

Mar 2, 2024 – 02:18 PM EST

PDB ID	:	5VLZ
EMDB ID	:	EMD-8709
Title	:	Backbone model for phage Qbeta capsid
Authors	:	Cui, Z.; Zhang, J.
Deposited on	:	2017-04-26
Resolution	:	4.40 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.40 Å.

Clashscore

Ramachandran outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ranks	Value	
Clashscore		2	
Ramachandran outliers		0.0%	
Worse	Better		
Percentile relat	ive to all structures		
Percentile relat	ive to all EM structures		
Motric	Whole archive	EM structures	
wietht	(# Entries)	(# Entries)	

158937

154571

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<=5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

4297

4023

Mol	Chain	Length	Quality of chain						
1	AA	133	• 98%	•••					
1	AB	133	<u>6%</u> 96%	•••					
1	AC	133	. 98%	••					
1	AD	133	98%	••					
1	AE	133	• 98%	••					
1	AF	133	• 96%	•••					
1	AG	133	• 98%	••					
1	AH	133	98%	••					
1	AI	133	98%	•••					

Conti	nued from	n previous	page	
Mol	Chain	Length	Quality of chain	
1	AJ	133	96%	
1	AK	133	96% ···	
1	AL	133	98%	
1	AM	133	96% ···	
1	AN	133	9 6%	
1	BA	133	98%	
1	BB	133	98% ···	
1	BC	133	99%	
1	BD	133	98%	
1	BE	133	<u>9</u> 6% ···	
1	BF	133	<u>96%</u>	
1	BG	133	98%	,
1	BH	133	<u> </u>	
1	BI	133	9 6% •••	
1	BJ	133	• 96% ••	
1	BK	133	<u> </u>	
1	BL	133	96%	
1	BM	133	98% ···	II.,
1	BN	133	96% ···	
1	CA	133	<u> </u>	
1	СВ	133	96%	
1	CC	133	<u> </u>	
1	CD	133	98%	
1	CE	133	98%	
1	CF	133	96%	

Continue contract c	nued fron	n previous	page
Mol	Chain	Length	Quality of chain
1	CG	133	99% •
1	CH	133	96%
1	CI	133	96%
1	CJ	133	99%
1	CK	133	97%
1	CL	133	96%
1	CM	133	96% ···
1	CN	133	96%
1	DA	133	96%
1	DB	133	96%
1	DC	133	98%
1	DD	133	99%
1	DE	133	98%
1	DF	133	99%
1	DG	133	96%
1	DH	133	96% •••
1	DI	133	96%
1	DJ	133	95% • •
1	DK	133	98%
1	DL	133	96%
1	DN	133	95%
1	EA	133	96%
1	EB	133	۶ % 96%
1	EC	133	95% 5% •
1	ED	133	96%

Continued from previous page...

Mol	Chain	Length	Quality of chain
1	EE	133	97% ···
1	EF	133	98% ···
1	EG	133	96% •••
1	EH	133	98%
1	EI	133	96% · ·
1	EK	133	6%
1	EL	133	• 98%
1	EM	133	96% · ·
1	EN	133	<u>6%</u> 96% · ·
1	FA	133	98%
1	FB	133	98%
1	FC	133	5%
1	FD	133	96% ••
1	FE	133	96% · ·
1	\mathbf{FF}	133	9 6% · ·
1	FH	133	98%
1	FI	133	• 99% •
1	FJ	133	9 6% · ·
1	FK	133	• 99% •
1	FL	133	9 6% · ·
1	FM	133	98%
1	FN	133	• 96% ••
1	GA	133	- 99% •
1	GB	133	5% 96% · ·
1	GC	133	96%

Conti	nued fron	n previous	page
Mol	Chain	Length	Quality of chain
1	GD	133	57% 96% · ·
1	GE	133	96% · ·
1	GF	133	9 8% ···
1	GG	133	96% •••
1	GH	133	96%
1	GI	133	96%
1	GJ	133	98%
1	GK	133	98%
1	GL	133	96%
1	GM	133	98%
1	GN	133	98%
1	НА	133	96%
1	HB	133	96% ••
1	НС	133	99%
1	HD	133	98%
1	HE	133	98%
1	HF	133	98%
1	HG	133	96%
1	HH	133	96% ••
1	HI	133	98%
1	HJ	133	98%
1	HK	133	98%
1	HL	133	96%
1	HM	133	98%
1	HN	133	98%

Conti	nued from	n previous	page
Mol	Chain	Length	Quality of chain
1	IA	133	98% ···
1	IB	133	98%
1	IC	133	96%
1	ID	133	98%
1	IE	133	96% .
1	IF	133	96% .
1	IG	133	99%
1	IH	133	98%
1	II	133	98%
1	IJ	133	96% .
1	IK	133	96% .
1	IL	133	96% .
1	IM	133	96%
1	IN	133	96%
1	JA	133	96%
1	JB	133	98%
1	JC	133	98%
1	JD	133	98%
1	JE	133	98%
1	JF	133	98%
1	JG	133	98%
1	JH	133	96% .
1	JI	133	96%
1	JJ	133	98% ···
1	JK	133	96% · ·

Continued from previous page... Chain Length Quality of chain Mol ÷. JL133 1 99% . 8% . . JM1 13396% ÷ 1 JN133. . 96% KA 1 13399% • 5% ... 1 KB 13398% \mathbf{KC} 1 133. . 96% KD 1331 96% ••• ÷ . . KE 1 13396% KF . . 1331 96% ÷ ••• KG 1 13398% i KH . . 1 13396% 5% ΚI . . 1331 96% ÷ ••• 1 KJ 13396% i ••• KK 1 13398% KL . . 1331 96% ÷ ... 1 $\mathbf{K}\mathbf{M}$ 13398% ė ... KN 1331 98% ÷ ... LA 1331 98% • LB1 133. 99% LC. . 1 13398% . . LD 1 13396% ... LE 1 13398% ••• LF1331 98% ... LG1331 98% LH. . 1 13396%

Mol	Chain	Length	Quality of chain
1	LI	133	98%
1	LJ	133	96% ···
1	LK	133	96% ···
1	LL	133	98%
1	LM	133	98% ···
1	LN	133	98%
1	MA	133	99%
1	MB	133	98% ···
1	MC	133	96% •••
1	MD	133	98%
1	ME	133	98% ···
1	MF	133	96% · ·
1	MG	133	98% ···
1	MH	133	99%
1	MI	133	96% •••
1	MJ	133	96% •••
1	MK	133	98%
1	ML	133	98%
1	MM	133	98% ···
1	MN	133	98%
1	NA	133	98% ···
2	EJ	420	19% 99%

Continued from previous page...

