

wwPDB X-ray Structure Validation Summary Report (i)

Dec 9, 2024 – 04:07 PM EST

PDB ID : 8VCU

Title: Crystal structure of the oligomeric rMcL-1 in complex with lactulose

Authors: Hernandez-Santoyo, A.; Loera-Rubalcava, J.

Deposited on : 2023-12-14

Resolution : 1.77 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul : 2022.3.0, CSD as543be (2022)

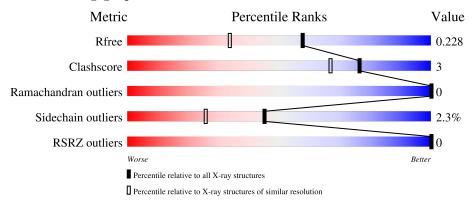
Xtriage (Phenix) : 1.21 EDS : 3.0

Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)

CCP4 : 9.0.004 (Gargrove)

Density-Fitness : 1.0.11

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 1.77 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \text{Whole archive} \\ (\#\text{Entries}) \end{array}$	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries,\ resolution\ range(\mathring{\rm A})}) \end{array}$
R_{free}	164625	1191 (1.78-1.78)
Clashscore	180529	1282 (1.78-1.78)
Ramachandran outliers	177936	1270 (1.78-1.78)
Sidechain outliers	177891	1270 (1.78-1.78)
RSRZ outliers	164620	1191 (1.78-1.78)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	A	152	88%	11%	-
1	В	152	93%	5%	-
1	С	152	91%	7%	
1	D	152	88%	11%	
2	G	2	100%		

Continued from previous page...

Mol	Chain	Length	Quality of chain
2	Н	2	100%
2	I	2	50% 50%
2	J	2	50% 50%
2	K	2	50% 50%
2	L	2	100%
2	M	2	50% 50%
2	N	2	100%
2	О	2	100%
2	Р	2	50% 50%
2	Q	2	100%
2	R	2	100%
2	S	2	100%
2	Т	2	100%
2	U	2	100%
2	V	2	100%

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 5820 atoms, of which 0 are hydrogens and 0 are deuteriums.

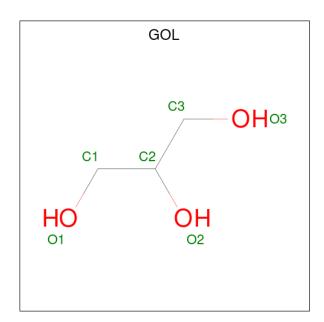
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Galactose-binding lectin.

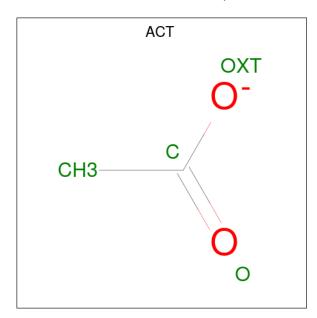
Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Λ	149	Total	С	N	О	S	0	1	0
1	A	149	1196	764	215	213	4	0	1	0
1	В	149	Total	С	N	О	S	0	0	0
1	Б	149	1193	762	215	212	4	0	0	0
1	С	149	Total	С	N	О	S	0	1	0
1		149	1199	767	216	212	4	0	1	0
1	D	150	Total	С	N	О	S	0	1	0
1	ע	150	1207	770	218	215	4	0	1	0

There are 20 discrepancies between the modelled and reference sequences:

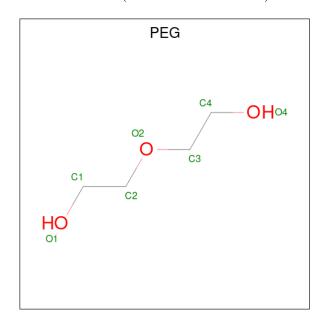
Chain	Residue	Modelled	Actual	Comment	Reference
A	-1	GLY	-	expression tag	UNP A0A0P0E482
A	0	HIS	-	expression tag	UNP A0A0P0E482
A	107	ILE	VAL	variant	UNP A0A0P0E482
A	130	LYS	GLY	variant	UNP A0A0P0E482
A	141	ASP	ASN	variant	UNP A0A0P0E482
В	-1	GLY	-	expression tag	UNP A0A0P0E482
В	0	HIS	-	expression tag	UNP A0A0P0E482
В	107	ILE	VAL	variant	UNP A0A0P0E482
В	130	LYS	GLY	variant	UNP A0A0P0E482
В	141	ASP	ASN	variant	UNP A0A0P0E482
С	-1	GLY	-	expression tag	UNP A0A0P0E482
С	0	HIS	-	expression tag	UNP A0A0P0E482
С	107	ILE	VAL	variant	UNP A0A0P0E482
С	130	LYS	GLY	variant	UNP A0A0P0E482
С	141	ASP	ASN	variant	UNP A0A0P0E482
D	-1	GLY	-	expression tag	UNP A0A0P0E482
D	0	HIS	-	expression tag	UNP A0A0P0E482
D	107	ILE	VAL	variant	UNP A0A0P0E482
D	130	LYS	GLY	variant	UNP A0A0P0E482
D	141	ASP	ASN	variant	UNP A0A0P0E482


 \bullet Molecule 2 is an oligosaccharide called beta-D-galactopyranose-(1-4)-beta-D-fructofuranose.

