	DO	100/100~(100%)	74 (74%)	26 (26%)	0 2
41	BP	112/116~(97%)	63~(56%)	49 (44%)	0 0
41	DP	112/116~(97%)	65 (58%)	47 (42%)	0 0
42	BQ	106/111~(96%)	88 (83%)	18 (17%)	1 9
42	DQ	106/111~(96%)	87 (82%)	19~(18%)	1 8
43	BR	100/101~(99%)	76 (76%)	24~(24%)	0 3
43	DR	100/101~(99%)	75 (75%)	25~(25%)	0 2
44	BS	77/88~(88%)	54 (70%)	23~(30%)	0 1
44	DS	77/88~(88%)	54 (70%)	23~(30%)	0 1
45	BT	116/127~(91%)	84 (72%)	32 (28%)	0 1
45	DT	116/127~(91%)	84 (72%)	32~(28%)	0 1
46	BU	92/94~(98%)	75 (82%)	17 (18%)	1 7
46	DU	92/94~(98%)	74 (80%)	18 (20%)	1 6
47	BV	82/82~(100%)	53(65%)	29(35%)	0 1
47	DV	$\overline{82/82}\;(100\%)$	52 (63%)	30 (37%)	0 0
48	BW	$\overline{91/92} \ (99\%)$	70 (77%)	21 (23%)	0 3
48	DW	$91/\overline{92}\ (99\%)$	69 (76%)	22 (24%)	0 3

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
49	BX	74/78~(95%)	54 (73%)	20~(27%)	0 2
49	DX	74/78~(95%)	54 (73%)	20 (27%)	0 2
50	BY	84/91~(92%)	58~(69%)	26 (31%)	0 1
50	DY	84/91~(92%)	59 (70%)	25~(30%)	0 1
51	ΒZ	155/179~(87%)	130 (84%)	25~(16%)	2 10
51	DZ	155/179~(87%)	130 (84%)	25~(16%)	2 10
All	All	9322/9876~(94%)	7681 (82%)	1641 (18%)	1 8

5 of 1641 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
9	CI	102	LEU
33	DD	157	ARG
50	DY	42	VAL
12	CL	85	ILE
9	CI	101	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 272 such sidechains are listed below:

Mol	Chain	Res	Type
40	DO	82	ASN
43	DR	13	HIS
48	DW	34	ASN
41	BP	9	ASN
39	BN	130	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	AA	1503/1522~(98%)	287 (19%)	31 (2%)
1	CA	1503/1522~(98%)	288 (19%)	31 (2%)
31	BA	2723/2787~(97%)	735 (26%)	71 (2%)
31	DA	2723/2787~(97%)	729 (26%)	70 (2%)
32	BB	118/122~(96%)	35 (29%)	1 (0%)
32	DB	118/122~(96%)	35~(29%)	0
All	All	8688/8862~(98%)	2109 (24%)	204 (2%)

5 of 2109 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	AA	9	G
1	AA	31	G
1	AA	32	А
1	AA	39	G
1	AA	47	С

5 of 204 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	CA	499	А
31	DA	387	U
31	DA	2662	А
1	CA	687	А
1	CA	1285	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 802 ligands modelled in this entry, 800 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Trma	Chain Dag	Timle	Bond lengths		Bond angles					
IVIOI	Mol Type Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
55	ZIT	BA	3351	-	54,54,54	1.42	7 (12%)	82,83,83	1.10	5 (6%)
55	ZIT	DA	3311	-	54,54,54	1.42	6 (11%)	82,83,83	1.10	5 (6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
55	ZIT	BA	3351	-	-	3/72/107/107	0/3/3/3
55	ZIT	DA	3311	-	-	3/72/107/107	0/3/3/3

The worst 5 of 13 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
55	DA	3311	ZIT	C13-C14	3.34	1.60	1.55
55	BA	3351	ZIT	C22-C11	3.34	1.58	1.52
55	DA	3311	ZIT	C22-C11	3.32	1.58	1.52
55	BA	3351	ZIT	C13-C14	3.29	1.60	1.55
55	DA	3311	ZIT	O13-C13	2.73	1.48	1.44

The worst 5 of 10 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
55	BA	3351	ZIT	C9-N10-C11	-3.08	106.95	112.06
55	DA	3311	ZIT	C9-N10-C11	-3.05	106.99	112.06
55	DA	3311	ZIT	C7-C8-C9	2.83	116.09	112.10
55	BA	3351	ZIT	C7-C8-C9	2.82	116.09	112.10
55	DA	3311	ZIT	O6-C6-C7	2.20	113.84	108.34

There are no chirality outliers.

5 of 6 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
55	BA	3351	ZIT	C12-C11-N10-C21
55	BA	3351	ZIT	C22-C11-N10-C21
55	DA	3311	ZIT	C12-C11-N10-C21
55	DA	3311	ZIT	C22-C11-N10-C21
55	BA	3351	ZIT	C12-C11-N10-C9

There are no ring outliers.

2 monomers are involved in 6 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
55	BA	3351	ZIT	3	0
55	DA	3311	ZIT	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
13	CM	3
13	AM	3
36	DG	1

Mol	Chain	Number of breaks
36	BG	1
28	B6	1
28	D6	1
9	AI	1
9	CI	1
47	BV	1
47	DV	1

The worst 5 of 14 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	CM	69:GLU	С	70:LEU	Ν	5.29
1	AM	69:GLU	С	70:LEU	Ν	5.28
1	DG	112:PRO	С	113:ARG	N	4.77
1	BG	112:PRO	С	113:ARG	Ν	4.76
1	AM	112:GLY	С	113:PRO	Ν	4.20

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ	2>2	2		$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	AA	1504/1522~(98%)	0.74	149 (9%) 1	4	8		60, 125, 191, 194	0
1	CA	1504/1522~(98%)	0.66	111 (7%) 22	2	12	2	61, 125, 191, 194	0
2	AB	235/256~(91%)	1.04	43 (18%)	4	3		107,156,184,191	0
2	CB	235/256~(91%)	1.12	39 (16%) 5	5	3		107,158,185,191	0
3	AC	207/239~(86%)	0.89	24 (11%) 1	1	6		115, 163, 184, 189	0
3	CC	207/239~(86%)	1.18	41 (19%) 3	3	3		119, 166, 184, 191	0
4	AD	208/209~(99%)	1.21	39 (18%)	4	3		83, 131, 170, 181	0
4	CD	208/209~(99%)	1.27	38 (18%)	4	3		82, 131, 168, 182	0
5	AE	151/162~(93%)	0.88	20 (13%) 8	8	5		83, 116, 160, 188	0
5	CE	151/162~(93%)	0.87	19 (12%) 9	9	5		84, 117, 162, 189	0
6	AF	101/101~(100%)	0.89	13 (12%) 9	9	5		85, 132, 164, 180	0
6	CF	101/101~(100%)	1.04	13 (12%) 9	9	5		86, 132, 165, 182	0
7	AG	155/156~(99%)	1.35	38 (24%)	2	2		140, 171, 188, 191	0
7	CG	155/156~(99%)	1.24	36 (23%)	2	2		140, 171, 188, 190	0
8	AH	138/138~(100%)	0.86	17 (12%)	9	5		85, 121, 155, 164	0
8	CH	138/138~(100%)	0.94	20 (14%)	7	4		85, 123, 156, 162	0
9	AI	127/128~(99%)	1.64	41 (32%)	1	1		142, 182, 190, 192	0
9	CI	127/128~(99%)	1.76	49 (38%)	1	1		143,183,190,191	0
10	AJ	99/105~(94%)	1.76	33 (33%)	1	1		130, 176, 189, 191	0
10	CJ	99/105~(94%)	1.58	31 (31%)	1	1		130, 177, 190, 193	0
11	AK	119/129~(92%)	1.17	28 (23%)	2	2		82, 123, 164, 187	0
11	CK	119/129~(92%)	1.12	24 (20%)	3	2		84, 123, 165, 186	0
12	AL	125/135~(92%)	1.27	25~(20%) 3	3	2		80, 108, 163, 189	0
12	CL	125/135~(92%)	1.35	31 (24%)	2	2		82, 109, 164, 188	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
13	AM	115/126~(91%)	1.79	35 (30%) 1 1	150, 185, 190, 193	0
13	CM	115/126~(91%)	1.78	42 (36%) 1 1	149, 185, 190, 192	0
14	AN	60/61~(98%)	1.69	21 (35%) 1 1	131, 168, 185, 189	0
14	CN	60/61~(98%)	1.68	15~(25%) 2 2	132, 170, 186, 189	0
15	AO	88/89~(98%)	1.08	18 (20%) 3 2	74, 111, 157, 162	0
15	CO	88/89~(98%)	0.68	8 (9%) 16 9	74, 112, 159, 165	0
16	AP	84/88~(95%)	1.71	26 (30%) 1 1	91, 118, 161, 179	0
16	CP	84/88~(95%)	1.48	24 (28%) 1 2	89, 116, 160, 180	0
17	AQ	100/105~(95%)	1.00	18 (18%) 4 3	80, 109, 153, 163	0
17	CQ	100/105~(95%)	1.14	14 (14%) 7 4	85, 110, 153, 159	0
18	AR	70/88~(79%)	0.98	9 (12%) 9 5	93, 121, 170, 183	0
18	CR	70/88~(79%)	0.64	3 (4%) 40 23	93, 122, 171, 183	0
19	AS	79/93~(84%)	1.59	24 (30%) 1 1	142, 186, 190, 191	0
19	CS	79/93~(84%)	1.49	22 (27%) 2 2	142, 186, 191, 192	0
20	AT	99/106~(93%)	1.54	28 (28%) 1 2	84, 119, 157, 177	0
20	CT	99/106~(93%)	1.26	26 (26%) 2 2	84, 119, 157, 179	0
21	AU	25/27~(92%)	3.60	22 (88%) 0 0	143, 174, 188, 190	0
21	CU	25/27~(92%)	3.67	20 (80%) 0 0	141, 172, 188, 189	0
22	B0	85/85~(100%)	1.00	15 (17%) 4 3	49, 70, 175, 187	0
22	D0	85/85~(100%)	0.69	13 (15%) 6 4	54, 74, 173, 188	0
23	B1	89/98~(90%)	1.78	29 (32%) 1 1	50, 79, 150, 187	0
23	D1	89/98~(90%)	1.41	23 (25%) 2 2	51, 81, 151, 190	0
24	B2	51/72~(70%)	2.67	30 (58%) 0 0	59, 99, 175, 186	0
24	D2	51/72~(70%)	2.17	23 (45%) 1 1	62, 100, 175, 188	0
25	B3	60/60~(100%)	0.78	10 (16%) 5 3	46, 69, 132, 168	0
25	D3	60/60~(100%)	0.29	2 (3%) 49 29	51, 72, 136, 161	0
26	B4	32/71~(45%)	1.81	12 (37%) 1 1	133, 161, 182, 184	0
26	D4	32/71~(45%)	1.55	10 (31%) 1 1	133, 164, 182, 186	0
27	B5	58/60~(96%)	0.85	9 (15%) 6 4	34, 61, 165, 188	0
27	D5	58/60~(96%)	0.66	7 (12%) 10 6	39, 63, 163, 190	0
28	B6	45/54~(83%)	2.15	17 (37%) 1 1	49, 85, 141, 173	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
28	D6	45/54~(83%)	1.64	15 (33%) 1 1	52, 87, 142, 172	0
29	B7	49/49~(100%)	0.35	6 (12%) 10 6	36, 45, 119, 172	0
29	D7	49/49~(100%)	0.36	6 (12%) 10 6	38, 49, 120, 173	0
30	B8	64/65~(98%)	1.66	21 (32%) 1 1	46, 68, 140, 165	0
30	D8	64/65~(98%)	1.35	17 (26%) 2 2	49, 73, 141, 169	0
31	BA	2725/2787~(97%)	0.03	147 (5%) 32 18	33, 59, 153, 194	0
31	DA	2725/2787~(97%)	-0.07	100 (3%) 45 27	38, 64, 157, 194	0
32	BB	119/122~(97%)	1.33	32 (26%) 2 2	50, 101, 149, 184	0
32	DB	119/122~(97%)	1.03	23 (19%) 4 2	59, 105, 157, 184	0
33	BD	272/276~(98%)	0.32	22 (8%) 19 11	37, 62, 120, 168	0
33	DD	272/276~(98%)	0.31	15 (5%) 32 18	40, 65, 122, 165	0
34	BE	205/206~(99%)	0.68	23 (11%) 11 7	36, 65, 153, 181	0
34	DE	205/206~(99%)	0.57	24 (11%) 10 6	40, 69, 154, 182	0
35	BF	208/210~(99%)	0.64	19 (9%) 16 9	35, 77, 175, 189	0
35	DF	208/210~(99%)	0.48	13 (6%) 27 15	39, 79, 176, 188	0
36	BG	181/182~(99%)	1.82	63 (34%) 1 1	100, 152, 186, 192	0
36	DG	181/182~(99%)	1.64	60 (33%) 1 1	106, 159, 189, 191	0
37	BH	160/180~(88%)	2.01	62 (38%) 1 1	69, 111, 151, 182	0
37	DH	160/180~(88%)	1.01	20 (12%) 9 5	74, 114, 157, 185	0
38	BI	146/148~(98%)	1.59	43 (29%) 1 1	67, 152, 187, 190	0
38	DI	146/148~(98%)	1.49	36 (24%) 2 2	69, 156, 189, 191	0
39	BN	139/140~(99%)	1.20	28 (20%) 3 2	45, 75, 143, 182	0
39	DN	139/140~(99%)	0.61	14 (10%) 14 8	49, 78, 143, 183	0
40	BO	122/122~(100%)	0.23	2 (1%) 70 49	45, 67, 123, 147	0
40	DO	122/122~(100%)	0.21	7 (5%) 30 17	48, 69, 125, 149	0
41	BP	146/150~(97%)	1.58	43 (29%) 1 1	29, 93, 149, 190	0
41	DP	146/150~(97%)	1.10	36 (24%) 2 2	38, 95, 152, 188	0
42	BQ	136/141~(96%)	1.52	27 (19%) 3 2	50, 77, 147, 183	0
42	DQ	136/141~(96%)	1.05	15 (11%) 12 7	52, 79, 147, 183	0
43	BR	117/118~(99%)	0.55	12 (10%) 13 8	40, 60, 130, 139	0
43	DR	117/118~(99%)	0.41	15 (12%) 9 5	42, 62, 131, 140	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
44	BS	99/112~(88%)	1.99	44 (44%) 1 1	54, 111, 148, 165	0
44	DS	99/112~(88%)	1.55	26~(26%) 2 2	62, 113, 154, 170	0
45	BT	132/146~(90%)	1.15	27 (20%) 3 2	55, 87, 154, 181	0
45	DT	132/146~(90%)	0.90	24 (18%) 4 3	58, 90, 156, 179	0
46	BU	117/118~(99%)	0.88	19 (16%) 5 4	40, 62, 124, 176	0
46	DU	117/118~(99%)	0.78	14 (11%) 10 6	44, 67, 130, 175	0
47	BV	101/101~(100%)	2.07	47 (46%) 0 1	38, 103, 176, 188	0
47	DV	101/101~(100%)	1.08	21 (20%) 3 2	44, 109, 177, 188	0
48	BW	113/113~(100%)	0.16	7 (6%) 28 15	38, 51, 112, 179	0
48	DW	113/113~(100%)	0.02	4 (3%) 47 28	41, 54, 119, 181	0
49	BX	93/96~(96%)	1.46	26 (27%) 2 2	47, 74, 145, 179	0
49	DX	93/96~(96%)	1.24	19 (20%) 3 2	52, 76, 146, 179	0
50	BY	101/110 (91%)	2.40	54~(53%) 0 0	57, 107, 184, 192	0
50	DY	101/110~(91%)	1.87	39 (38%) 1 1	60, 108, 183, 193	0
51	BZ	177/206~(85%)	1.47	44 (24%) 2 2	68, 113, 158, 169	0
51	DZ	177/206~(85%)	1.07	32 (18%) 4 3	74, 117, 161, 168	0
All	All	20062/20922~(95%)	0.76	2910 (14%) 7 4	29, 99, 187, 194	0