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 96897 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Ato	ms		AltConf	Trace									
1	ΔН	139	Total	С	Ν	0	0	0									
	1 111	152	529	264	132	133	0	0									
1	CN	139	Total	С	Ν	Ο	0	0									
1	GN	132	529	264	132	133	0	0									
1	НΔ	139	Total	С	Ν	Ο	0	0									
1	117	152	529	264	132	133	0	0									
1	HB	132	Total	С	Ν	Ο	0	0									
		102	529	264	132	133	0	0									
1	HC	132	Total	С	Ν	Ο	0	0									
	110	102	529	264	132	133	0	0									
1	HD	132	Total	С	Ν	Ο	0	0									
-		102	529	264	132	133	0	0									
1	\mathbf{HE}	132	Total	С	Ν	Ο	0	0									
	1112	102	529	264	132	133	0										
1	HF	132	Total	С	Ν	Ο	0	0									
		102	529	264	132	133											
1	HG	132	Total	С	Ν	Ο	0	0									
		102	529	264	132	133	0	0									
1	НН	132	Total	С	Ν	Ο	0	0									
-		102	529	264	132	133											
1	HI	132	Total	С	Ν	Ο	0	0									
		102	529	264	132	133											
1	AT	132	Total	С	Ν	Ο	0	0									
		102	529	264	132	133	Ŭ										
1	НJ	132	Total	С	Ν	Ο	0	0									
	110	102	529	264	132	133	Ŭ	0									
1	НК	132	Total	С	Ν	Ο	0	0									
			529	264	132	133	Ŭ										
1	HL	132	Total	С	Ν	Ο	0	0									
			529	264	132	133	0	0									
1	HM	132	Total	С	Ν	0	0	0									
			529	264	132	133											
1	HN	132	Total	С	Ν	O	0	0									
1 111N	1111	1111	1111	1111	1111	1111	TIIN	1110	1111	1110	104	529	264	132	133		U

• Molecule 1 is a protein called Capsid protein.

Continued from previous page...

Mol	Chain	Residues		Ato	ms		AltConf	Trace
1	ТА	120	Total	С	Ν	Ο	0	0
1	IA	132	529	264	132	133	0	0
1	IB	120	Total	С	Ν	Ο	0	0
1	ID	132	529	264	132	133	0	0
1	IC	139	Total	С	Ν	Ο	0	0
1	10	152	529	264	132	133	0	0
1	ID	139	Total	С	Ν	Ο	0	0
1	ID	102	529	264	132	133	0	0
1	IE	132	Total	С	Ν	Ο	0	0
1	112	102	529	264	132	133	0	0
1	ΔΤ	139	Total	С	Ν	Ο	0	0
1	110	102	529	264	132	133	0	0
1	IF	139	Total	С	Ν	Ο	0	0
1	11	102	529	264	132	133	0	0
1	IC	139	Total	С	Ν	Ο	0	0
1	10	152	529	264	132	133	0	0
1	Ш	139	Total	С	Ν	Ο	0	0
1	111	152	529	264	132	133	0	U
1	II	139	Total	С	Ν	Ο	0	0
1	11	132	529	264	132	133	0	0
1	TT	139	Total	С	Ν	Ο	0	0
1	10	152	529	264	132	133	0	0
1	IK	139	Total	С	Ν	Ο	0	0
1		132	529	264	132	133	0	0
1	П	139	Total	С	Ν	Ο	0	0
1	112	152	529	264	132	133	0	0
1	IM	139	Total	С	Ν	Ο	0	0
1	1111	152	529	264	132	133	0	0
1	IN	139	Total	С	Ν	Ο	0	0
1	111	102	529	264	132	133	0	0
1	TΔ	139	Total	С	Ν	Ο	0	0
1	JA	152	529	264	132	133	0	0
1	ΔK	139	Total	С	Ν	Ο	0	0
1	лп	152	529	264	132	133	0	0
1	IB	139	Total	С	Ν	Ο	0	0
1	10	132	529	264	132	133	0	0
1	IC	120	Total	С	Ν	0	0	0
	10	102	529	264	132	133	0	0
1	Л	129	Total	С	Ν	0	0	0
	JD	1.02	529	264	132	133		0
1	IĿ	129	Total	С	Ν	0	0	0
	117	102	529	264	132	133		U

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
1	IF	120	Total	С	Ν	Ο	0	0
	JF	132	529	264	132	133	0	0
1	IC	190	Total	С	Ν	Ο	0	0
	JG	132	529	264	132	133	0	0
1	TTT	120	Total	С	Ν	0	0	0
	JH	132	529	264	132	133	0	0
1	тт	120	Total	С	Ν	Ο	0	0
	JI	132	529	264	132	133	0	0
1	тт	120	Total	С	Ν	Ο	0	0
	11	152	529	264	132	133	0	0
1	IIZ	120	Total	С	Ν	Ο	0	0
	JK	152	529	264	132	133	0	0
1	ΔT	120	Total	С	Ν	Ο	0	0
	AL	152	529	264	132	133	0	0
1	тт	120	Total	С	Ν	Ο	0	0
	JL	132	529	264	132	133	0	0
1	тлл	120	Total	С	Ν	Ο	0	0
	JIVI	132	529	264	132	133	0	U
1	INI	120	Total	С	Ν	Ο	0	0
	JN	132	529	264	132	133	0	
1	TZ A	120	Total	С	Ν	Ο	0	0
	KΑ	132	529	264	132	133	0	0
1	VD	120	Total	С	Ν	Ο	0	0
	КВ	152	529	264	132	133	0	0
1	VC	120	Total	С	Ν	Ο	0	0
	nu	152	529	264	132	133	0	0
1	KD	120	Total	С	Ν	Ο	0	0
	KD	132	529	264	132	133	0	0
1	VF	120	Total	С	Ν	Ο	0	0
	ΠĽ	132	529	264	132	133	0	0
1	KE	120	Total	С	Ν	Ο	0	0
	ПГ	132	529	264	132	133	0	0
1	KC	139	Total	С	Ν	Ο	0	0
	NG	132	529	264	132	133	0	0
1	АМ	120	Total	С	Ν	Ο	0	0
	AM	132	529	264	132	133	0	0
1	VЦ	129	Total	С	Ν	Ο	0	0
1	1/11	132	529	264	132	133	0	U
1	KI	120	Total	С	Ν	Ο	0	0
	171	1.02	529	264	132	133		0
1	KI	120	Total	С	Ν	0	0	0
	IZJ	1.02	529	264	132	133		U

Continued from previous page...