2			Atoms	5	ZeroOcc	AltConf	Trace
	G	2	Total C	0	0	0	0
			$\frac{23}{77}$	11		_	
2	Н	2	Total C 23 12	O 11	0	0	0
			Total C	0			
2	I	2	23 12	11	0	0	0
2	J	2	Total C	О	0	0	0
2	J	<u>Z</u>	23 12	11	U	U	U
2	K	2	Total C	O	0	0	0
_			23 12	11	Ŭ		
2	${ m L}$	2	Total C 23 12	O 11	0	0	0
			$\begin{array}{c c} \hline & 23 & 12 \\ \hline & \text{Total} & C \end{array}$	0			
2	M	2	23 12	11	0	0	0
	N.T.	2	Total C	O	0	0	0
2	N	2	23 12	11	0	0	0
2	О	2	Total C	О	0	0	0
2		<u> </u>	23 12	11	0	0	U
2	Р	2	Total C	0	0	0	0
			23 12 Total C	11 O			
2	Q	2	Total C 23 12	11	0	0	0
			Total C	0			
2	R	2	23 12	11	0	0	0
2	S	2	Total C	О	0	0	0
۷	ى 	<u> </u>	23 12	11	U	0	U
2	Т	2	Total C	0	0	0	0
_		_	23 12	11		, and the second	
2	U	2	Total C 23 12	O 11	0	0	0
			$\frac{23}{\text{Total}}$ C	O			
2	V	2	23 12	11	0	0	0


 \bullet Molecule 3 is GLYCEROL (three-letter code: GOL) (formula: $\mathrm{C_3H_8O_3}).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	1	Total C O 6 3 3	0	0


 \bullet Molecule 4 is ACETATE ION (three-letter code: ACT) (formula: $\mathrm{C_2H_3O_2}).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	1	Total C O 4 2 2	0	0
4	В	1	Total C O 4 2 2	0	0
4	D	1	Total C O 4 2 2	0	0

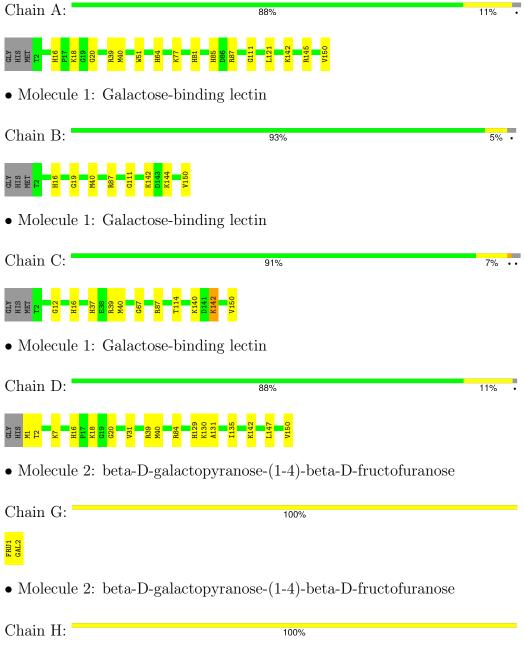
• Molecule 5 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula: $C_4H_{10}O_3$).

Mol	Chain	Residues	Ato	oms		ZeroOcc	AltConf
5	С	1	Total 7	C 4	O 3	0	0

• Molecule 6 is NICKEL (II) ION (three-letter code: NI) (formula: Ni).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	D	1	Total Ni 1 1	0	0

• Molecule 7 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	A	160	Total O 160 160	0	0
7	В	152	Total O 152 152	0	0
7	С	160	Total O 160 160	0	0
7	D	159	Total O 159 159	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Galactose-binding lectin

FRU1 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1-4	1)-beta-D-fructofuranose
Chain I:	50%	50%
FRU1 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1-4	1)-beta-D-fructofuranose
Chain J:	50%	50%
FRU1 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1-4	1)-beta-D-fructofuranose
Chain K:	50%	50%
GALZ		
• Molecule 2:	beta-D-galactopyranose-(1-4	1)-beta-D-fructofuranose
Chain L:	10	0%
GAL2 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1-4	1)-beta-D-fructofuranose
Chain M:	50%	50%
GAL2 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1-4	1)-beta-D-fructofuranose
Chain N:	10	00%
GAL2 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1-4	1)-beta-D-fructofuranose
• Molecule 2: Chain O:		1)-beta-D-fructofuranose

Chain P:	50%	50%
GAL2		
• Molecule 2:	beta-D-galactopyranose-(1	-4)-beta-D-fructofuranose
Chain Q:		100%
FRU1 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1	-4)-beta-D-fructofuranose
Chain R:		100%
FRU1 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1	-4)-beta-D-fructofuranose
Chain S:		00%
FRU1 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1	-4)-beta-D-fructofuranose
Chain T:		100%
FRU1 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1	-4)-beta-D-fructofuranose
Chain U:		100%
FRU1 GAL2		
• Molecule 2:	beta-D-galactopyranose-(1	-4)-beta-D-fructofuranose
Chain V:		100%
GAL2		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	39.82Å 64.63Å 69.38Å	Donositor
a, b, c, α , β , γ	$94.28^{\circ} 103.90^{\circ} 107.94^{\circ}$	Depositor
Resolution (Å)	41.60 - 1.77	Depositor
Resolution (A)	41.60 - 1.77	EDS
% Data completeness	90.8 (41.60-1.77)	Depositor
(in resolution range)	88.6 (41.60-1.77)	EDS
R_{merge}	0.11	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$3.68 \; (at \; 1.77 \text{Å})$	Xtriage
Refinement program	PHENIX 1.21_5207	Depositor
D.D.	0.185 , 0.229	Depositor
R, R_{free}	0.185 , 0.228	DCC
R_{free} test set	52537 reflections $(3.02%)$	wwPDB-VP
Wilson B-factor (Å ²)	10.8	Xtriage
Anisotropy	0.375	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.38, 33.5	EDS
L-test for twinning ²	$< L > = 0.45, < L^2> = 0.27$	Xtriage
Estimated twinning fraction	0.138 for h,-h-k,-h-l	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	5820	wwPDB-VP
Average B, all atoms (Å ²)	13.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 7.59% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GAL, FRU, NI, GOL, ACT, PEG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.32	0/1234	0.57	0/1664	
1	В	0.32	0/1228	0.58	0/1656	
1	С	0.32	0/1237	0.58	0/1667	
1	D	0.32	0/1242	0.58	0/1675	
All	All	0.32	0/4941	0.58	0/6662	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	1196	0	1179	10	0
1	В	1193	0	1174	3	0
1	С	1199	0	1187	8	0
1	D	1207	0	1186	9	0
2	G	23	0	21	0	0
2	Н	23	0	21	0	0
2	I	23	0	21	1	0
2	J	23	0	20	1	0
2	K	23	0	21	1	0

Continued from previous page...