The worst 5 of 2910 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
42	BQ	140	ALA	31.5
42	BQ	141	GLN	22.9
39	BN	68	GLU	15.9
42	DQ	24	GLY	15.5
42	BQ	24	GLY	14.9

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
52	MG	DA	3291	1/1	0.56	0.33	86,86,86,86	0
52	MG	BA	3246	1/1	0.59	0.33	75,75,75,75	0
52	MG	DA	3126	1/1	0.62	0.35	73,73,73,73	0
52	MG	CA	1623	1/1	0.65	0.25	67,67,67,67	0
52	MG	DA	3306	1/1	0.66	0.40	87,87,87,87	0
52	MG	AA	1604	1/1	0.67	0.34	95,95,95,95	0
52	MG	BA	3312	1/1	0.68	0.33	87,87,87,87	0
52	MG	AA	1646	1/1	0.69	0.50	82,82,82,82	0
52	MG	DA	3302	1/1	0.70	0.50	86,86,86,86	0
52	MG	DA	3280	1/1	0.71	0.43	77,77,77,77	0
52	MG	DA	3264	1/1	0.71	0.39	80,80,80,80	0
52	MG	DA	3261	1/1	0.72	0.32	95,95,95,95	0
52	MG	DA	3255	1/1	0.72	0.23	75,75,75,75	0
52	MG	BA	3303	1/1	0.73	0.27	68,68,68,68	0
52	MG	DA	3298	1/1	0.73	0.31	71,71,71,71	0
52	MG	DA	3191	1/1	0.73	0.32	91,91,91,91	0
52	MG	CA	1633	1/1	0.73	0.57	87,87,87,87	0
52	MG	AA	1640	1/1	0.74	0.34	83,83,83,83	0
52	MG	DA	3179	1/1	0.74	0.47	77,77,77,77	0
52	MG	CA	1647	1/1	0.74	0.24	84,84,84,84	0
52	MG	DA	3223	1/1	0.74	0.23	$65,\!65,\!65,\!65$	0
52	MG	CA	1611	1/1	0.75	0.42	81,81,81,81	0
52	MG	DA	3216	1/1	0.75	0.56	85,85,85,85	0
52	MG	DA	3219	1/1	0.75	0.31	75,75,75,75	0
52	MG	CA	1646	1/1	0.76	0.24	80,80,80,80	0
52	MG	DA	3245	1/1	0.76	0.25	78,78,78,78	0
52	MG	DF	301	1/1	0.76	0.27	92,92,92,92	0
52	MG	AA	1627	1/1	0.77	0.25	66,66,66,66	0
52	MG	AA	1641	1/1	0.77	0.17	69,69,69,69	0
52	MG	DA	3146	1/1	0.77	0.26	69,69,69,69	0
54	K	DA	3310	1/1	0.77	0.40	106,106,106,106	0
52	MG	DA	3105	1/1	0.78	0.36	47,47,47,47	0
52	MG	CA	1641	1/1	0.78	0.61	87,87,87,87	0
52	MG	DA	3240	1/1	0.78	0.25	89,89,89,89	0
52	MG	CA	1632	1/1	0.78	0.34	79,79,79,79	0
52	MG	AA	1622	1/1	0.78	0.46	75,75,75,75	0

4	V	7	Y

Conti	nued from	m previou	is page.					
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
52	MG	DA	3308	1/1	0.78	0.31	81,81,81,81	0
52	MG	DA	3020	1/1	0.78	0.29	64,64,64,64	0
52	MG	DA	3102	1/1	0.78	0.27	80,80,80,80	0
52	MG	DA	3289	1/1	0.79	0.41	92,92,92,92	0
52	MG	AA	1645	1/1	0.79	0.28	81,81,81,81	0
52	MG	CA	1620	1/1	0.79	0.29	66,66,66,66	0
52	MG	DA	3250	1/1	0.79	0.17	75,75,75,75	0
52	MG	AA	1633	1/1	0.79	0.17	81,81,81,81	0
52	MG	BA	3097	1/1	0.79	0.15	70,70,70,70	0
52	MG	BA	3330	1/1	0.79	0.46	71,71,71,71	0
52	MG	CA	1607	1/1	0.79	0.36	82,82,82,82	0
52	MG	CA	1630	1/1	0.80	0.30	77,77,77,77	0
52	MG	DA	3294	1/1	0.80	0.15	67,67,67,67	0
52	MG	DA	3001	1/1	0.80	0.32	76,76,76,76	0
52	MG	DA	3247	1/1	0.80	0.42	87,87,87,87	0
52	MG	CA	1609	1/1	0.81	0.14	94,94,94,94	0
52	MG	BA	3031	1/1	0.81	0.31	77,77,77,77	0
52	MG	CA	1637	1/1	0.81	0.37	80,80,80,80	0
52	MG	CA	1638	1/1	0.81	0.28	71,71,71,71	0
52	MG	BA	3148	1/1	0.81	0.24	58,58,58,58	0
52	MG	BA	3082	1/1	0.81	0.34	49,49,49,49	0
52	MG	BA	3302	1/1	0.81	0.22	72,72,72,72	0
52	MG	BA	3076	1/1	0.82	0.25	43,43,43,43	0
52	MG	DA	3246	1/1	0.82	0.31	87,87,87,87	0
52	MG	DA	3211	1/1	0.82	0.31	79,79,79,79	0
52	MG	DA	3125	1/1	0.82	0.42	58,58,58,58	0
52	MG	BA	3307	1/1	0.82	0.41	76,76,76,76	0
52	MG	DA	3222	1/1	0.82	0.30	67,67,67,67	0
52	MG	AA	1636	1/1	0.82	0.25	63,63,63,63	0
52	MG	DA	3266	1/1	0.82	0.28	75,75,75,75	0
54	К	BA	3350	1/1	0.82	0.34	95,95,95,95	0
52	MG	AA	1619	1/1	0.82	0.31	56,56,56,56	0
52	MG	DA	3111	1/1	0.83	0.38	71,71,71,71	0
52	MG	DA	3124	1/1	0.83	0.41	83,83,83,83	0
52	MG	BA	3341	1/1	0.83	0.23	63,63,63,63	0
52	MG	BA	3092	1/1	0.83	0.50	52,52,52,52	0
52	MG	BA	3195	1/1	0.83	0.48	58,58,58,58	0
52	MG	BA	3214	1/1	0.83	0.42	66,66,66,66	0
52	MG	DA	3037	1/1	0.83	0.25	74,74,74,74	0
52	MG	DA	3207	1/1	0.83	0.38	78,78,78,78	0
52	MG	DA	3062	1/1	0.83	0.33	65,65,65,65	0
52	MG	BA	3332	1/1	0.83	0.26	61,61,61,61	0