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mol	Chain	Residues		Ato	ms		AltConf	Trace
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	ИИ	120	Total	С	Ν	Ο	0	0
1 KL 132 Total C N O 0 1 KM 132 529 264 132 133 0 0 1 KM 132 529 264 132 133 0 0 1 KN 132 Total C N O 0 1 LA 132 Total C N O 0 1 LB 132 Total C N O 0 1 LB 132 Total C N O 0 1 LC 132 Total C N O 0 1 LD 132 Total C N O 0 1 LE 132 Total C N O 0 1 LE 132 Total C N O 0 14 <t< td=""><td></td><td>ΛΛ</td><td>132</td><td>529</td><td>264</td><td>132</td><td>133</td><td>0</td><td>0</td></t<>		ΛΛ	132	529	264	132	133	0	0
1 NL 132 529 264 132 133 0 0 1 KM 132 Total C N O 0 1 KN 132 Total C N O 0 1 KN 132 529 264 132 133 0 0 1 LA 132 529 264 132 133 0 0 1 LB 132 Total C N O 0 1 LC 132 Total C N O 0 1 LC 132 Total C N O 0 1 LD 132 Total C N O 0 1 LF 132 Total C N O 0 1 LE 132 Total C N O 0	1	1/T	120	Total	С	Ν	Ο	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>KL</u>	132	529	264	132	133	0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	KM	139	Total	С	Ν	Ο	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	17111	152	529	264	132	133	0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	KN	132	Total	\mathbf{C}	Ν	Ο	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1111	102	529	264	132	133	0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	LA	132	Total	С	Ν	Ο	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1271	102	529	264	132	133	0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	LB	132	Total	С	Ν	Ο	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			102	529	264	132	133	Ŭ	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	LC	132	Total	С	Ν	Ο	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20		529	264	132	133	Ŭ	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	AN	132	Total	С	Ν	О	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				529	264	132	133		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	LD	132	Total	С	N	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	529	264	132	133	_	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	LE	132	Total	C	N	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				529	264	132	133		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	m LF	132	Total	C	N 100	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				529	264	132 	133		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	LG	132	Total		N 120	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				529 Tetal	204	132 N	133		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	LH	132	Total	064	N 120	U 199	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				029 Total	204	132 N	133		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	LI	132	FOU	264	1N 190	199	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				029 Total	$\frac{204}{C}$	152 N	155		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	LJ	132	10tai 520	264	1 1 2 2	122	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				J29 Total	$\frac{204}{C}$	132 N	100		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	LK	132	520	264	130	133	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	204 C	152 N	100		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	LL	132	529	264	132	133	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	204 C	<u>102</u> N	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	LM	132	529	264	132	133	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total	204 C	<u>102</u> N	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	BA	132	529	264	132	133	0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Total	<u> </u>	N	0		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	LN	132	529	264	132	133	0	0
$\begin{vmatrix} 1 \\ MA \end{vmatrix}$ $\begin{vmatrix} 132 \\ 529 \\ 264 \\ 132 \\ 133 \end{vmatrix}$ $\begin{vmatrix} 0 \\ 0 \end{vmatrix}$ 0				Total	<u></u> C	<u>N</u>	0		
	1	MA	132	529	264	132	133	0	0

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
1	MD	120	Total	С	Ν	Ο	0	0
	MB	152	529	264	132	133	0	0
1	MC	120	Total	С	Ν	Ο	0	0
	MC	152	529	264	132	133	0	0
1	MD	199	Total	С	Ν	Ο	0	0
	MID	132	529	264	132	133	0	0
1	ME	139	Total	С	Ν	Ο	0	0
1	IVIL	152	529	264	132	133	0	0
1	MF	132	Total	\mathbf{C}	Ν	Ο	0	0
		102	529	264	132	133	0	0
1	MG	132	Total	С	Ν	Ο	0	0
		102	529	264	132	133	0	0
1	MH	132	Total	С	Ν	Ο	0	0
		102	529	264	132	133		
1	MI	132	Total	С	Ν	Ο	0	0
		102	529	264	132	133		
1	BB	132	Total	С	Ν	О	0	0
			529	264	132	133		
1	MJ	132	Total	С	Ν	О	0	0
			529	264	132	133		
1	MK	132	Total	С	N	0	0	0
			529	264	132	133		
1	ML	132	Total	C	N	0	0	0
			529	264	132	133		
1	MM	132	Total	C	N	0	0	0
			529	264	132 	133		
1	MN	132	Total	C	N 190	0	0	0
			529	264	132 N	133		
1	NA	132	Total	064	N 120	U 199	0	0
			029 Tetel	204	132 N	133		
1	BC	132	Total 520	264	IN 120	199	0	0
			529 Total	$\frac{204}{C}$	$\frac{152}{N}$	$\frac{100}{0}$		
1	BD	132	10tal 520	264	1 1 2 2	122	0	0
			Total	204 C	152 N	100		
1	BE	132	520	264	1N 130	133	0	0
			Total	204 C	102 N	<u> </u>		
1	BF	132	520	264	132	133	0	0
			Total	204 C	102 N	<u> </u>		
1	BG	132	520	264	129	133	0	0
			Total	204 C	102 N	<u> </u>		
1	BH	132	520	264	132	133	0	0
			040	20 1	104	100		

Continued from previous page...