Mol	Chain		H(model)	$\mathbf{H}(\mathbf{added})$	Clashes	Symm-Clashes
2	L	23	0	21	0	0
2	M	23	0	21	2	0
2	N	23	0	21	0	0
2	О	23	0	21	0	0
2	Р	23	0	21	1	0
2	Q	23	0	21	0	0
2	R	23	0	21	0	0
2	S	23	0	21	0	0
2	Т	23	0	21	0	0
2	U	23	0	20	0	0
2	V	23	0	21	0	0
3	A	6	0	8	2	0
4	A	4	0	3	0	0
4	В	4	0	3	0	0
4	D	4	0	3	0	0
5	С	7	0	10	3	0
6	D	1	0	0	0	0
7	A	160	0	0	1	0
7	В	152	0	0	0	0
7	С	160	0	0	0	0
7	D	159	0	0	2	0
All	All	5820	0	5087	29	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 29 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$\begin{array}{c} \text{Clash} \\ \text{overlap } (\text{\AA}) \end{array}$
1:A:145:ARG:HH21	3:A:201:GOL:H11	1.39	0.88
1:D:18:LYS:NZ	7:D:302:HOH:O	2.36	0.59
1:D:2:THR:HG21	1:D:147:LEU:O	2.07	0.54
1:B:111:GLY:HA2	2:M:1:FRU:O3	2.09	0.53
1:C:16:HIS:CE1	1:C:40:MET:HG2	2.45	0.51

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	A	$148/152\ (97\%)$	145 (98%)	3 (2%)	0	100	100
1	В	$147/152 \ (97\%)$	143 (97%)	4 (3%)	0	100	100
1	C	$148/152\ (97\%)$	144 (97%)	4 (3%)	0	100	100
1	D	$149/152\ (98\%)$	144 (97%)	5 (3%)	0	100	100
All	All	592/608~(97%)	576 (97%)	16 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	n Analysed Rotameric Outliers		Percentiles		
1	A	130/131 (99%)	128 (98%)	2 (2%)	60 44	
1	В	129/131 (98%)	125 (97%)	4 (3%)	35 14	
1	С	130/131 (99%)	127 (98%)	3 (2%)	45 26	
1	D	130/131 (99%)	127 (98%)	3 (2%)	45 26	
All	All	519/524 (99%)	507 (98%)	12 (2%)	45 26	

5 of 12 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	С	140	LYS
1	С	142	LYS
1	D	142	LYS

Continued from previous page...

Mol	Chain	Res	Type
1	D	84	ARG
1	В	142	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

32 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Trinc	Chain	Res	Link	Во	ond leng	ths	В	ond ang	gles
MIOI	Type	Chain	nes	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	FRU	G	1	2	11,12,12	4.23	6 (54%)	10,18,18	1.94	3 (30%)
2	GAL	G	2	2	11,11,12	2.72	7 (63%)	15,15,17	1.05	1 (6%)
2	FRU	Н	1	2	11,12,12	4.24	6 (54%)	10,18,18	1.70	2 (20%)
2	GAL	Н	2	2	11,11,12	2.58	6 (54%)	15,15,17	0.92	1 (6%)
2	FRU	I	1	2	11,12,12	4.37	6 (54%)	10,18,18	2.08	3 (30%)
2	GAL	I	2	2	11,11,12	2.62	6 (54%)	15,15,17	1.12	1 (6%)
2	FRU	J	1	2	11,12,12	4.17	6 (54%)	10,18,18	2.12	5 (50%)
2	GAL	J	2	2	11,11,12	2.75	7 (63%)	15,15,17	1.12	1 (6%)
2	FRU	K	1	2	11,12,12	4.28	6 (54%)	10,18,18	1.37	1 (10%)
2	GAL	K	2	2	11,11,12	2.61	6 (54%)	15,15,17	0.99	1 (6%)
2	FRU	L	1	2	11,12,12	4.36	7 (63%)	10,18,18	1.07	1 (10%)