4	V	7	Y

	mueu jro		is page.		DOOO	DCD	\mathbf{D} ($\hat{\mathbf{A}}$ 2)	0.00
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(A ²)	Q<0.9
52	MG	BA	3336	1/1	0.83	0.32	65,65,65,65	0
52	MG	BA	3039	1/1	0.84	0.37	60,60,60,60	0
52	MG	DA	3115	1/1	0.84	0.42	72,72,72,72	0
52	MG	AA	1651	1/1	0.84	0.25	75,75,75,75	0
52	MG	BA	3249	1/1	0.84	0.15	40,40,40,40	0
52	MG	BA	3259	1/1	0.84	0.30	46,46,46,46	0
52	MG	CA	1605	1/1	0.84	0.36	$61,\!61,\!61,\!61$	0
52	MG	DA	3265	1/1	0.84	0.35	$79,\!79,\!79,\!79$	0
52	MG	BA	3298	1/1	0.84	0.27	$61,\!61,\!61,\!61$	0
52	MG	DA	3190	1/1	0.84	0.31	$63,\!63,\!63,\!63$	0
52	MG	DA	3288	1/1	0.84	0.25	72,72,72,72	0
52	MG	AA	1638	1/1	0.84	0.18	82,82,82,82	0
52	MG	BA	3157	1/1	0.84	0.41	$74,\!74,\!74,\!74$	0
52	MG	DA	3208	1/1	0.84	0.39	62,62,62,62	0
52	MG	BA	3190	1/1	0.84	0.21	$53,\!53,\!53,\!53$	0
52	MG	DA	3029	1/1	0.84	0.23	87,87,87,87	0
52	MG	BA	3087	1/1	0.84	0.23	$58,\!58,\!58,\!58$	0
52	MG	CA	1625	1/1	0.84	0.40	74,74,74,74	0
52	MG	DA	3100	1/1	0.84	0.24	50,50,50,50	0
52	MG	CA	1628	1/1	0.84	0.34	75,75,75,75	0
52	MG	BA	3321	1/1	0.84	0.35	75,75,75,75	0
52	MG	DA	3178	1/1	0.85	0.23	$65,\!65,\!65,\!65$	0
52	MG	AA	1650	1/1	0.85	0.21	$68,\!68,\!68,\!68$	0
52	MG	DA	3070	1/1	0.85	0.47	74,74,74,74	0
52	MG	BA	3229	1/1	0.85	0.20	50, 50, 50, 50	0
52	MG	CA	1644	1/1	0.85	0.35	74,74,74,74	0
52	MG	DA	3279	1/1	0.85	0.21	64,64,64,64	0
52	MG	BA	3235	1/1	0.85	0.34	72,72,72,72	0
52	MG	DA	3209	1/1	0.85	0.23	59, 59, 59, 59	0
52	MG	BA	3180	1/1	0.85	0.30	64,64,64,64	0
52	MG	BA	3121	1/1	0.85	0.31	57,57,57,57	0
52	MG	DA	3013	1/1	0.85	0.46	77,77,77,77	0
52	MG	BA	3074	1/1	0.85	0.31	36,36,36,36	0
52	MG	BA	3289	1/1	0.85	0.23	55,55,55,55	0
52	MG	CA	1616	1/1	0.85	0.30	73,73,73,73	0
52	MG	DA	3149	1/1	0.85	0.19	55,55,55,55	0
52	MG	DA	3309	1/1	0.85	0.29	84,84,84,84	0
52	MG	DA	3153	1/1	0.85	0.29	59,59,59,59	0
52	MG	DA	3166	1/1	0.85	0.28	46,46,46,46	0
52	MG	DA	3175	1/1	0.85	0.48	67,67,67,67	0
52	MG	DA	3079	1/1	0.86	0.24	59,59,59,59	0
52	MG	DA	3249	1/1	0.86	0.41	79,79,79,79	0

4	V	7	Y

			is page.		DOOO	DCD	\mathbf{D} (\mathbf{k}^2)	0.00
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(A ²)	Q<0.9
52	MG	DA	3081	1/1	0.86	0.27	43,43,43,43	0
52	MG	CA	1645	1/1	0.86	0.19	97,97,97,97	0
52	MG	BA	3263	1/1	0.86	0.42	62,62,62,62	0
52	MG	BA	3280	1/1	0.86	0.35	75,75,75,75	0
52	MG	DA	3198	1/1	0.86	0.51	70,70,70,70	0
52	MG	BA	3320	1/1	0.86	0.15	54,54,54,54	0
52	MG	DA	3267	1/1	0.86	0.42	72,72,72,72	0
52	MG	AA	1644	1/1	0.86	0.31	99,99,99,99	0
52	MG	CA	1636	1/1	0.86	0.38	79,79,79,79	0
52	MG	DA	3027	1/1	0.86	0.32	61,61,61,61	0
52	MG	AA	1603	1/1	0.86	0.32	62,62,62,62	0
52	MG	DA	3145	1/1	0.86	0.43	88,88,88,88	0
52	MG	AA	1643	1/1	0.86	0.13	$78,\!78,\!78,\!78$	0
52	MG	BA	3230	1/1	0.86	0.31	$38,\!38,\!38,\!38$	0
52	MG	DA	3300	1/1	0.86	0.13	$75,\!75,\!75,\!75$	0
52	MG	DA	3233	1/1	0.86	0.32	$68,\!68,\!68,\!68$	0
52	MG	DA	3305	1/1	0.86	0.36	76,76,76,76	0
52	MG	DA	3235	1/1	0.86	0.32	79,79,79,79	0
52	MG	DA	3236	1/1	0.86	0.33	67,67,67,67	0
52	MG	DA	3067	1/1	0.86	0.29	81,81,81,81	0
52	MG	DA	3243	1/1	0.86	0.34	70,70,70,70	0
52	MG	BA	3306	1/1	0.86	0.11	56,56,56,56	0
52	MG	DA	3167	1/1	0.86	0.25	48,48,48,48	0
52	MG	DA	3164	1/1	0.87	0.18	71,71,71,71	0
52	MG	BA	3192	1/1	0.87	0.35	58,58,58,58	0
52	MG	BA	3080	1/1	0.87	0.32	34,34,34,34	0
52	MG	BA	3334	1/1	0.87	0.27	53,53,53,53	0
52	MG	AA	1637	1/1	0.87	0.33	69,69,69,69	0
52	MG	CA	1634	1/1	0.87	0.51	87,87,87,87	0
52	MG	DA	3189	1/1	0.87	0.35	63,63,63,63	0
52	MG	BA	3073	1/1	0.87	0.29	53,53,53,53	0
52	MG	BA	3300	1/1	0.87	0.25	59,59,59,59	0
52	MG	DA	3090	1/1	0.87	0.34	76,76,76,76	0
52	MG	CA	1606	1/1	0.87	0.40	72,72,72,72	0
52	MG	DA	3282	1/1	0.87	0.28	62,62,62,62	0
52	MG	DA	3284	1/1	0.87	0.33	65,65,65,65	0
52	MG	CA	1640	1/1	0.87	0.23	68,68,68,68	0
52	MG	BA	3162	1/1	0.87	0.15	47,47,47,47	0
52	MG	BA	3232	1/1	0.87	0.31	70,70.70.70	0
52	MG	DA	3292	1/1	0.87	0.36	75,75,75,75	0
52	MG	BA	3178	1/1	0.87	0.28	78,78,78,78	0
52	MG	DA	3120	1/1	0.87	0.31	71,71.71.71	0

Contin d fr mania

4	V	7	Y

	mueu jro:		is page.		DOOO	DOD	\mathbf{D} (\mathbf{A} 2)	0 (0 0
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(A ²)	Q<0.9
52	MG	DA	3299	1/1	0.87	0.20	66,66,66,66	0
52	MG	BA	3238	1/1	0.87	0.19	49,49,49,49	0
52	MG	CA	1618	1/1	0.87	0.27	62,62,62,62	0
52	MG	DA	3303	1/1	0.87	0.32	49,49,49,49	0
52	MG	D5	102	1/1	0.87	0.28	$79,\!79,\!79,\!79$	0
52	MG	DA	3135	1/1	0.87	0.24	71,71,71,71	0
52	MG	CA	1619	1/1	0.87	0.35	75, 75, 75, 75	0
52	MG	AA	1632	1/1	0.87	0.46	72,72,72,72	0
52	MG	BA	3181	1/1	0.87	0.21	$51,\!51,\!51,\!51$	0
52	MG	DA	3152	1/1	0.87	0.26	$43,\!43,\!43,\!43$	0
52	MG	AA	1639	1/1	0.87	0.27	$95,\!95,\!95,\!95$	0
52	MG	DA	3158	1/1	0.88	0.23	$61,\!61,\!61,\!61$	0
52	MG	DA	3160	1/1	0.88	0.14	$59,\!59,\!59,\!59$	0
52	MG	BA	3349	1/1	0.88	0.23	61,61,61,61	0
52	MG	DA	3075	1/1	0.88	0.33	$55,\!55,\!55,\!55$	0
52	MG	DA	3078	1/1	0.88	0.29	46,46,46,46	0
52	MG	BQ	202	1/1	0.88	0.28	$59,\!59,\!59,\!59$	0
52	MG	CA	1626	1/1	0.88	0.28	78,78,78,78	0
52	MG	DA	3089	1/1	0.88	0.37	47,47,47,47	0
52	MG	DA	3273	1/1	0.88	0.35	75,75,75,75	0
52	MG	DA	3184	1/1	0.88	0.32	63,63,63,63	0
52	MG	BA	3027	1/1	0.88	0.34	42,42,42,42	0
52	MG	DA	3281	1/1	0.88	0.11	30,30,30,30	0
52	MG	DA	3094	1/1	0.88	0.32	56, 56, 56, 56	0
52	MG	BA	3292	1/1	0.88	0.30	60,60,60,60	0
52	MG	DA	3285	1/1	0.88	0.37	66,66,66,66	0
52	MG	D7	101	1/1	0.88	0.22	62,62,62,62	0
52	MG	BA	3240	1/1	0.88	0.34	60,60,60,60	0
52	MG	DA	3110	1/1	0.88	0.34	73,73,73,73	0
52	MG	AA	1613	1/1	0.88	0.19	70,70,70,70	0
52	MG	DA	3114	1/1	0.88	0.33	$65,\!65,\!65,\!65$	0
52	MG	BA	3034	1/1	0.88	0.29	62,62,62,62	0
52	MG	DA	3025	1/1	0.88	0.40	50, 50, 50, 50	0
52	MG	CA	1615	1/1	0.88	0.38	67,67,67,67	0
52	MG	BA	3095	1/1	0.88	0.32	38,38,38,38	0
52	MG	AA	1649	1/1	0.88	0.20	86,86,86,86	0
52	MG	DA	3129	1/1	0.88	0.19	87,87,87,87	0
52	MG	DA	3039	1/1	0.88	0.25	43,43,43,43	0
52	MG	DA	3043	1/1	0.88	0.28	35,35,35,35	0
52	MG	DA	3057	1/1	0.88	0.29	40,40,40,40	0
52	MG	BA	3237	1/1	0.88	0.18	61,61,61,61	0
52	MG	DA	3066	1/1	0.88	0.25	60,60,60,60	0