Mol	Chain	Residues		Ato	ms		AltConf	Trace
1	DI	120	Total	С	Ν	Ο	0	0
	DI	152	529	264	132	133	0	0
1	ΡI	120	Total	С	Ν	Ο	0	0
	DJ	132	529	264	132	133	0	0
1	BK	139	Total	С	Ν	Ο	0	0
1	DI	132	529	264	132	133	0	0
1	BI	139	Total	С	Ν	Ο	0	0
1		152	529	264	132	133	0	0
1	BM	139	Total	\mathbf{C}	Ν	Ο	0	0
1	DM	152	529	264	132	133	0	0
1	ΔΔ	139	Total	С	Ν	Ο	0	0
1	ΠΠ	152	529	264	132	133	0	0
1	BN	139	Total	С	Ν	Ο	0	0
1	DN	102	529	264	132	133	0	0
1	CA	139	Total	С	Ν	Ο	0	0
1	UII	102	529	264	132	133	0	0
1	CB	139	Total	С	Ν	Ο	0	0
1	СD	102	529	264	132	133	0	0
1	CC	139	Total	С	Ν	Ο	0	0
1		132	529	264	132	133	0	0
1	CD	139	Total	С	Ν	Ο	0	0
1	UD	132	529	264	132	133	0	0
1	CF	139	Total	С	Ν	Ο	0	0
1	UE	132	529	264	132	133	0	0
1	CF	139	Total	С	Ν	Ο	0	0
1	UI	132	529	264	132	133	0	0
1	CC	139	Total	С	Ν	Ο	0	0
	00	152	529	264	132	133	0	0
1	СН	129	Total	С	Ν	Ο	0	0
	UII	152	529	264	132	133	0	0
1	CI	139	Total	С	Ν	Ο	0	0
	UI	152	529	264	132	133	0	0
1	٨B	120	Total	С	Ν	Ο	0	0
1	AD	132	529	264	132	133	0	0
1	CI	139	Total	С	Ν	Ο	0	0
1	C0	132	529	264	132	133	0	0
1	CK	120	Total	С	Ν	Ο	0	0
1	UN	132	529	264	132	133	0	U
1	CT	129	Total	С	Ν	Ο	0	0
	UL	102	529	264	132	133		U
1	CM	129	Total	С	Ν	Ο	0	0
	UM	1.02	529	264	132	133		U

Continued from previous page...

Mol	Chain	Residues		Ato	ms		AltConf	Trace
1	CN	120	Total	С	Ν	Ο	0	0
	CN	132	529	264	132	133	0	0
1		190	Total	С	Ν	0	0	0
	DA	132	529	264	132	133	0	0
1	חת	190	Total	С	Ν	0	0	0
	DB	132	529	264	132	133	0	0
1	DC	120	Total	С	Ν	0	0	0
	DC	132	529	264	132	133	0	0
1	חח	120	Total	С	Ν	Ο	0	0
	DD	132	529	264	132	133	0	0
1	DE	120	Total	С	Ν	Ο	0	0
	DE	152	529	264	132	133	0	0
1	AC	120	Total	С	Ν	Ο	0	0
	AU	132	529	264	132	133	0	0
1	DE	120	Total	С	Ν	Ο	0	0
	Dr	132	529	264	132	133	0	0
1	DC	120	Total	С	Ν	Ο	0	0
	DG	132	529	264	132	133	0	U
1	חח	120	Total	С	Ν	Ο	0	0
	ЪΠ	132	529	264	132	133	0	0
1	Ы	120	Total	С	Ν	Ο	0	0
		132	529	264	132	133	0	0
1	וח	139	Total	С	Ν	Ο	0	0
1	D0	132	529	264	132	133	0	0
1	DK	139	Total	С	Ν	Ο	0	0
	DR	152	529	264	132	133	0	0
1	DL	139	Total	С	Ν	Ο	0	0
		102	529	264	132	133	0	0
1	DN	132	Total	С	Ν	Ο	0	0
	DI	102	529	264	132	133	0	0
1	ΕA	132	Total	С	Ν	Ο	0	0
-	1211	102	529	264	132	133	0	0
1	AD	132	Total	С	Ν	Ο	0	0
		102	529	264	132	133	Ŭ	
1	EB	132	Total	С	Ν	Ο	0	0
-		102	529	264	132	133	Ŭ	
1	EC	132	Total	С	Ν	O	0	0
		132	529	264	132	133		U
1	ED	132	Total	С	Ν	O	0	0
			529	264	132	133		
1	EE	132	Total	С	Ν	Ο	0	0
-		102	529	264	132	133		

Continued from previous page...

Mol	Chain	Residues		Ato	ms		AltConf	Trace
1	БĿ	199	Total	С	Ν	Ο	0	0
	ЕГ	132	529	264	132	133	0	0
1	FC	120	Total	С	Ν	Ο	0	0
	EG	132	529	264	132	133	0	0
1	FЦ	120	Total	С	Ν	Ο	0	0
1		132	529	264	132	133	0	0
1	FI	120	Total	С	Ν	Ο	0	0
	121	152	529	264	132	133	0	0
1	FK	139	Total	С	Ν	Ο	0	0
L		152	529	264	132	133	0	0
1	ΔE	139	Total	С	Ν	Ο	0	0
	<u> </u>	102	529	264	132	133	0	0
1	EL	132	Total	\mathbf{C}	Ν	Ο	0	0
		102	529	264	132	133	0	0
1	EM	132	Total	С	Ν	Ο	0	0
	1.11	102	529	264	132	133	0	
1	EN	132	Total	С	Ν	Ο	0	0
-		102	529	264	132	133	Ŭ	
1	FA	132	Total	С	Ν	Ο	0	0
			529	264	132	133	0	_
1	FB	132	Total	С	Ν	0	0	0
		_	529	264	132	133	_	
1	\mathbf{FC}	132	Total	C	N	0	0	0
			529	264	132	133		
1	FD	132	Total	C	N	0	0	0
			529	264	132	133		
1	\mathbf{FE}	132	Total	C	N	0	0	0
			529	264	132	133		
1	\mathbf{FF}	132	Total	C	N 190	0	0	0
			529	264	132 N	133		
1	AF	132	Total	C	N 190	0	0	0
			529	264	132 	133		
1	\mathbf{FH}	132	Total	064	N 120	U 199	0	0
			029 Tetel	204	132 N	133		
1	FI	132	Total 520	264	IN 120	U 199	0	0
			D29 Total	204 C	102 N	199		
1	FJ	132	520	264	1N 130	133	0	0
			Total	204 C	102 N	100		
1	FK	132	500	264	⊥N 1 2 0	U 122	0	0
			Total	204 C	102 N	<u> </u>		
1	FL	132	590	264	⊥\ 120	132	0	0
			049	204	197	100		