Mol	Trunc	Chain	Dag	Link	Во	Bond lengths		Bond angles		
MIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	GAL	L	2	2	11,11,12	2.62	6 (54%)	15,15,17	1.02	1 (6%)
2	FRU	M	1	2	11,12,12	4.31	6 (54%)	10,18,18	2.07	3 (30%)
2	GAL	M	2	2	11,11,12	2.64	5 (45%)	15,15,17	1.28	1 (6%)
2	FRU	N	1	2	11,12,12	4.56	7 (63%)	10,18,18	2.61	3 (30%)
2	GAL	N	2	2	11,11,12	2.54	4 (36%)	15,15,17	1.31	1 (6%)
2	FRU	О	1	2	11,12,12	4.29	7 (63%)	10,18,18	1.67	3 (30%)
2	GAL	О	2	2	11,11,12	2.77	6 (54%)	15,15,17	1.25	1 (6%)
2	FRU	P	1	2	11,12,12	4.23	7 (63%)	10,18,18	1.64	2 (20%)
2	GAL	P	2	2	11,11,12	2.59	7 (63%)	15,15,17	1.05	1 (6%)
2	FRU	Q	1	2	11,12,12	4.37	6 (54%)	10,18,18	2.05	3 (30%)
2	GAL	Q	2	2	11,11,12	2.65	7 (63%)	15,15,17	1.24	1 (6%)
2	FRU	R	1	2	11,12,12	4.26	6 (54%)	10,18,18	1.71	2 (20%)
2	GAL	R	2	2	11,11,12	2.66	7 (63%)	15,15,17	1.15	1 (6%)
2	FRU	S	1	2	11,12,12	4.23	6 (54%)	10,18,18	1.71	3 (30%)
2	GAL	S	2	2	11,11,12	2.66	5 (45%)	15,15,17	1.11	1 (6%)
2	FRU	Т	1	2	11,12,12	4.20	6 (54%)	10,18,18	1.52	2 (20%)
2	GAL	Т	2	2	11,11,12	2.65	7 (63%)	15,15,17	0.95	1 (6%)
2	FRU	U	1	2	11,12,12	4.34	6 (54%)	10,18,18	2.03	3 (30%)
2	GAL	U	2	2	11,11,12	2.62	6 (54%)	15,15,17	1.27	2 (13%)
2	FRU	V	1	2	11,12,12	4.24	6 (54%)	10,18,18	1.74	3 (30%)
2	GAL	V	2	2	11,11,12	2.73	7 (63%)	15,15,17	1.18	1 (6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	FRU	G	1	2	-	2/5/24/24	0/1/1/1
2	GAL	G	2	2	-	0/2/19/22	0/1/1/1
2	FRU	Н	1	2	-	2/5/24/24	0/1/1/1
2	GAL	Н	2	2	-	0/2/19/22	0/1/1/1
2	FRU	I	1	2	-	2/5/24/24	0/1/1/1
2	GAL	I	2	2	-	0/2/19/22	0/1/1/1
2	FRU	J	1	2	-	2/5/24/24	0/1/1/1
2	GAL	J	2	2	-	2/2/19/22	0/1/1/1

 $Continued\ from\ previous\ page...$

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	FRU	K	1	2	-	4/5/24/24	0/1/1/1
2	GAL	K	2	2	-	0/2/19/22	0/1/1/1
2	FRU	L	1	2	-	5/5/24/24	0/1/1/1
2	GAL	L	2	2	-	0/2/19/22	0/1/1/1
2	FRU	M	1	2	-	2/5/24/24	0/1/1/1
2	GAL	M	2	2	-	0/2/19/22	0/1/1/1
2	FRU	N	1	2	-	2/5/24/24	0/1/1/1
2	GAL	N	2	2	-	1/2/19/22	0/1/1/1
2	FRU	О	1	2	-	2/5/24/24	0/1/1/1
2	GAL	О	2	2	-	0/2/19/22	0/1/1/1
2	FRU	Р	1	2	-	2/5/24/24	0/1/1/1
2	GAL	Р	2	2	-	0/2/19/22	0/1/1/1
2	FRU	Q	1	2	-	2/5/24/24	0/1/1/1
2	GAL	Q	2	2	-	0/2/19/22	0/1/1/1
2	FRU	R	1	2	-	2/5/24/24	0/1/1/1
2	GAL	R	2	2	-	2/2/19/22	0/1/1/1
2	FRU	S	1	2	-	3/5/24/24	0/1/1/1
2	GAL	S	2	2	-	0/2/19/22	0/1/1/1
2	FRU	Τ	1	2	-	3/5/24/24	0/1/1/1
2	GAL	Т	2	2	-	0/2/19/22	0/1/1/1
2	FRU	U	1	2	-	2/5/24/24	0/1/1/1
2	GAL	U	2	2	-	0/2/19/22	0/1/1/1
2	FRU	V	1	2	-	5/5/24/24	0/1/1/1
2	GAL	V	2	2	-	1/2/19/22	0/1/1/1

The worst 5 of 199 bond length outliers are listed below:

\mathbf{Mol}	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\text{\AA})$	$Ideal(\AA)$
2	N	1	FRU	O5-C2	-10.22	1.27	1.43
2	L	1	FRU	O5-C2	-9.46	1.28	1.43
2	I	1	FRU	O5-C2	-9.24	1.28	1.43
2	Q	1	FRU	O5-C2	-9.14	1.29	1.43
2	M	1	FRU	O5-C2	-9.08	1.29	1.43

The worst 5 of 59 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^o)$	$\operatorname{Ideal}({}^o)$
2	N	1	FRU	O6-C6-C5	-6.13	90.48	111.33
2	M	1	FRU	C5-C4-C3	-4.63	87.70	102.07

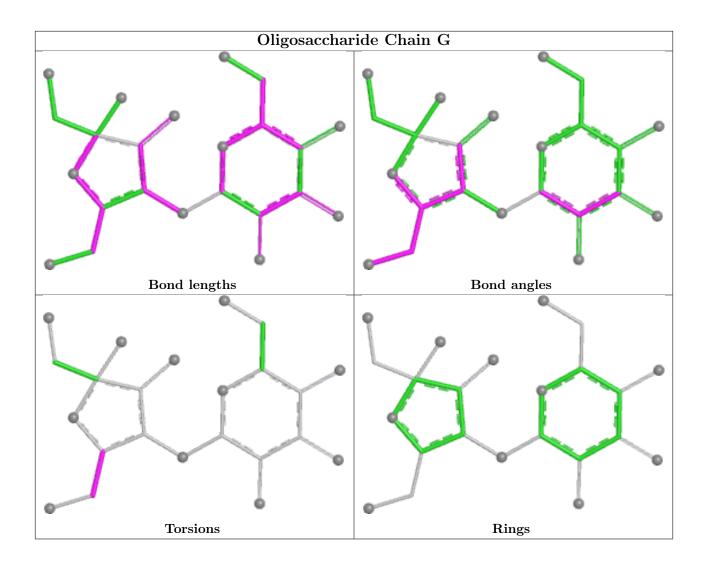
Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^o)$	$\operatorname{Ideal}({}^{o})$
2	U	1	FRU	C5-C4-C3	-4.60	87.81	102.07
2	Q	1	FRU	C5-C4-C3	-4.54	88.00	102.07
2	I	1	FRU	C5-C4-C3	-4.38	88.50	102.07