4	V	7	Y

	nueu jro		is page.		DOOO	DCD	\mathbf{D} ($\hat{\mathbf{A}}$ 2)	0.00
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(A ²)	Q<0.9
52	MG	BA	3346	1/1	0.88	0.34	80,80,80,80	0
52	MG	BA	3272	1/1	0.89	0.22	51,51,51,51	0
52	MG	DA	3084	1/1	0.89	0.17	54,54,54,54	0
52	MG	DA	3248	1/1	0.89	0.37	74,74,74,74	0
52	MG	DA	3087	1/1	0.89	0.29	$55,\!55,\!55,\!55$	0
52	MG	CA	1622	1/1	0.89	0.16	78,78,78,78	0
52	MG	BA	3274	1/1	0.89	0.25	81,81,81,81	0
52	MG	DA	3172	1/1	0.89	0.40	64,64,64,64	0
52	MG	DA	3173	1/1	0.89	0.25	$65,\!65,\!65,\!65$	0
52	MG	BA	3279	1/1	0.89	0.20	$50,\!50,\!50,\!50$	0
52	MG	DA	3176	1/1	0.89	0.19	$78,\!78,\!78,\!78$	0
52	MG	BA	3151	1/1	0.89	0.27	74,74,74,74	0
52	MG	DA	3270	1/1	0.89	0.42	$65,\!65,\!65,\!65$	0
52	MG	DA	3024	1/1	0.89	0.27	61,61,61,61	0
52	MG	DA	3182	1/1	0.89	0.14	$55,\!55,\!55,\!55$	0
52	MG	BA	3284	1/1	0.89	0.27	71,71,71,71	0
52	MG	BA	3120	1/1	0.89	0.30	$52,\!52,\!52,\!52$	0
52	MG	BA	3182	1/1	0.89	0.22	68,68,68,68	0
52	MG	DA	3113	1/1	0.89	0.31	62,62,62,62	0
52	MG	BA	3060	1/1	0.89	0.24	40,40,40,40	0
52	MG	DA	3203	1/1	0.89	0.38	67,67,67,67	0
52	MG	CA	1602	1/1	0.89	0.36	70,70,70,70	0
52	MG	DA	3040	1/1	0.89	0.19	43,43,43,43	0
52	MG	BA	3166	1/1	0.89	0.27	39,39,39,39	0
52	MG	BA	3170	1/1	0.89	0.18	69,69,69,69	0
52	MG	DA	3297	1/1	0.89	0.32	74,74,74,74	0
52	MG	BA	3197	1/1	0.89	0.25	52,52,52,52	0
52	MG	BA	3200	1/1	0.89	0.42	59, 59, 59, 59	0
52	MG	BA	3254	1/1	0.89	0.18	53,53,53,53	0
52	MG	BA	3310	1/1	0.89	0.14	47,47,47,47	0
52	MG	DA	3226	1/1	0.89	0.29	64,64,64,64	0
52	MG	DA	3230	1/1	0.89	0.18	56, 56, 56, 56	0
52	MG	BA	3176	1/1	0.89	0.28	48,48,48,48	0
52	MG	DA	3307	1/1	0.89	0.34	80,80,80,80	0
52	MG	DA	3076	1/1	0.89	0.31	55,55,55,55	0
52	MG	DA	3150	1/1	0.89	0.54	77,77,77,77	0
52	MG	BA	3110	1/1	0.89	0.45	45,45,45,45	0
52	MG	BA	3270	1/1	0.89	0.13	50,50,50,50	0
52	MG	DA	3155	1/1	0.89	0.25	62,62,62,62	0
52	MG	BA	3122	1/1	0.90	0.28	40,40,40,40	0
52	MG	BA	3126	1/1	0.90	0.31	50,50,50,50	0
52	MG	BA	3137	1/1	0.90	0.27	61,61,61,61	0

4	V	7	Υ
-		•	-

		Chain	$\mathbf{B}_{\mathbf{R}}$	Atoms	BSCC	BSB	B -factors (λ^2)	
52	MC		1601		0.00	0.20	$\frac{D-1aCtors(A)}{22.02.02.02}$	
52	MG	DA BA	3275	1/1	0.90	$\begin{array}{c} 0.29 \\ 0.27 \end{array}$		0
52	MG		$\frac{5215}{3117}$	1/1	0.90	0.27	50 50 50 50	0
52	MG	ΒΔ	3106	1/1	0.90	0.00	65 65 65 65	0
52	MG	ΒA BA	3130	1/1	0.90	0.20		0
52	MG	ΒA BA	3140	1/1	0.90	0.10 0.23		0
52	MC		2000	1/1	0.90	0.23	40,40,40,40 72 72 72 72 72	0
52	MG	DA DA	$\frac{3200}{2197}$	1/1	0.90	0.24		0
52	MC		2200	1/1	0.90	0.29	55,55,55,55	0
52	MG	DA DA	3209		0.90	0.31		0
52	MC	DA	1614		0.90	0.20	41,41,41,41	0
52	MG	DA	1014		0.90	0.00	61 61 61 61	0
52	MG	DA	$\frac{3141}{2142}$		0.90	0.30	57 57 57 57	0
52	MG	DA	3143		0.90	0.28		0
52	MG		3031		0.90	0.22		0
52	MG	AA	1011		0.90	0.21	(5, 15, 15, 15)	0
52	MG	DA	3251		0.90	0.38	63,63,63,63	0
52	MG	BA	3295		0.90	0.24	70,70,70,70	0
52	MG	DA	3257		0.90	0.35	63,63,63,63	0
52	MG	DA	3260		0.90	0.42	73,73,73,73	0
52	MG	BA	3093	1/1	0.90	0.36	43,43,43,43	0
52	MG	DA	3262	1/1	0.90	0.26	77,77,77,77	0
52	MG	DA	3042	1/1	0.90	0.23	47,47,47,47	0
52	MG	BA	3058	1/1	0.90	0.28	39,39,39,39	0
52	MG	DA	3154	1/1	0.90	0.39	62,62,62,62	0
52	MG	AA	1634	1/1	0.90	0.30	58,58,58,58	0
52	MG	BA	3103	1/1	0.90	0.16	42,42,42,42	0
52	MG	DA	3159	1/1	0.90	0.24	61,61,61,61	0
52	MG	DA	3275	1/1	0.90	0.26	62,62,62,62	0
52	MG	BA	3104	1/1	0.90	0.28	37,37,37,37	0
52	MG	BA	3171	1/1	0.90	0.32	62,62,62,62	0
52	MG	BA	3081	1/1	0.90	0.16	37,37,37,37	0
52	MG	DA	3074	1/1	0.90	0.24	53,53,53,53	0
52	MG	DA	3168	1/1	0.90	0.09	53,53,53,53	0
52	MG	BA	3245	1/1	0.90	0.30	$45,\!45,\!45,\!45$	0
52	MG	CA	1629	1/1	0.90	0.16	82,82,82,82	0
52	MG	BA	3319	1/1	0.90	0.17	40,40,40,40	0
52	MG	BA	3114	1/1	0.90	0.27	56, 56, 56, 56	0
52	MG	BA	$3\overline{179}$	1/1	0.90	0.26	$59, \overline{59}, \overline{59}, \overline{59}, \overline{59}$	0
52	MG	BA	3252	1/1	0.90	0.22	50,50,50,50	0
52	MG	DA	3085	1/1	0.90	0.26	54,54,54,54	0
52	MG	BA	3253	1/1	0.90	0.19	51,51,51,51	0
52	MG	DA	3188	1/1	0.90	0.17	48,48,48,48	0

4	V	7	Y

MoiTypeChainResAtomsReseReseResDiractors(A) $Q < 0.5$ 52MGBA31161/10.900.2351,51,51,51052MGBA30661/10.900.2643,43,43,43052MGBA33381/10.900.2273,73,73,73,73052MGDA31971/10.900.2475,75,75,75,75052MGDA30981/10.900.1449,49,49,49052MGDA32011/10.900.2259,59,59,59052MGDA32051/10.900.4054,54,54,54052MGDA32051/10.900.4054,54,54,54052MGDA32051/10.900.2558,58,58,58052MGBA33431/10.900.2860,60,60,60052MGBA31421/10.900.2860,60,60,60052MGDA31091/10.900.4671,71,71,71052MGDA312311/10.910.2579,79,79,79052MGDA31581/10.910.2645,45,45,45052MGDA31581/10.910.2645,45,45,45052MGBA<
52MGBA 3110 $1/1$ 0.90 0.23 $31,31,31,31$ 0 52 MGBA 3066 $1/1$ 0.90 0.26 $43,43,43,43$ 0 52 MGBA 3338 $1/1$ 0.90 0.22 $73,73,73,73,73$ 0 52 MGDA 3197 $1/1$ 0.90 0.24 $75,75,75,75,75,75$ 0 52 MGDA 3098 $1/1$ 0.90 0.14 $49,49,49,49,49$ 0 52 MGDA 3201 $1/1$ 0.90 0.12 $77,77,77,77,77,77,77,77,77,77,77,77,77,$
52MGBA 3000 $1/1$ 0.90 0.20 $43,43,43,43,43,43$ 0 52 MGBA 3338 $1/1$ 0.90 0.22 $73,73,73,73$ 0 52 MGDA 3197 $1/1$ 0.90 0.24 $75,75,75,75$ 0 52 MGDA 3098 $1/1$ 0.90 0.14 $49,49,49,49$ 0 52 MGDA 3201 $1/1$ 0.90 0.12 $75,75,75,75$ 0 52 MGDA 3201 $1/1$ 0.90 0.12 $59,59,59,59$ 0 52 MGDA 3205 $1/1$ 0.90 0.12 $77,77,77,77,77,77,77,77,77,77,77,77,77,$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
52 MG DA 3072 1/1 0.91 0.23 46,46,46,46 0 52 MG CA 1603 1/1 0.91 0.35 63,63,63,63 0
52 MG CA 1603 1/1 0.91 0.35 63,63,63 0
52 MG DA 3242 1/1 0.91 0.14 69,69,69,69 0
52 MG AA 1618 $1/1$ 0.91 0.43 72,72,72,72 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
52 MG BA 3009 1/1 0.91 0.34 38,38,38,38 0
52 MG BA 3198 1/1 0.91 0.24 44,44,44,44 0
52 MG BA 3101 1/1 0.91 0.24 39,39,39,39 0
52 MG BA 3315 1/1 0.91 0.33 69,69,69,69 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
52 MG CA 1613 1/1 0.91 0.27 80,80,80,80 0
52 MG BA 3316 1/1 0.91 0.17 56,56,56,56 0
52 MG DA 3163 1/1 0.91 0.29 68,68,68,68 0
52 MG BA 3204 1/1 0.91 0.23 46,46,46,46 0
52 MG DA 3005 1/1 0.91 0.19 73,73,73,73 0
52 MG DA 3091 1/1 0.91 0.32 41,41,41,41 0
52 MG DA 3093 1/1 0.91 0.30 64,64,64,64 0
52 MG DA 3169 1/1 0.91 0.41 51,51,51,51 0
52 MG AA 1625 1/1 0.91 0.18 73,73,73,73 0
52 MG DA 3095 1/1 0.91 0.35 53,53,53 0
52 MG DA 3019 1/1 0.91 0.36 42,42,42,42 0
52 MG BA 3174 1/1 0.91 0.41 57,57,57 0
52 MG BA 3219 1/1 0.91 0.06 38,38,38,38 0
52 MG DA 3274 1/1 0.91 0.17 63.63.63.63 0
52 MG DA 3104 1/1 0.91 0.45 48.48.48 0
52 MG DA 3277 1/1 0.91 0.28 68,68,68,68 0