Mol	Chain	Residues		Ato	ms		AltConf	Trace
1	БМ	199	Total	С	Ν	Ο	0	0
T	FM	132	529	264	132	133	0	0
1	DN	190	Total	С	Ν	Ο	0	0
1	FN	132	529	264	132	133	0	0
1	CA	120	Total	С	Ν	Ο	0	0
1	GA	152	529	264	132	133	0	0
1	CD	129	Total	С	Ν	Ο	0	0
1	GD	132	529	264	132	133	0	0
1	CC	129	Total	С	Ν	Ο	0	0
1	GC	152	529	264	132	133	0	0
1		129	Total	С	Ν	Ο	0	0
1	AG	152	529	264	132	133	0	0
1	CD	129	Total	С	Ν	Ο	0	0
1	GD	152	529	264	132	133	U	0
1	CF	132	Total	С	Ν	Ο	0	0
T	GE		529	264	132	133	0	0
1	CF	129	Total	С	Ν	Ο	0	0
T	Gr	152	529	264	132	133	0	0
1	CC	129	Total	С	Ν	Ο	0	0
1	GG	152	529	264	132	133	0	0
1	СЧ	129	Total	С	Ν	Ο	0	0
T	GII	152	529	264	132	133	0	0
1	CI	129	Total	С	Ν	Ο	0	0
T	GI	152	529	264	132	133	0	0
1	CI	139	Total	С	Ν	Ο	0	0
T	GJ	152	529	264	132	133	0	0
1	CK	139	Total	С	Ν	Ο	0	0
T	GIX	152	529	264	132	133	0	0
1	CL	139	Total	С	Ν	0	0	0
1		102	529	264	132	133		0
1	CM	139	Total	С	Ν	Ο	0	0
1	GIM	104	529	264	132	133		U

Continued from previous page...

• Molecule 2 is a protein called Maturation protein A2.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
2	EJ	419	Total 1677	C 838	N 419	O 420	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Capsid protein	
Chain HD:	98%
MBT A1 A1 A1 A1 A1 B5 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	
• Molecule 1: Capsid protein	
Chain HE:	0.00
CHAILI HIL.	96% ··
• Molecule 1: Capsid protein	
Chain HF:	98% •••
MET A1 N22 S36 A4 0 A7 6 Y1 32	
• Molecule 1: Capsid protein	
Chain HG:	96% •••
MET A1 A1 A1 A1 A2 B5 B5 B5 A75 A76 A76 A76 C30 C30 C30 C30 C30 C30 C30 C30 C30 C30	
• Molecule 1: Capsid protein	
Chain HH:	96% .
MET A1 A1 A1 A3 A38 A38 A38 A38 A38 A38 A38 A38 A38	
• Molecule 1: Capsid protein	
Chain HI:	98%
MET A1 N22 836 678 678 9132	
• Molecule 1: Capsid protein	
Chain AI:	98%

Chain IB:	98% .	•
MET 122 122 122 123 122 123 123 123 123 123		
• Molecule 1: Capsid protein		
Chain IC:	96%	
MET A1 836 1122 0126 ¥132		
• Molecule 1: Capsid protein		
Chain ID:	98% .	•
MET A1 836 856 N77 Y132		
• Molecule 1: Capsid protein		
Chain IE:	96%	
MET A1 N22 S56 S56 S56 S56 S56 S56 S56 S79 S579 N126 V132 V132		
• Molecule 1: Capsid protein		
Chain AJ:	96% •••	
MET A 1 836 G78 G78 Y122 Y132		
• Molecule 1: Capsid protein		
Chain IF:	96% •••	
MET A1 A1 A1 A1 A1 C2 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7		
• Molecule 1: Capsid protein		
Chain IG:	99%	
MET AL N58 C78 C78 C78 C78 C78 C78 C78 C78 C78		

. .

Chain JA:	96%	• •
MET A1 836 836 836 836 812 812 8132 8131		
• Molecule 1: Capsid protein		
Chain AK:	96%	
MET A1 A1 A1 C2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3		
• Molecule 1: Capsid protein		
Chain JB:	98%	••
MET A1 836 778 7132		
• Molecule 1: Capsid protein		
Chain JC:	98%	
MET A1 N22 S56 S56 A76 A76 C80 C80 V132		
• Molecule 1: Capsid protein		
Chain JD:	98%	
MET AI 836 836 778 7131 7132		
• Molecule 1: Capsid protein		
Chain JE:	98%	••
MET A1 226 C26 C26 C26 C78 C78 C78 C78 C78		
• Molecule 1: Capsid protein		

Chain JF:	98%	
MET A1 856 R57 R59 C78 C78 D122 V132		
• Molecule 1: Capsid protein		
Chain JG:	98%	
A1 N22 N77 Y 132		
• Molecule 1: Capsid protein		
Chain JH:	96%	
MET A1 836 836 836 81 81 81 81 81 81 81 81 81 81 81 81 81		
• Molecule 1: Capsid protein		
Chain JI:	96%	
MET A1 A1 A2 A76 C26 C36 C36 C36 C36 C36 C36 C36 C36 C36 C3		
• Molecule 1: Capsid protein		
Chain JJ:	98% ••	
MET A1 N22 836 879 879 879 879 879 879 879 879		
• Molecule 1: Capsid protein		
Chain JK:	96% ••	
MI M1 M2 836 836 836 836 876 877 678 879 678 879 678 879 1122 1122 1126 1126 1126		
• Molecule 1: Capsid protein		
Chain AL:	98%	
MET A1 N22 S56 S56 R57 R57 R57 C50 C80 C80 C80 C80 C80 C80 C80		