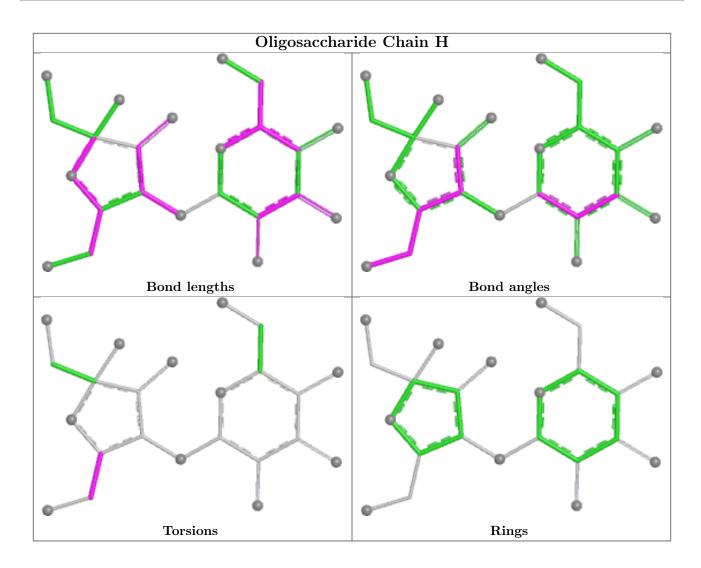
There are no chirality outliers.

5 of 48 torsion outliers are listed below:

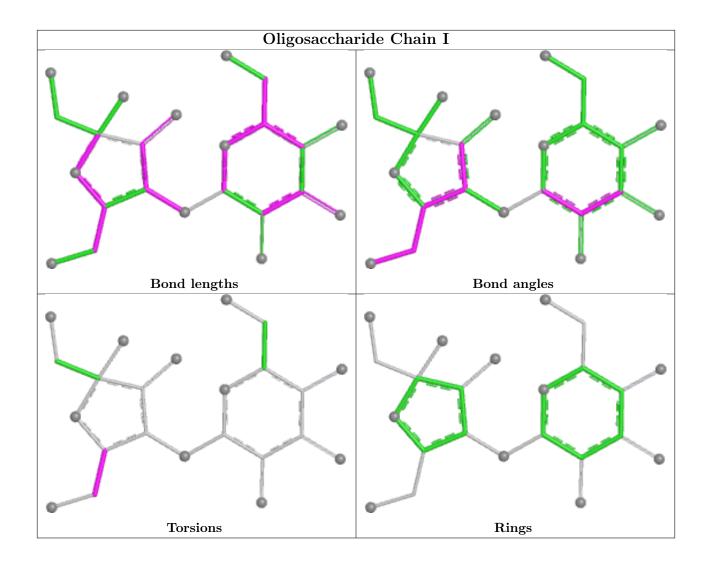
Mol	Chain	Res	Type	Atoms
2	L	1	FRU	O1-C1-C2-C3
2	L	1	FRU	O1-C1-C2-O2
2	V	1	FRU	O1-C1-C2-C3
2	V	1	FRU	O1-C1-C2-O2
2	V	1	FRU	O1-C1-C2-O5

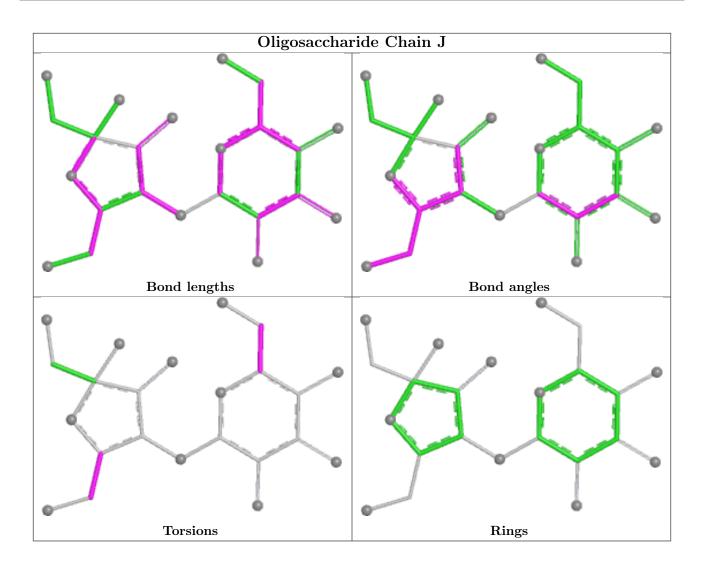

There are no ring outliers.

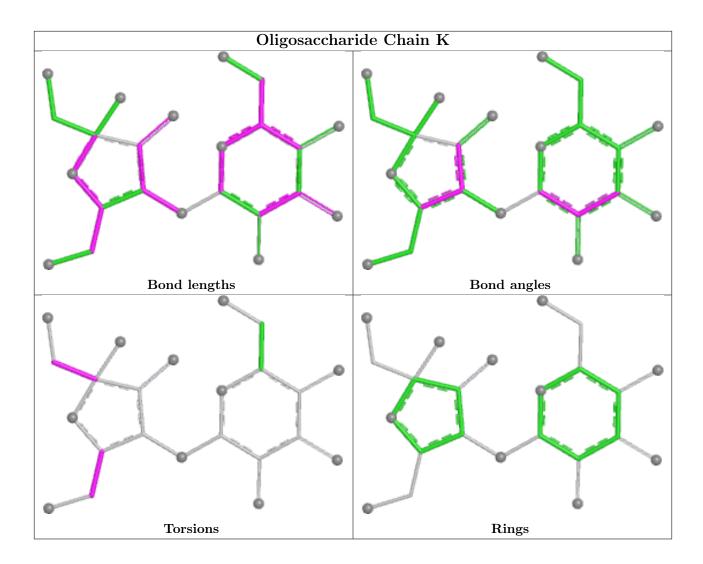
5 monomers are involved in 6 short contacts:

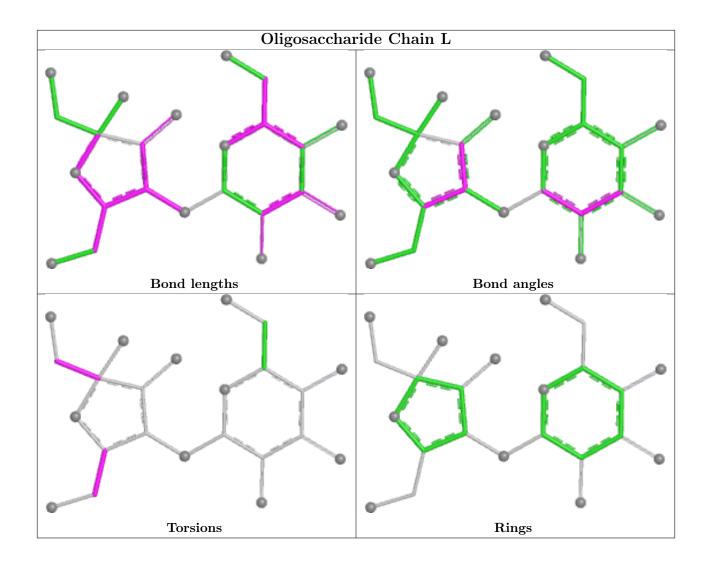

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	K	1	FRU	1	0
2	M	1	FRU	2	0
2	I	1	FRU	1	0
2	J	1	FRU	1	0
2	Р	1	FRU	1	0

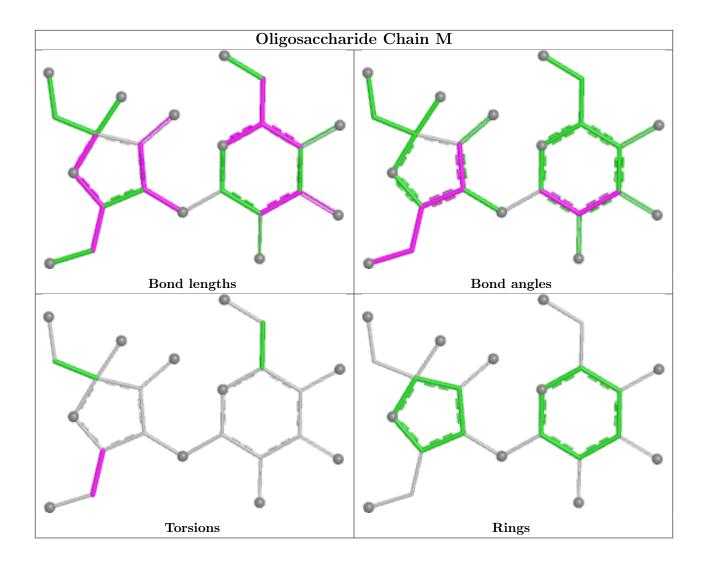
The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