4	V	7	Υ
-		•	-

	Tuea jro	m previoi	is page.		DSCC	DCD	D footors (λ^2)	0 < 0.0
	Type	Chain	Res		RSCC	R5R	\mathbf{B} -factors(\mathbf{A}^{-})	Q<0.9
52	MG	DA	3278		0.91	0.31	08,08,08,08	0
52	MG	BA	3067		0.91	0.29		0
52	MG	BA	3071		0.91	0.32	47,47,47,47	0
52	MG	BA	3112	1/1	0.91	0.16	43,43,43,43	0
52	MG	BA	3049	1/1	0.91	0.37	41,41,41,41	0
52	MG	DA	3036	1/1	0.91	0.32	39,39,39,39	0
52	MG	BA	3149	1/1	0.91	0.17	51,51,51,51	0
52	MG	DA	3287	1/1	0.91	0.09	51,51,51,51	0
52	MG	DA	3195	1/1	0.91	0.29	56,56,56,56	0
52	MG	BA	3057	1/1	0.91	0.22	44,44,44,44	0
52	MG	BA	3344	1/1	0.91	0.29	48,48,48,48	0
52	MG	DA	3041	1/1	0.91	0.15	$37,\!37,\!37,\!37$	0
52	MG	BA	3186	1/1	0.91	0.16	66,66,66,66	0
52	MG	DA	3295	1/1	0.91	0.19	88,88,88,88	0
52	MG	DA	3296	1/1	0.91	0.13	60,60,60,60	0
52	MG	DA	3204	1/1	0.91	0.29	45,45,45,45	0
52	MG	BA	3189	1/1	0.91	0.27	45,45,45,45	0
52	MG	DA	3048	1/1	0.91	0.18	40,40,40,40	0
52	MG	DA	3056	1/1	0.91	0.28	60,60,60,60	0
52	MG	BA	3119	1/1	0.91	0.23	52,52,52,52	0
52	MG	DA	3132	1/1	0.91	0.30	43,43,43,43	0
52	MG	DA	3212	1/1	0.91	0.26	68,68,68,68	0
52	MG	DA	3133	1/1	0.91	0.36	53,53,53,53	0
52	MG	DA	3061	1/1	0.91	0.28	57,57,57,57	0
52	MG	DA	3221	1/1	0.91	0.23	53,53,53,53	0
52	MG	BB	205	1/1	0.91	0.19	78,78,78,78	0
52	MG	DB	202	1/1	0.91	0.28	63,63,63,63	0
52	MG	DA	3140	1/1	0.91	0.20	49,49,49,49	0
52	MG	DA	3225	1/1	0.91	0.12	54,54,54,54	0
52	MG	DR	201	1/1	0.91	0.09	43,43,43,43	0
52	MG	BA	3301	1/1	0.91	0.24	57,57,57,57	0
52	MG	DA	3227	1/1	0.91	0.24	74,74,74,74	0
52	MG	DA	3254	1/1	0.92	0.12	$65,\!65,\!65,\!65$	0
52	MG	DA	3185	1/1	0.92	0.26	61,61,61,61	0
52	MG	BA	3293	1/1	0.92	0.26	55,55,55,55	0
52	MG	DA	3259	1/1	0.92	0.39	74,74,74,74	0
52	MG	DA	3069	1/1	0.92	0.36	51,51,51,51	0
52	MG	BA	3202	1/1	0.92	0.19	41,41,41,41	0
52	MG	BA	3132	1/1	0.92	0.27	55,55,55,55	0
52	MG	BA	3339	1/1	0.92	0.21	41,41,41,41	0
52	MG	DA	3196	1/1	0.92	0.19	51,51,51.51	0
52	MG	BA	3160	1/1	0.92	0.27	39,39,39,39	0

4	V	7	Υ
-		•	-

Mal	Tuno	Chain	Dec	Atoma	DSCC	DCD	D factors (λ^2)	0 < 0.0
	Type MC	Chain	nes		nscc	nsn	\mathbf{D} -lactors(A)	Q<0.9
52	MG	DA	1021		0.92	0.22	08,08,08,08	0
52	MG	DA	3208		0.92	0.54	81,81,81,81	0
52	MG	DA	3077		0.92	0.40	49,49,49,49	0
52	MG	DA	3017		0.92	0.16	47,47,47,47	0
52	MG	BA	3183		0.92	0.24	72,72,72,72	0
52	MG	BA	3184	1/1	0.92	0.24	50,50,50,50	0
52	MG	DA	3083	1/1	0.92	0.24	47,47,47,47	0
52	MG	CA	1624	1/1	0.92	0.31	65,65,65,65	0
52	MG	BA	3223	1/1	0.92	0.29	36,36,36,36	0
52	MG	DA	3026	1/1	0.92	0.41	43,43,43,43	0
52	MG	DA	3147	1/1	0.92	0.12	63,63,63,63	0
52	MG	BA	3304	1/1	0.92	0.49	86,86,86,86	0
52	MG	DA	3283	1/1	0.92	0.49	72,72,72,72	0
52	MG	DA	3218	1/1	0.92	0.34	78,78,78,78	0
52	MG	BA	3134	1/1	0.92	0.23	46, 46, 46, 46	0
52	MG	AA	1626	1/1	0.92	0.33	76, 76, 76, 76	0
52	MG	DA	3092	1/1	0.92	0.16	61,61,61,61	0
52	MG	DA	3032	1/1	0.92	0.36	69,69,69,69	0
52	MG	BA	3309	1/1	0.92	0.28	61,61,61,61	0
52	MG	AA	1608	1/1	0.92	0.26	54,54,54,54	0
52	MG	BA	3233	1/1	0.92	0.11	63,63,63,63	0
52	MG	DA	3228	1/1	0.92	0.10	60,60,60,60	0
52	MG	DA	3229	1/1	0.92	0.07	45,45,45,45	0
52	MG	BA	3277	1/1	0.92	0.36	62,62,62,62	0
52	MG	DA	3161	1/1	0.92	0.33	72,72,72,72	0
52	MG	CA	1604	1/1	0.92	0.21	86,86,86,86	0
52	MG	AA	1629	1/1	0.92	0.30	67,67,67,67	0
52	MG	BA	3007	1/1	0.92	0.26	48,48,48,48	0
52	MG	DA	3238	1/1	0.92	0.37	73,73,73,73	0
52	MG	DA	3108	1/1	0.92	0.18	48,48,48,48	0
52	MG	BA	3041	1/1	0.92	0.23	29,29,29,29	0
52	MG	BA	3068	1/1	0.92	0.26	54,54,54,54	0
52	MG	CA	1610	1/1	0.92	0.12	61,61,61,61	0
52	MG	DA	3112	1/1	0.92	0.28	68,68,68,68	0
52	MG	DA	3058	1/1	0.92	0.18	58,58,58,58	0
52	MG	DA	3059	1/1	0.92	0.23	53,53,53,53	0
52	MG	BA	3329	1/1	0.92	0.26	68,68,68,68	0
52	MG	DA	3116	1/1	0.92	0.24	41,41,41,41	0
52	MG	DX	101	1/1	0.92	0.12	77,77,77,77	0
52	MG	BA	3085	1/1	0.92	0.21	40,40.40.40	0
52	MG	AA	1616	1/1	0.92	0.19	77,77.77.77	0
52	MG	DA	3014	1/1	0.93	0.26	68,68.68.68	0
$\begin{array}{c c} 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\$	MG MG MG MG MG MG MG MG MG MG MG MG MG M	DAAADADABAAABADADADADABADABADADABADADABADADABADADABADA	3134 1626 3092 3032 3309 1608 3233 3228 3229 3277 3161 1604 1629 3007 3238 3108 3041 3068 1610 3112 3058 3059 3329 3116 101 3085 1616 3014	$\begin{array}{c} 1/1 \\$	0.92 0.92	$\begin{array}{c} 0.23\\ 0.33\\ 0.16\\ 0.36\\ 0.28\\ 0.26\\ 0.11\\ 0.10\\ 0.07\\ 0.36\\ 0.33\\ 0.21\\ 0.30\\ 0.26\\ 0.37\\ 0.18\\ 0.23\\ 0.26\\ 0.12\\ 0.28\\ 0.12\\ 0.28\\ 0.12\\ 0.28\\ 0.12\\ 0.24\\ 0.12\\ 0.24\\ 0.12\\ 0.21\\ 0.21\\ 0.21\\ 0.26\\ \end{array}$	$\begin{array}{r} 40,40,40\\ \hline 76,76,76,76\\ \hline 61,61,61,61\\ \hline 69,69,69,69\\ \hline 61,61,61,61\\ \hline 54,54,54,54\\ \hline 63,63,63,63\\ \hline 60,60,60,60\\ \hline 45,45,45,45\\ \hline 62,62,62,62\\ \hline 72,72,72,72\\ \hline 86,86,86,86\\ \hline 67,67,67,67\\ \hline 48,48,48,48\\ \hline 73,73,73,73\\ \hline 48,48,48,48\\ \hline 29,29,29,29\\ \hline 54,54,54,54\\ \hline 61,61,61,61\\ \hline 68,68,68,68\\ \hline 58,58,58,58\\ \hline 53,53,53,53\\ \hline 68,68,68\\ \hline 41,41,41,41\\ \hline 77,77,77,77\\ \hline 40,40,40,40\\ \hline 77,77,77,77\\ \hline 68,68,68,68\\ \hline \end{array}$	0 0