• Molecule 1: Capsid protein	
Chain JL:	99% .
MET A1 C39 G39 G38 Y132	
• Molecule 1: Capsid protein	
Chain JM:	96%
MET A1 A2 836 836 674 A40 674 674 677 678 679 679 817 8126 D1126 D1126 V132 Y132	
• Molecule 1: Capsid protein	
Chain JN:	96% .
MET A1 A1 A1 A1 A1 B2 B12 D12 A132	
• Molecule 1: Capsid protein	
Chain KA:	99% .
MET A1	
• Molecule 1: Capsid protein	
Chain KB:	98%
MET A1 836 856 856 856 856 856 856 857 857 877 877 877 877	
• Molecule 1: Capsid protein	
Chain KC:	96% •••
MET A1 N22 836 836 C80 C80 C80 C80 C80 C80 C80 C80 C80 C80	
• Molecule 1: Capsid protein	
Chain KD:	96% •••

Chain KJ:	96%
MET A1 1122 1126 1126 1126 1126 1126	
• Molecule 1: Capsid protein	
Chain KK:	98%
MET A 1 836 7132 7132 7132	
• Molecule 1: Capsid protein	
Chain KL:	96%
MET A1 A2 856 859 859 A76 A76 A76 A76 A76 A76	
• Molecule 1: Capsid protein	
Chain KM:	98% •••
MET A1 A2 836 738 7131 7132	
• Molecule 1: Capsid protein	
Chain KN:	98% •••
MET A1 A1 A2 836 G78 G78 Y132	
• Molecule 1: Capsid protein	
Chain LA:	98% ···
MET AI B57 H59 H59 V126 V132 V132	
• Molecule 1: Capsid protein	
Chain LB:	99% .
MET A1 A38 A30 A40 A76 G78 Y132 Y132	

• Molecule 1: Capsid protein	
Chain LC:	98%
MET A40 A76 A76 A76 A76 A77 G78 B126 Y132 Y132	
• Molecule 1: Capsid protein	
Chain AN:	96%
MET A1 A1 A2 A2 A22 A23 A22 A22 A22 A22 A22 A22 A	
• Molecule 1: Capsid protein	
Chain LD:	96%
MET A1 172 856 878 878 879 879 879 879 879 879 879 879	
• Molecule 1: Capsid protein	
Chain LE:	98% ···
MET A 1 836 936 7132 7132	
• Molecule 1: Capsid protein	
Chain LF:	98%
MET Al N22 836 N53 C78 V132 V132	
• Molecule 1: Capsid protein	
Chain LG:	98%
MET A1 A1 N22 S36 C78 S78 S78 S78 C80 C80	
• Molecule 1: Capsid protein	
Chain LH:	96% ••

Chain LI:	98%	
MET A1 K16 M22 836 836 836 836 856 N58 N58 N58 N58 N58		
• Molecule 1: Capsid protein		
Chain LJ:	96%	
MET A1 N22 836 836 175 677 077 077 077 122 1226 7132 7132		
• Molecule 1: Capsid protein		
Chain LK:	96%	
MET A1 836 936 438 438 438 0126 7122 7122 7122 7122		
• Molecule 1: Capsid protein		
Chain LL:	98%	
MET A1 A76 A76 A76 A76 A122 Y132		
• Molecule 1: Capsid protein		
Chain LM:	98%	
MET A1 A1 N22 S36 S36 B57 N58 R57 S56 S56 A124 A124 Y132		
• Molecule 1: Capsid protein		
Chain BA:	98%	••
MET A1 A1 S36 S36 A75 A76 C80 C80 Y132		
• Molecule 1: Capsid protein		

Chain LN:	98%
MET A1 175 175 177 122 1122 7122 7132	
• Molecule 1: Capsid protein	
Chain MA:	99%
MET R57 N77 C78 Y132 Y132	
• Molecule 1: Capsid protein	
Chain MB:	98%
MET A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	
• Molecule 1: Capsid protein	
Chain MC:	96%
MET A1 122 175 078 078 078 1122 1226 126	
• Molecule 1: Capsid protein	
Chain MD:	98%
MET AL 122 123 123 123 123 123 123 123 123 123	
• Molecule 1: Capsid protein	
Chain ME:	98%
MET Al S56 Al S56 Ab C57 C57 C57 C57 C57 C57 C57 C57 C57 C57	
• Molecule 1: Capsid protein	
Chain MF:	96% •••
MET A1 A1 A32 G78 G37 G37 G37 G37 G37 C37 C37 C37 C37 C37 C37 C37 C37 C37 C	

• Molecule 1: Capsid protein	
Chain MG:	98%
MET A1 A1 A2 836 A40 A76 A76 A132 Y132	
• Molecule 1: Capsid protein	
Chain MH:	99% .
MET A.1 RE7 NES G78 G78 Y132	
• Molecule 1: Capsid protein	
Chain MI:	96% .
MET A1 K16 022 836 639 639 678 678 7122 1122 0126 7131 7132	
• Molecule 1: Capsid protein	
Chain BB:	98%
MET A1 A1 836 836 639 676 777 777 777 773	
• Molecule 1: Capsid protein	
Chain MJ:	96%
MET A1 N22 S36 G78 V132 Y132	
• Molecule 1: Capsid protein	
Chain MK:	98% •••
MET A1 A1 B58 M76 M77 G78 D126 Y132 Y132	
• Molecule 1: Capsid protein	
Chain ML:	98% ••

Chain MM: . . 98% • Molecule 1: Capsid protein Chain MN: . . 98% • Molecule 1: Capsid protein Chain NA: ... 98% • Molecule 1: Capsid protein Chain BC: 99% • Molecule 1: Capsid protein Chain BD: 98% • Molecule 1: Capsid protein Chain BE: . . 96%