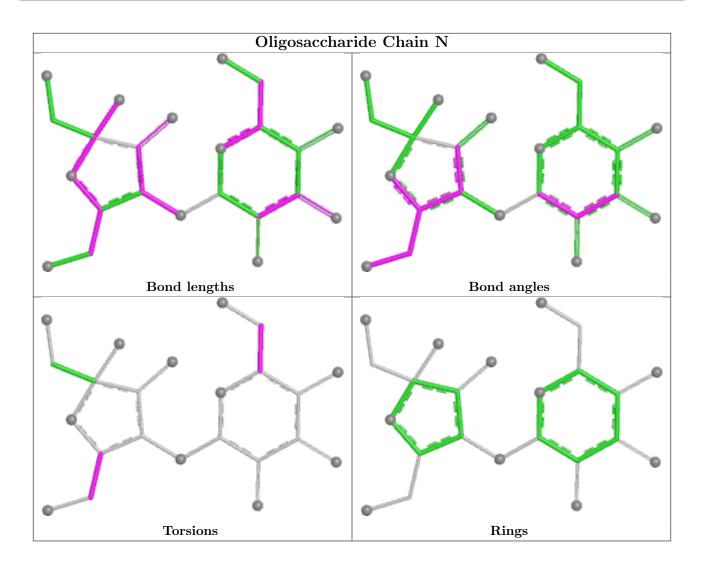


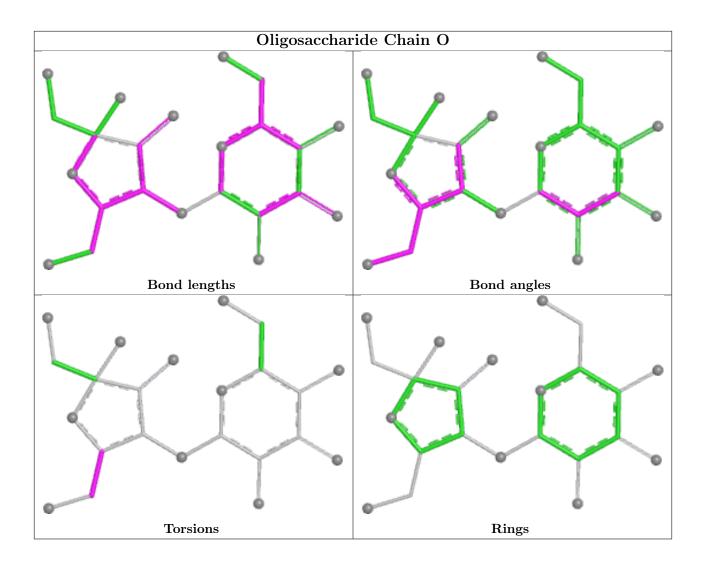


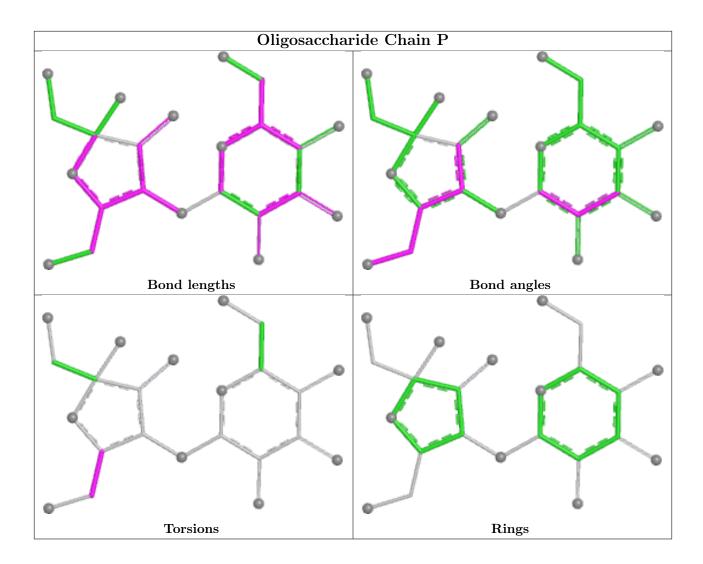


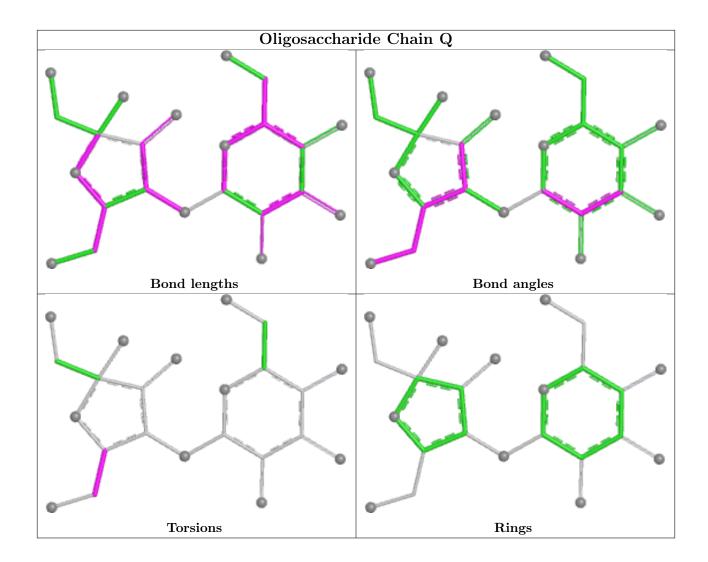


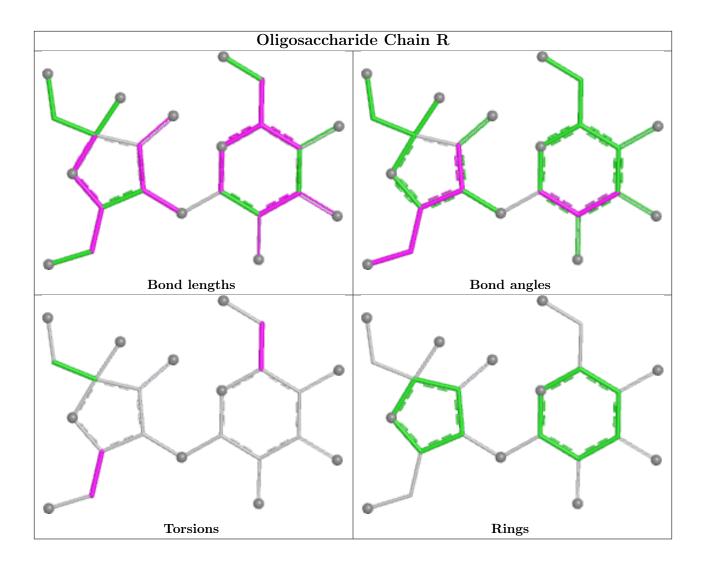


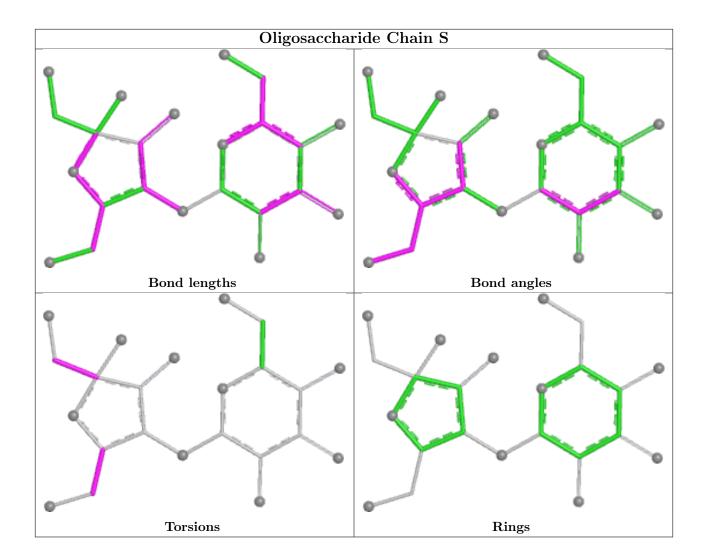


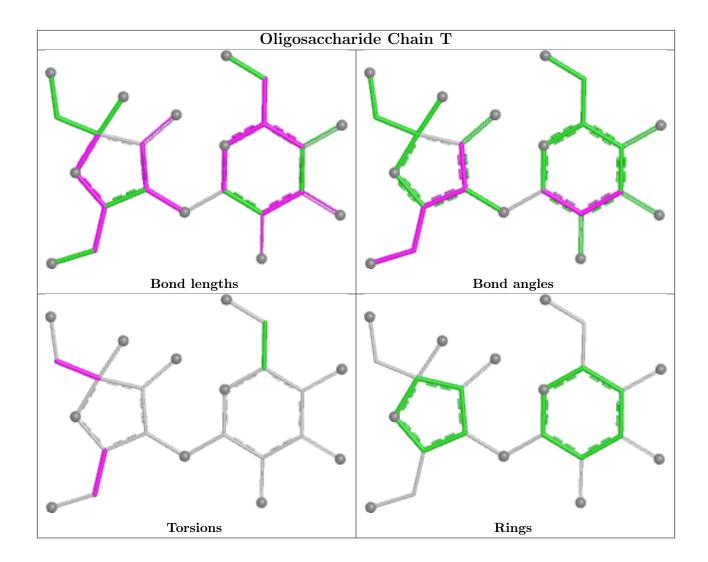


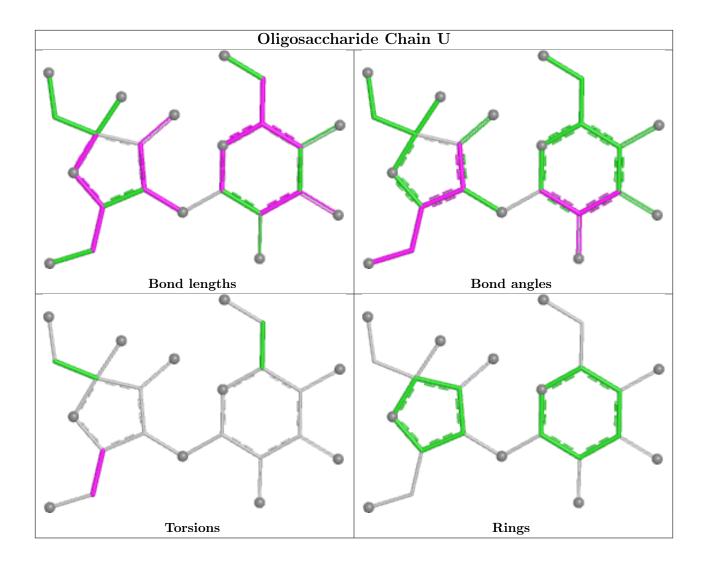


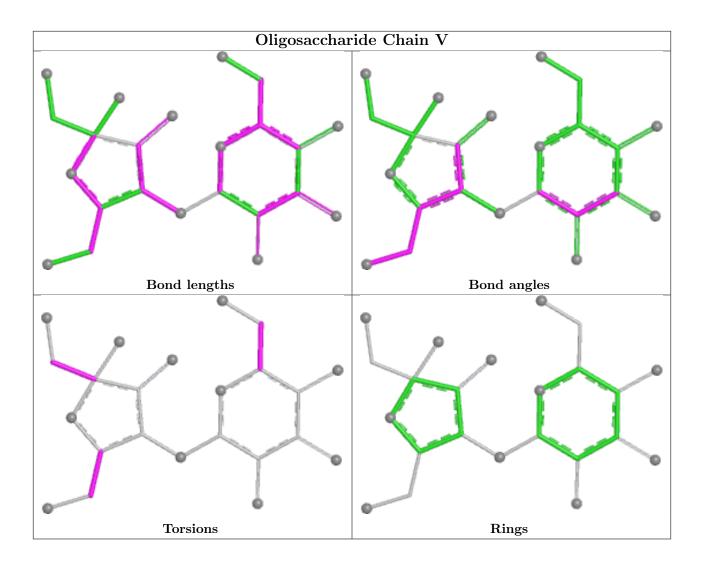












5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 1 is monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Tuno	Chain	Res	Link	В	ond leng	$_{ m gths}$	Bond angles		
MIOI	Type	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	ACT	D	201	-	3,3,3	1.16	0	3,3,3	1.19	0
3	GOL	A	201	-	5,5,5	0.36	0	5,5,5	0.35	0
5	PEG	С	201	-	6,6,6	0.26	0	5,5,5	0.45	0
4	ACT	В	201	-	3,3,3	1.15	0	3,3,3	1.19	0
4	ACT	A	202	-	3,3,3	1.08	0	3,3,3	1.31	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

	Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
	5	PEG	С	201	-	-	1/4/4/4	-
ſ	3	GOL	A	201	-	-	2/4/4/4	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	A	201	GOL	C1-C2-C3-O3
3	A	201	GOL	O2-C2-C3-O3