4	V	7	Y

Conti	nuea fro	m previoi	is page.		Daga	DOD		0.00
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	$\mathbf{Q} < 0.9$
52	MG	BA	3150	1/1	0.93	0.36	50,50,50,50	0
52	MG	AA	1615	1/1	0.93	0.34	76,76,76,76	0
52	MG	DA	3162	1/1	0.93	0.26	69,69,69,69	0
52	MG	BA	3152	1/1	0.93	0.33	61,61,61,61	0
52	MG	DA	3023	1/1	0.93	0.13	47,47,47,47	0
52	MG	CA	1617	1/1	0.93	0.27	$61,\!61,\!61,\!61$	0
52	MG	BA	3324	1/1	0.93	0.25	$59,\!59,\!59,\!59$	0
52	MG	BA	3328	1/1	0.93	0.20	$65,\!65,\!65,\!65$	0
52	MG	B5	102	1/1	0.93	0.20	56, 56, 56, 56	0
52	MG	BA	3187	1/1	0.93	0.28	$42,\!42,\!42,\!42$	0
52	MG	DA	3096	1/1	0.93	0.19	$45,\!45,\!45,\!45$	0
52	MG	BA	3282	1/1	0.93	0.18	67,67,67,67	0
52	MG	BA	3283	1/1	0.93	0.14	$53,\!53,\!53,\!53$	0
52	MG	DA	3035	1/1	0.93	0.38	$54,\!54,\!54,\!54$	0
52	MG	BA	3234	1/1	0.93	0.26	$45,\!45,\!45,\!45$	0
52	MG	BA	3285	1/1	0.93	0.31	$57,\!57,\!57,\!57$	0
52	MG	DA	3106	1/1	0.93	0.32	76,76,76,76	0
52	MG	DA	3038	1/1	0.93	0.25	48,48,48,48	0
52	MG	BA	3005	1/1	0.93	0.22	47,47,47,47	0
52	MG	BA	3096	1/1	0.93	0.21	$55,\!55,\!55,\!55$	0
52	MG	BA	3047	1/1	0.93	0.23	21,21,21,21	0
52	MG	BA	3129	1/1	0.93	0.07	18,18,18,18	0
52	MG	BA	3244	1/1	0.93	0.21	40,40,40,40	0
52	MG	DA	3045	1/1	0.93	0.31	39,39,39,39	0
52	MG	DA	3047	1/1	0.93	0.29	45,45,45,45	0
52	MG	BA	3296	1/1	0.93	0.41	67,67,67,67	0
52	MG	DA	3052	1/1	0.93	0.28	63,63,63,63	0
52	MG	DA	3119	1/1	0.93	0.11	64,64,64,64	0
52	MG	DA	3054	1/1	0.93	0.19	36,36,36,36	0
52	MG	DA	3122	1/1	0.93	0.20	61,61,61,61	0
52	MG	AA	1606	1/1	0.93	0.36	73,73,73,73	0
52	MG	BA	3008	1/1	0.93	0.30	34,34,34,34	0
52	MG	BP	201	1/1	0.93	0.14	13,13,13,13	0
52	MG	AA	1647	1/1	0.93	0.19	66,66,66,66	0
52	MG	BA	3250	1/1	0.93	0.26	54,54,54,54	0
52	MG	DA	3290	1/1	0.93	0.28	52,52,52,52	0
52	MG	DA	3214	1/1	0.93	0.13	$65,\!65,\!65,\!65$	0
52	MG	DA	3215	1/1	0.93	0.27	59,59,59,59	0
52	MG	BA	3013	1/1	0.93	0.19	21,21,21,21	0
52	MG	DA	3064	1/1	0.93	0.23	68,68,68,68	0
52	MG	DA	3065	1/1	0.93	0.12	49,49,49,49	0
52	MG	CA	1642	1/1	0.93	0.20	62,62,62,62	0

Continu d fr -----

4	V	7	Υ
-		•	-

	Tuea jro	m previoi	is page.		DSCC	DCD	D footoms (λ^2)	0 < 0.0
1VI01	Type	Chain	Res		RSCC	R5R	$B-factors(A^{-})$	Q<0.9
52	MG		3138		0.93	0.21	50,50,50,50	0
52	MG	AA	1605		0.93	0.23	(5, (5, (5, (5	0
52	MG	DA	3068		0.93	0.30	49,49,49,49	0
52	MG	BA	3305	1/1	0.93	0.26	54,54,54,54	0
52	MG	BA	3142	1/1	0.93	0.37	39,39,39,39	0
52	MG	DA	3071	1/1	0.93	0.22	40,40,40,40	0
52	MG	BA	3257	1/1	0.93	0.19	48,48,48,48	0
52	MG	BA	3258	1/1	0.93	0.22	61,61,61,61	0
52	MG	BA	3205	1/1	0.93	0.21	55,55,55,55	0
52	MG	BA	3144	1/1	0.93	0.21	53,53,53,53	0
52	MG	DA	3234	1/1	0.93	0.22	60,60,60,60	0
52	MG	DB	203	1/1	0.93	0.31	56, 56, 56, 56	0
52	MG	DA	3151	1/1	0.93	0.31	72,72,72,72	0
52	MG	AA	1609	1/1	0.93	0.27	$51,\!51,\!51,\!51$	0
52	MG	DQ	201	1/1	0.93	0.28	78,78,78,78	0
52	MG	DA	3004	1/1	0.93	0.28	49,49,49,49	0
52	MG	CA	1612	1/1	0.93	0.15	77,77,77,77	0
52	MG	DA	3012	1/1	0.93	0.13	23,23,23,23	0
52	MG	BA	3088	1/1	0.93	0.11	10,10,10,10	0
55	ZIT	DA	3311	52/52	0.93	0.20	100,100,100,100	0
52	MG	BB	203	1/1	0.94	0.21	41,41,41,41	0
52	MG	BA	3023	1/1	0.94	0.20	34,34,34,34	0
52	MG	BF	301	1/1	0.94	0.07	62,62,62,62	0
52	MG	DA	3009	1/1	0.94	0.28	54,54,54,54	0
52	MG	DA	3082	1/1	0.94	0.11	17,17,17,17	0
52	MG	BA	3217	1/1	0.94	0.25	50,50,50,50	0
52	MG	AA	1607	1/1	0.94	0.31	74,74,74,74	0
52	MG	BA	3164	1/1	0.94	0.20	47,47,47,47	0
52	MG	BA	3224	1/1	0.94	0.07	40,40,40,40	0
52	MG	DA	3088	1/1	0.94	0.30	34,34,34,34	0
52	MG	BA	3227	1/1	0.94	0.07	39,39,39,39	0
52	MG	DA	3252	1/1	0.94	0.39	66,66,66,66	0
52	MG	DA	3165	1/1	0.94	0.15	52,52,52,52	0
52	MG	BA	3228	1/1	0.94	0.34	69,69,69,69	0
52	MG	DA	3022	1/1	0.94	0.33	47,47,47,47	0
52	MG	DA	3258	1/1	0.94	0.09	61,61,61,61	0
52	MG	BA	3165	1/1	0.94	0.29	50,50,50,50	0
52	MG	BA	3297	1/1	0.94	0.31	61,61,61,61	0
52	MG	DA	3171	1/1	0.94	0.26	43,43,43,43	0
52	MG	BA	3028	1/1	0.94	0.36	28,28,28,28	0
52	MG	AA	1635	1/1	0.94	0.42	63,63.63.63	0
52	MG	AA	1628	1/1	0.94	0.31	66,66,66,66	0

4	V	7	Υ
-		•	-

	nueu jro		is page.		DOOO	DCD	\mathbf{D} ($\hat{\mathbf{A}}$ 2)	0.00
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(A ²)	Q<0.9
52	MG	DA	3097	1/1	0.94	0.18	44,44,44	0
52	MG	DA	3177	1/1	0.94	0.37	61,61,61,61	0
52	MG	BA	3125	1/1	0.94	0.17	46,46,46,46	0
52	MG	DA	3269	1/1	0.94	0.09	61,61,61,61	0
52	MG	DA	3099	1/1	0.94	0.34	46,46,46,46	0
52	MG	DA	3272	1/1	0.94	0.22	74,74,74,74	0
52	MG	BA	3038	1/1	0.94	0.32	$25,\!25,\!25,\!25$	0
52	MG	BA	3236	1/1	0.94	0.49	$70,\!70,\!70,\!70$	0
52	MG	DA	3034	1/1	0.94	0.29	$39,\!39,\!39,\!39$	0
52	MG	DA	3276	1/1	0.94	0.16	70,70,70,70	0
52	MG	BA	3128	1/1	0.94	0.30	54,54,54,54	0
52	MG	B7	101	1/1	0.94	0.07	37,37,37,37	0
52	MG	BA	3001	1/1	0.94	0.27	49,49,49,49	0
52	MG	BA	3133	1/1	0.94	0.27	$35,\!35,\!35,\!35$	0
52	MG	BA	3003	1/1	0.94	0.12	43,43,43,43	0
52	MG	BA	3089	1/1	0.94	0.21	26,26,26,26	0
52	MG	BA	3313	1/1	0.94	0.30	54,54,54,54	0
52	MG	AA	1623	1/1	0.94	0.27	54,54,54,54	0
52	MG	BA	3139	1/1	0.94	0.22	24,24,24,24	0
52	MG	DA	3286	1/1	0.94	0.23	58, 58, 58, 58	0
52	MG	DA	3202	1/1	0.94	0.17	40,40,40,40	0
52	MG	BA	3054	1/1	0.94	0.17	68,68,68,68	0
52	MG	BA	3188	1/1	0.94	0.30	62,62,62,62	0
52	MG	BA	3141	1/1	0.94	0.23	27,27,27,27	0
52	MG	DA	3049	1/1	0.94	0.25	$35,\!35,\!35,\!35$	0
52	MG	BA	3094	1/1	0.94	0.29	52,52,52,52	0
52	MG	DA	3121	1/1	0.94	0.12	37,37,37,37	0
52	MG	BA	3326	1/1	0.94	0.10	54,54,54,54	0
52	MG	DA	3055	1/1	0.94	0.23	42,42,42,42	0
52	MG	BA	3327	1/1	0.94	0.20	47,47,47,47	0
52	MG	AA	1631	1/1	0.94	0.11	60,60,60,60	0
52	MG	AA	1617	1/1	0.94	0.36	64,64,64,64	0
52	MG	BA	3262	1/1	0.94	0.27	75,75,75,75	0
52	MG	DA	3301	1/1	0.94	0.22	57,57,57,57	0
52	MG	BA	3331	1/1	0.94	0.21	46,46,46,46	0
52	MG	AA	1648	1/1	0.94	0.39	62,62,62,62	0
52	MG	DA	3304	1/1	0.94	0.24	52,52,52,52	0
52	MG	BA	3063	1/1	0.94	0.26	48,48,48,48	0
52	MG	BA	3271	1/1	0.94	0.25	46,46,46,46	0
52	MG	DA	3224	1/1	0.94	0.17	68,68,68,68	0
52	MG	BA	3010	1/1	0.94	0.27	38,38,38,38	0
52	MG	BA	3011	1/1	0.94	0.14	7,7,7,7	0