Chain BF:	96%	
MET AI N72 578 678 1122 1122 1126 7132		
• Molecule 1: Capsid protein		
Chain BG:	98%	•••
MET A1 A1 A2 A2 A36 C36 C78 C78 C78 C78 C78 C78 C78 C78 C78 C78		
• Molecule 1: Capsid protein		
Chain BH:	96%	
MET A1 A1 A7 A76 A76 A76 A76 A76 A76 A76 A76 A77 C122 A122 Y132		
• Molecule 1: Capsid protein		
Chain BI:	96%	
MET A1 N22 836 778 678 678 078 0126 1122 1122 1122		
• Molecule 1: Capsid protein		
Chain BJ:	96%	
MET A1 A1 85 856 856 1122 1122 1126 7132		
• Molecule 1: Capsid protein		
Chain BK:	96%	
MET M1 N22 N22 N22 N28 N22 N28 N22 N28 N28		
• Molecule 1: Capsid protein		
Chain BL:	96%	•••
MET 1122 1122 1122 1122 1122 1122		

W O R L D W I D E PROTEIN DATA BANK

• Molecule 1: Capsid protein	
Chain BM:	98%
MET A1 856 8579 879 879 91126 7132 7132	
• Molecule 1: Capsid protein	
Chain AA:	98%
MET A 1 A 1 A 2 S56 B56 C78 C78 V132	
• Molecule 1: Capsid protein	
Chain BN:	96%
MET A1 A1 N22 836 876 775 776 777 777 777 779 879 611 26 0126 0126 0126 0126 0126 0126	
• Molecule 1: Capsid protein	
Chain CA:	96% · ·
MET A1 A1 N22 836 175 A76 A77 A76 A77 A76 A77 A77 A77 A77 A77	
• Molecule 1: Capsid protein	
Chain CB:	96% .
MET A1 612 836 A40 A40 G78 G78 D126 D126 V132	
• Molecule 1: Capsid protein	
Chain CC:	99%
MET A1 A1 B57 B57 N58 A76 A76 A77 G78 S79 C80 C80 C80	
• Molecule 1: Capsid protein	
Chain CD:	98%

Chain CE:	98%
MET A1 A1 B57 B57 B59 B59 B59 B59 B59 B59 B59 B50 V132	
• Molecule 1: Capsid protein	
Chain CF:	96%
MET A1 A1 836 78 0126 7132 7132	
• Molecule 1: Capsid protein	
Chain CG:	99%
MET T75 C80 Y132	
• Molecule 1: Capsid protein	
Chain CH:	96%
MET A1 N22 S36 G78 G78 G78 C80 C80 C122 D122 D126 Y132	
• Molecule 1: Capsid protein	
Chain CI:	96%
MET A1 C15 C15 N77 C78 C78 C78 C78 C78 C78 C78 C78 C78 C	
• Molecule 1: Capsid protein	
Chain AB:	96%
MET A1 M22 M22 M22 M22 M22 M23 M23 M23 M25 M55 M55 M55 M55 M55 M55 M55 M55 M55	
• Molecule 1: Capsid protein	

C80 D81 P82 S83 S83 V84 R86 Q87 A88 A88 A88 A88 A88 C98 C98 C98 C98 C112 C112 C112 C112 C112 C112 C112 C11	L121 1122 A124 A124 A124 C128 A131 Y132 Y132	
• Molecule 1: Capsid protein		
Chain DC: 5%	98%	•••
MET M1 A1 22 336 336 438 A38 A38 A38 A38 A38 A38 A38 A38 A38 A		
• Molecule 1: Capsid protein		
Chain DD:	99%	
MET A1 N77 C78 Y132		
• Molecule 1: Capsid protein		
Chain DE:	98%	
MET A1 N22 856 856 719 7132 7132		
\bullet Molecule 1: Capsid protein		
Chain AC:	98%	••
MET A.1 836 836 Y 132		
• Molecule 1: Capsid protein		
Chain DF:	99%	
MET A1 N58 R59 G78 Y132		
• Molecule 1: Capsid protein		
Chain DG:	96%	
MET A1 G9 M22 836 836 836 836 836 836 836 836 836 8122 1122 8132 8132		
• Molecule 1: Capsid protein		

Chain DH:	96% .	
MET A1 A1 A1 A2 B56 B56 C78 C78 C78 M132 D126 D126 V132		
• Molecule 1: Capsid protein		
Chain DI:	96%	
MET A1 836 836 836 876 876 877 877 879 879 879 879 879 879 879 879		
• Molecule 1: Capsid protein		
Chain DJ:	95% •••	
MET A1 A1 836 876 1122 1122 1122 1126		
• Molecule 1: Capsid protein		
Chain DK:	98%	•
MET A1 856 777 G78 G78 0126 V132		
• Molecule 1: Capsid protein		
Chain DL:	96% · ·	
MET A1 E4 M22 836 836 A76 A76 C78 C78 C78 C78 C78 C78 C78 C78 C78 C78		
• Molecule 1: Capsid protein		
Chain DN:	95%	
MET M1 M22 836 836 012 0128 0128 0128 0128		
• Molecule 1: Capsid protein		
Chain EA:	96% · ·	I
MET A1 N22 S36 A40 A75 A75 A75 C74 A75 C74 C74 C78 C78 C80 C80 C80 C80 C80 C80 C80 C80 C80 C8		
	WORLDWIDE PROTEIN DATA BANK	

• Molecule 1: Capsid protein	
Chain AD:	98% •••
MET A1 A1 A77 A78 D126 1122 D126 1132	
• Molecule 1: Capsid protein	
Chain EB:	96% ••
MET A1 A1 A1 A2 836 A76 A76 A76 C80 C80 C80 C80 C80 C80 C80 C80 C80 C80	
• Molecule 1: Capsid protein	
Chain EC:	95% 5% ·
MET A1 B14 A76 A76 G78 G78 D126 D126 Y132	
• Molecule 1: Capsid protein	
Chain ED:	96% •••
MET A1 A1 K13 K13 S36 G39 G39 G39 G39 G39 G39 C39 C57 A76 C74 C74 C74 C74 C74 C74 C74 C77 C74 C77 C77	C 80 C 80
• Molecule 1: Capsid protein	
Chain EE:	97% ···
MET A1 N22 836 836 A76 A76 A76 A76 A76 A78 S79 S79 Y132	
• Molecule 1: Capsid protein	
Chain EF:	98% ••
MET AI A1 A2 B36 A43 A43 A43 A43 A43 A73 A73 A73 A73 A73 C74 A73 C74 A73 C74 A73 C74 A73 C74 A73 C74 A73 C74 A73 C74 A73 C74 A1 A3 C74 A1 C74 A1 C74 A1 C72 C74 A1 C72 C74 A1 C72 C74 C74 C74 C74 C74 C74 C74 C74 C74 C74	
• Molecule 1: Capsid protein	
Chain EG:	96%