5	С	201	PEG	C1-C2-O2-C3

There are no ring outliers.

2 monomers are involved in 5 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	A	201	GOL	2	0
5	С	201	PEG	3	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2		$OWAB(A^2)$	Q<0.9
1	A	$149/152 \ (98\%)$	-1.59	0 100	100	7, 11, 18, 35	1 (0%)
1	В	149/152 (98%)	-1.59	0 100	100	7, 11, 18, 32	0
1	С	149/152 (98%)	-1.60	0 100	100	7, 12, 18, 31	1 (0%)
1	D	150/152~(98%)	-1.59	0 100	100	7, 11, 19, 32	1 (0%)
All	All	597/608 (98%)	-1.59	0 100	100	7, 11, 19, 35	3 (0%)

There are no RSRZ outliers to report.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

SUGAR-RSR INFOmissingINFO

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
4	ACT	В	201	4/4	0.98	0.04	21,26,26,31	0
4	ACT	A	202	4/4	0.99	0.05	25,26,29,31	0
3	GOL	A	201	6/6	0.99	0.04	21,26,35,42	0
4	ACT	D	201	4/4	0.99	0.04	24,26,26,28	0

 $Continued\ from\ previous\ page...$

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q < 0.9
5	PEG	С	201	7/7	0.99	0.04	22,25,32,34	0
6	NI	D	202	1/1	1.00	0.04	41,41,41,41	0

6.5 Other polymers (i)

There are no such residues in this entry.