4	V	7	Υ
-		•	-

	nuea jro:	m previoi	is page.		Daga	DOD		0.00
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q<0.9
52	MG	BA	3156	1/1	0.94	0.28	53,53,53,53	0
52	MG	BA	3342	1/1	0.94	0.20	49,49,49,49	0
52	MG	AA	1621	1/1	0.94	0.30	46,46,46,46	0
52	MG	DA	3144	1/1	0.94	0.18	47,47,47,47	0
52	MG	BA	3069	1/1	0.94	0.22	18,18,18,18	0
52	MG	BA	3208	1/1	0.94	0.06	23,23,23,23	0
52	MG	DA	3073	1/1	0.94	0.20	42,42,42,42	0
52	MG	BA	3015	1/1	0.94	0.20	48,48,48,48	0
52	MG	BA	3348	1/1	0.94	0.20	61,61,61,61	0
55	ZIT	BA	3351	52/52	0.94	0.20	100,100,100,100	0
52	MG	BA	3211	1/1	0.94	0.13	$39,\!39,\!39,\!39$	0
52	MG	BA	3194	1/1	0.95	0.34	44,44,44,44	0
52	MG	BA	3078	1/1	0.95	0.20	34,34,34,34	0
52	MG	AA	1610	1/1	0.95	0.31	$65,\!65,\!65,\!65$	0
52	MG	BA	3098	1/1	0.95	0.24	46,46,46,46	0
52	MG	BA	3019	1/1	0.95	0.24	24,24,24,24	0
52	MG	BA	3311	1/1	0.95	0.15	46,46,46,46	0
52	MG	BA	3161	1/1	0.95	0.21	42,42,42,42	0
52	MG	DA	3030	1/1	0.95	0.29	42,42,42,42	0
52	MG	BA	3255	1/1	0.95	0.16	45,45,45,45	0
52	MG	BA	3256	1/1	0.95	0.33	63,63,63,63	0
52	MG	DA	3033	1/1	0.95	0.21	44,44,44,44	0
52	MG	BA	3102	1/1	0.95	0.15	24,24,24,24	0
52	MG	DA	3174	1/1	0.95	0.40	63,63,63,63	0
52	MG	DA	3101	1/1	0.95	0.25	43,43,43,43	0
52	MG	BA	3203	1/1	0.95	0.26	35,35,35,35	0
52	MG	BA	3065	1/1	0.95	0.22	32,32,32,32	0
52	MG	AA	1624	1/1	0.95	0.35	56, 56, 56, 56	0
52	MG	BA	3135	1/1	0.95	0.15	8,8,8,8	0
52	MG	DA	3181	1/1	0.95	0.20	50,50,50,50	0
52	MG	BA	3269	1/1	0.95	0.11	55,55,55,55	0
52	MG	BA	3167	1/1	0.95	0.41	52,52,52,52	0
52	MG	BA	3210	1/1	0.95	0.21	37,37,37,37	0
52	MG	DA	3186	1/1	0.95	0.19	63,63,63,63	0
52	MG	DA	3187	1/1	0.95	0.12	52,52,52,52	0
52	MG	BA	3105	1/1	0.95	0.33	46,46,46,46	0
52	MG	BA	3273	1/1	0.95	0.26	58,58,58,58	0
52	MG	BA	3107	1/1	0.95	0.11	34,34,34,34	0
52	MG	CA	1627	1/1	0.95	0.08	66,66,66,66	0
52	MG	DA	3194	1/1	0.95	0.29	60,60.60.60	0
52	MG	BA	3045	1/1	0.95	0.21	26.26.26.26	0
52	MG	BA	3333	1/1	0.95	0.27	80,80.80.80	0
						· · · - ·	,==,==,==,==,==	

4	V	7	Y

			is puye.		Dada	DOD	\mathbf{D} (\mathbf{A} 2)	0 .0 0
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\frac{\text{B-factors}(A^2)}{10,10,10,10}$	Q<0.9
52	MG	BA	3111		0.95	0.08	19,19,19,19	0
52	MG	DA	3118		0.95	0.10	66,66,66,66	0
52	MG	DA	3199		0.95	0.13	47,47,47,47	0
52	MG	DA	3200	1/1	0.95	0.26	50,50,50,50	0
52	MG	BA	3335	1/1	0.95	0.28	52,52,52,52	0
52	MG	BA	3278	1/1	0.95	0.13	41,41,41,41	0
52	MG	BA	3337	1/1	0.95	0.37	58,58,58,58	0
52	MG	CA	1635	1/1	0.95	0.08	86,86,86,86	0
52	MG	BA	3177	1/1	0.95	0.22	52,52,52,52	0
52	MG	AA	1601	1/1	0.95	0.21	58,58,58,58	0
52	MG	BA	3226	1/1	0.95	0.14	32,32,32,32	0
52	MG	BA	3113	1/1	0.95	0.25	26,26,26,26	0
52	MG	BA	3143	1/1	0.95	0.18	30,30,30,30	0
52	MG	B1	101	1/1	0.95	0.14	39,39,39,39	0
52	MG	BA	3287	1/1	0.95	0.33	58, 58, 58, 58	0
52	MG	BA	3145	1/1	0.95	0.24	40,40,40,40	0
52	MG	BA	3347	1/1	0.95	0.21	$66,\!66,\!66,\!66$	0
52	MG	DA	3217	1/1	0.95	0.34	$62,\!62,\!62,\!62$	0
52	MG	BA	3146	1/1	0.95	0.23	42,42,42,42	0
52	MG	DA	3139	1/1	0.95	0.21	$68,\!68,\!68,\!68$	0
52	MG	CA	1648	1/1	0.95	0.21	79,79,79,79	0
52	MG	D0	101	1/1	0.95	0.18	62,62,62,62	0
52	MG	D1	101	1/1	0.95	0.19	$50,\!50,\!50,\!50$	0
52	MG	BA	3090	1/1	0.95	0.19	38,38,38,38	0
52	MG	BA	3185	1/1	0.95	0.18	14,14,14,14	0
52	MG	BA	3118	1/1	0.95	0.29	59, 59, 59, 59	0
52	MG	BD	301	1/1	0.95	0.14	43,43,43,43	0
52	MG	BA	3050	1/1	0.95	0.24	38,38,38,38	0
52	MG	AA	1612	1/1	0.95	0.24	66,66,66,66	0
52	MG	DA	3006	1/1	0.95	0.28	39,39,39,39	0
52	MG	DB	201	1/1	0.95	0.28	52,52,52,52	0
52	MG	BA	3014	1/1	0.95	0.28	32,32,32,32	0
52	MG	DA	3232	1/1	0.95	0.17	72,72,72,72	0
52	MG	BX	101	1/1	0.95	0.12	61,61,61,61	0
52	MG	BA	3155	1/1	0.95	0.19	41,41,41,41	0
52	MG	DP	201	1/1	0.95	0.10	50,50,50,50	0
52	MG	BA	3241	1/1	0.95	0.24	79,79,79,79	0
52	MG	BA	3242	1/1	0.95	0.17	48,48,48,48	0
52	MG	DA	3237	1/1	0.95	0.12	53,53,53,53	0
52	MG	DA	3157	1/1	0.95	0.41	65,65,65.65	0
52	MG	DA	3086	1/1	0.95	0.24	38,38.38.38	0
52	MG	BA	3191	1/1	0.95	0.33	64,64,64,64	0

4	V	7	Y

			D a m		DOOD	DCD	D \mathbf{f}_{2} = \mathbf{f}_{2}	0 (0 0
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
52	MG	BA	3036		0.95	0.06	0,0,0,0	0
52	MG	DA	3256		0.96	0.13	57,57,57,57	0
52	MG	BA	3084		0.96	0.04	14,14,14,14	0
52	MG	DA	3010	1/1	0.96	0.22	31,31,31,31	0
52	MG	DA	3011	1/1	0.96	0.27	50,50,50,50	0
52	MG	BA	3070	1/1	0.96	0.23	35,35,35,35	0
52	MG	DA	3128	1/1	0.96	0.42	51,51,51,51	0
52	MG	BA	3216	1/1	0.96	0.32	43,43,43,43	0
52	MG	DA	3263	1/1	0.96	0.19	67,67,67,67	0
52	MG	DA	3130	1/1	0.96	0.26	43,43,43,43	0
52	MG	BA	3294	1/1	0.96	0.32	$65,\!65,\!65,\!65$	0
52	MG	BA	3044	1/1	0.96	0.20	26,26,26,26	0
52	MG	DA	3018	1/1	0.96	0.31	32,32,32,32	0
52	MG	BA	3072	1/1	0.96	0.16	24,24,24,24	0
52	MG	DA	3136	1/1	0.96	0.30	59, 59, 59, 59	0
52	MG	DA	3137	1/1	0.96	0.27	38,38,38,38	0
52	MG	BA	3221	1/1	0.96	0.33	$40,\!40,\!40,\!40$	0
52	MG	AA	1630	1/1	0.96	0.33	$59,\!59,\!59,\!59$	0
52	MG	BA	3299	1/1	0.96	0.36	$58,\!58,\!58,\!58$	0
52	MG	DA	3206	1/1	0.96	0.08	48,48,48,48	0
52	MG	DA	3080	1/1	0.96	0.32	40,40,40,40	0
52	MG	BA	3029	1/1	0.96	0.15	26,26,26,26	0
52	MG	BA	3163	1/1	0.96	0.32	47,47,47,47	0
52	MG	DA	3210	1/1	0.96	0.17	63,63,63,63	0
52	MG	BA	3124	1/1	0.96	0.07	42,42,42,42	0
52	MG	BA	3025	1/1	0.96	0.20	54,54,54,54	0
52	MG	DA	3028	1/1	0.96	0.19	39,39,39,39	0
52	MG	BA	3265	1/1	0.96	0.32	63,63,63,63	0
52	MG	BA	3268	1/1	0.96	0.09	40,40,40,40	0
52	MG	BA	3109	1/1	0.96	0.31	34,34,34,34	0
52	MG	BA	3077	1/1	0.96	0.27	28,28,28,28	0
52	MG	CA	1631	1/1	0.96	0.45	70,70,70,70	0
52	MG	BA	3308	1/1	0.96	0.34	64,64,64,64	0
52	MG	BB	201	1/1	0.96	0.28	42,42,42,42	0
52	MG	BB	202	1/1	0.96	0.18	30,30,30,30	0
52	MG	BA	3231	1/1	0.96	0.33	52,52,52,52	0
52	MG	BA	3168	1/1	0.96	0.12	43,43,43,43	0
52	MG	BA	3169	1/1	0.96	0.24	46,46,46,46	0
52	MG	BA	3040	1/1	0.96	0.41	51,51,51,51	0
52	MG	CA	1639	1/1	0.96	0.25	64,64.64.64	0
52	MG	BA	3130	1/1	0.96	0.15	26,26.26.26	0
52	MG	BA	3314	1/1	0.96	0.11	56,56,56,56	0

4	V	7	Υ
-		•	-

	mueu jro		is page.		DOOO	DCD	\mathbf{D} (\mathbf{A} 2)	0.00
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(A ²)	Q<0.9
52	MG	DA	3044	1/1	0.96	0.24	46,46,46,46	0
52	MG	BU	201	1/1	0.96	0.17	26,26,26,26	0
52	MG	DA	3103	1/1	0.96	0.50	70,70,70,70	0
52	MG	DA	3046	1/1	0.96	0.21	28,28,28,28	0
52	MG	CA	1643	1/1	0.96	0.32	$62,\!62,\!62,\!62$	0
52	MG	BA	3276	1/1	0.96	0.34	$55,\!55,\!55,\!55$	0
52	MG	DA	3170	1/1	0.96	0.24	$53,\!53,\!53,\!53$	0
52	MG	BA	3172	1/1	0.96	0.25	64,64,64,64	0
52	MG	DA	3239	1/1	0.96	0.17	$59,\!59,\!59,\!59$	0
52	MG	DA	3050	1/1	0.96	0.21	42,42,42,42	0
52	MG	DA	3241	1/1	0.96	0.20	$60,\!60,\!60,\!60$	0
52	MG	BA	3317	1/1	0.96	0.10	41,41,41,41	0
52	MG	BA	3051	1/1	0.96	0.19	$14,\!14,\!14,\!14$	0
52	MG	BA	3201	1/1	0.96	0.20	29,29,29,29	0
52	MG	BA	3175	1/1	0.96	0.18	49,49,49,49	0
52	MG	BA	3323	1/1	0.96	0.11	64,64,64,64	0
52	MG	BA	3022	1/1	0.96	0.24	49,49,49,49	0
52	MG	CA	1608	1/1	0.96	0.27	51,51,51,51	0
52	MG	BA	3043	1/1	0.96	0.10	36,36,36,36	0
52	MG	DU	201	1/1	0.96	0.19	60,60,60,60	0
52	MG	BA	3153	1/1	0.96	0.27	25,25,25,25	0
53	ZN	AD	301	1/1	0.96	0.22	108,108,108,108	0
52	MG	BA	3154	1/1	0.96	0.14	32,32,32,32	0
52	MG	BA	3115	1/1	0.96	0.29	49,49,49,49	0
52	MG	BA	3136	1/1	0.96	0.28	32,32,32,32	0
52	MG	DA	3007	1/1	0.96	0.16	39,39,39,39	0
52	MG	BA	3239	1/1	0.97	0.24	48,48,48,48	0
52	MG	BA	3206	1/1	0.97	0.21	29,29,29,29	0
52	MG	BA	3325	1/1	0.97	0.26	43,43,43,43	0
52	MG	BA	3207	1/1	0.97	0.10	23,23,23,23	0
52	MG	AA	1620	1/1	0.97	0.15	73,73,73,73	0
52	MG	DA	3271	1/1	0.97	0.08	46,46,46,46	0
52	MG	DA	3213	1/1	0.97	0.25	36,36,36,36	0
52	MG	DA	3003	1/1	0.97	0.28	56,56,56,56	0
52	MG	BA	3243	1/1	0.97	0.10	58,58,58,58	0
52	MG	BA	3064	1/1	0.97	0.16	28,28,28,28	0
52	MG	DA	3107	1/1	0.97	0.28	38,38,38,38	0
52	MG	BA	3086	1/1	0.97	0.13	18,18,18,18	0
52	MG	BA	3018	1/1	0.97	0.11	26,26,26,26	0
52	MG	DA	3220	1/1	0.97	0.18	62,62,62,62	0
52	MG	BA	3291	1/1	0.97	0.38	54,54,54,54	0
52	MG	BA	3248	1/1	0.97	0.05	47,47,47,47	0

4	V	7	Υ
-		•	-

	muea jro	m previoi	is page.		DCCC	DCD	D for $t = t = r = (\lambda^2)$	$\mathbf{O} < \mathbf{O} \mathbf{O}$
1VI01	Type MC		Res		RSCC	R5R	$\mathbf{B-Iactors}(\mathbf{A}^{-})$	Q<0.9
52	MG	DA	3063		0.97	0.18	47,47,47,47	0
52	MG	BA	3212		0.97	0.24	30,30,30,30	0
52	MG	BA	3213		0.97	0.29	32,32,32,32	0
52	MG	BA	3251		0.97	0.08	35,35,35,35	0
52	MG	B5	101		0.97	0.09	27,27,27,27	0
52	MG	DA	3016		0.97	0.34	56,56,56,56	0
52	MG	BA	3046		0.97	0.19	37,37,37,37	0
52	MG	BA	3020	1/1	0.97	0.28	38,38,38,38	0
52	MG	BA	3340	1/1	0.97	0.30	62,62,62,62	0
52	MG	BA	3218	1/1	0.97	0.25	33,33,33,33	0
52	MG	BA	3048	1/1	0.97	0.26	30,30,30,30	0
52	MG	DA	3293	1/1	0.97	0.23	53,53,53,53	0
52	MG	DA	3123	1/1	0.97	0.13	61,61,61,61	0
52	MG	BA	3220	1/1	0.97	0.23	27,27,27,27	0
52	MG	BA	3004	1/1	0.97	0.17	23,23,23,23	0
52	MG	BA	3117	1/1	0.97	0.30	39,39,39,39	0
52	MG	BA	3037	1/1	0.97	0.15	14,14,14,14	0
52	MG	BA	3225	1/1	0.97	0.20	33,33,33,33	0
52	MG	DA	3183	1/1	0.97	0.22	44,44,44,44	0
52	MG	BA	3264	1/1	0.97	0.16	$35,\!35,\!35,\!35$	0
52	MG	AA	1602	1/1	0.97	0.27	37,37,37,37	0
52	MG	DA	3131	1/1	0.97	0.26	47,47,47,47	0
52	MG	BA	3267	1/1	0.97	0.23	38,38,38,38	0
52	MG	BA	3052	1/1	0.97	0.17	$15,\!15,\!15,\!15$	0
52	MG	BA	3053	1/1	0.97	0.19	$15,\!15,\!15,\!15$	0
52	MG	BA	3006	1/1	0.97	0.23	$29,\!29,\!29,\!29$	0
52	MG	BA	3123	1/1	0.97	0.20	22,22,22,22	0
52	MG	DA	3192	1/1	0.97	0.27	$55,\!55,\!55,\!55$	0
52	MG	DA	3193	1/1	0.97	0.31	$50,\!50,\!50,\!50$	0
52	MG	BE	301	1/1	0.97	0.22	$29,\!29,\!29,\!29$	0
52	MG	BA	3100	1/1	0.97	0.15	$21,\!21,\!21,\!21$	0
52	MG	BA	3173	1/1	0.97	0.21	24,24,24,24	0
52	MG	DE	301	1/1	0.97	0.17	40,40,40,40	0
52	MG	BP	202	1/1	0.97	0.25	58,58,58,58	0
52	MG	BQ	201	1/1	0.97	0.04	32,32,32,32	0
52	MG	BA	3026	1/1	0.97	0.12	49,49,49,49	0
52	MG	BR	201	1/1	0.97	0.10	20,20,20,20	0
52	MG	AA	1642	1/1	0.97	0.24	51,51,51,51	0
52	MG	BA	3127	1/1	0.97	0.10	$50,\!50,\!50,\!50$	0
52	MG	BA	3059	1/1	0.97	0.24	39,39,39,39	0
53	ZN	AN	101	1/1	0.97	0.05	159,159,159,159	0
53	ZN	CD	301	1/1	0.97	0.17	93,93,93,93	0

J fa α mtima

4	V	7	Y

	nuea jro:	m previoi	is page.		Dada	DOD		\mathbf{O}
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q<0.9
53	ZN		101	1/1	0.97	0.06	157,157,157,157	0
52	MG	BA	3042	1/1	0.97	0.18	15,15,15,15	0
52	MG	DA	3148	1/1	0.97	0.21	48,48,48,48	0
52	MG	BA	3062	1/1	0.97	0.32	44,44,44,44	0
52	MG	BA	3322	1/1	0.97	0.13	20,20,20,20	0
52	MG	BA	3033	1/1	0.98	0.06	20,20,20,20	0
52	MG	BA	3290	1/1	0.98	0.24	47,47,47,47	0
52	MG	B0	101	1/1	0.98	0.17	34,34,34,34	0
52	MG	BA	3247	1/1	0.98	0.03	40,40,40,40	0
52	MG	BA	3061	1/1	0.98	0.06	23,23,23,23	0
52	MG	DA	3021	1/1	0.98	0.23	47,47,47,47	0
52	MG	BA	3035	1/1	0.98	0.11	21,21,21,21	0
52	MG	BA	3099	1/1	0.98	0.15	26,26,26,26	0
52	MG	DA	3053	1/1	0.98	0.45	51,51,51,51	0
52	MG	BA	3318	1/1	0.98	0.28	60,60,60,60	0
52	MG	BA	3147	1/1	0.98	0.04	12,12,12,12	0
52	MG	BA	3002	1/1	0.98	0.20	20,20,20,20	0
52	MG	BA	3016	1/1	0.98	0.13	21,21,21,21	0
52	MG	BA	3199	1/1	0.98	0.32	$49,\!49,\!49,\!49$	0
52	MG	DA	3180	1/1	0.98	0.25	$52,\!52,\!52,\!52$	0
52	MG	BA	3075	1/1	0.98	0.17	26,26,26,26	0
52	MG	DA	3060	1/1	0.98	0.04	34,34,34,34	0
52	MG	DA	3002	1/1	0.98	0.34	38,38,38,38	0
52	MG	BA	3030	1/1	0.98	0.11	17,17,17,17	0
52	MG	BA	3056	1/1	0.98	0.07	20,20,20,20	0
52	MG	BA	3091	1/1	0.98	0.15	9,9,9,9	0
52	MG	BA	3281	1/1	0.98	0.33	46,46,46,46	0
52	MG	DA	3156	1/1	0.98	0.34	44,44,44,44	0
52	MG	DA	3253	1/1	0.98	0.26	50,50,50,50	0
52	MG	BA	3222	1/1	0.98	0.16	23,23,23,23	0
52	MG	DA	3008	1/1	0.98	0.42	52,52,52,52	0
52	MG	BA	3261	1/1	0.98	0.13	38,38,38,38	0
52	MG	BB	204	1/1	0.98	0.38	56, 56, 56, 56	0
52	MG	BA	3106	1/1	0.98	0.11	12,12,12,12	0
52	MG	BA	3021	1/1	0.98	0.14	16,16,16,16	0
52	MG	BA	3079	1/1	0.98	0.13	0,0,0,0	0
52	MG	BA	3032	1/1	0.98	0.20	15,15,15,15	0
52	MG	DA	3015	1/1	0.98	0.11	23,23,23,23	0
52	MG	BA	3266	1/1	0.99	0.22	35,35,35,35	0
52	MG	BA	3108	1/1	0.99	0.29	56,56,56,56	0
52	MG	BA	3012	1/1	0.99	0.13	22,22,22,22	0
52	MG	BA	3017	1/1	0.99	0.26	32,32,32,32	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
52	MG	BA	3260	1/1	0.99	0.18	42,42,42,42	0
52	MG	BA	3131	1/1	0.99	0.11	45,45,45,45	0
52	MG	BA	3055	1/1	0.99	0.19	19,19,19,19	0
52	MG	BP	203	1/1	0.99	0.09	0,0,0,0	0
52	MG	DA	3051	1/1	0.99	0.20	26,26,26,26	0
52	MG	BA	3193	1/1	0.99	0.20	28,28,28,28	0
52	MG	BA	3215	1/1	0.99	0.18	36,36,36,36	0
52	MG	BA	3083	1/1	0.99	0.07	5, 5, 5, 5	0
52	MG	BA	3286	1/1	0.99	0.03	45,45,45,45	0
52	MG	BA	3024	1/1	1.00	0.04	2,2,2,2	0

6.5 Other polymers (i)

There are no such residues in this entry.