Chain EN:	6%	96%
MET A1 N22 S36 S36	R57 R56 R56 A76 A76 S79 S79 C280 D126 D126 T122 T122 T122 T122	
• Molecule	e 1: Capsid protein	
Chain FA:	<u>+</u>	98%
MET A1 N22 S36 N77	X132 ↓ 132 ↓ 132	
• Molecule	e 1: Capsid protein	
Chain FB:	<u>-</u>	98%
MET A1 836 836	MT7 CC78	
• Molecule	e 1: Capsid protein	
Chain FC:	5%	98% ···
MET A1 836 836	NDS R59 A76 A76 G73 Y132	
• Molecule	1: Capsid protein	
Chain FD:	<u>-</u>	96% · ·
MET A1 N22 S36 C30	A40 778 778 778 778 778 778 778 778	
• Molecule	e 1: Capsid protein	
Chain FE:	<u>-</u>	96%
MET A1 N22 836 836	1122 1122 1126	
• Molecule	e 1: Capsid protein	
Chain FF:	<u>-</u>	96%
MET A1 N22 S36 G G G	TT5 AT6 C80 C80 C80 C80 C80 C80 C80 C80 C80 C80	

W O R L D W I D E PROTEIN DATA BANK

• Molecule 1:	Capsid protein	
Chain AF:		96%
MET A1 N2 S36 C78 S79	1122 1126 1132	
• Molecule 1:	Capsid protein	
Chain FH:		98%
MET A1 N22 S36 G78	¥132	
• Molecule 1:	Capsid protein	
Chain FI:		99%
MET AI NT7 C78 S79 Y132		
• Molecule 1:	Capsid protein	
Chain FJ:		96% ••
MET A1 N22 S56 S56	CB0 CB0 D126 A131	
- Malassia 1.		
• Molecule 1:	Capsid protein	
• Molecule 1: Chain FK:	Capsid protein	99%
• Molecule 1: Chain FK:	Capsid protein	99% ·
 Molecule 1: Chain FK: Chain FK: Molecule 1: 	Capsid protein	99%
 Molecule 1: Chain FK: Chain FK: Molecule 1: Chain FL: 	Capsid protein	99%
 Molecule 1: Chain FK: Molecule 1: Molecule 1: Chain FL: 	Capsid protein	99% · ·
 Molecule 1: Chain FK: Molecule 1: Molecule 1: Chain FL: E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Capsid protein Capsid protein	99% .

• Molecule 1: Capsid protein

Chain FN: . . 96% • Molecule 1: Capsid protein Chain GA: 99% MET • Molecule 1: Capsid protein Chain GB: 96% . . T78 A76 N77 • Molecule 1: Capsid protein Chain GC: . . 96% • Molecule 1: Capsid protein Chain AG: 98% • Molecule 1: Capsid protein 57% Chain GD: . . 96% MET G39 A40 V41 P42 A43 R47 V48 T49 V50 V50 S51 V52 V52 S56 R57 N58

C74 T75 A76 C78 C378 C378 C378 C378 C378 C378 C378	E103 F107 V108 R109 A114 A117 S115 P119 P119 D123 D123 D123 D123 D123 D123 A131 A131 A131 A131 A131 A131 A131 A
• Molecule 1: Capsid protein	
Chain GE:	96% •••
MET A1 N22 S36 T75 C78 T75 D126 A131 T132 T132	
• Molecule 1: Capsid protein	
Chain GF:	98%
MET A1 A1 A1 S56 A76 A16 A16 A16	
• Molecule 1: Capsid protein	
Chain GG:	96% .
MET A1 A1 A36 A36 A38 A38 A38 A38 A38 A38 A38 A38 A38 A38	
• Molecule 1: Capsid protein	
Chain GH:	96% •••
MET A1 A1 B2 C25 A57 G25 A57 G78 G78 C78 C78 C78 C78 A1 C25 C25 C25 C25 C25 C25 C25 C25 C25 C25	
• Molecule 1: Capsid protein	
Chain GI:	96%
MET A1 A1 A2 836 857 A76 A76 A76 A76 A76 A76 A76 A76 A126 V132	
• Molecule 1: Capsid protein	
Chain GJ:	98%
MET A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	
• Molecule 1: Capsid protein	

Chain GK:	98%	
MET A1 N22 S36 S36 S79 S79		
• Molecule 1: Ca	apsid protein	
Chain GL:	96%	
MET A1 N22 S56 S56 A76	1122 116 1126 1132	
• Molecule 1: Ca	apsid protein	
Chain GM:	98%	
MET A1 N22 S36 S36 G39 G39 A77 N77		
• Molecule 2: Ma	aturation protein A2	
Chain EJ:	9%	
MET P2 R9 A12 A12 E130 E130 E130 S830	S32 S33 D34 C45 C46 H49 L46 D51 D51 D51 D52 R53 C106 M101 D100 M101 C106 M101 C106 M102 C106 M102 C106 M102 C106 M102 C106 C106 C106 C106 C106 C106 C106 C106	A.1 to G178 R1177 G178 R181 G178 G198 G193 G193 A.198
T199 A200 G201 N202 L223 L223 D245 Y246 V247	 2.240 5.249 5.249 5.266 V.256 	1360 K361 G362 G362 G365 R367 P366 V369 V371 V371 S372 S372 L375
3376 4377 V378 V378 L380 L380 L385 L385 L395 D396		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	46471	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	JEOL 3200FSC	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	30000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.075	Depositor
Minimum map value	-0.044	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.015	Depositor
Map size (Å)	389.12, 389.12, 389.12	wwPDB
Map dimensions	320, 320, 320	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.216, 1.216, 1.216	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	l angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	AA	0.38	0/528	0.55	0/657
1	AB	0.38	0/528	0.55	0/657
1	AC	0.38	0/528	0.55	0/657
1	AD	0.38	0/528	0.55	0/657
1	AE	0.38	0/528	0.55	0/657
1	AF	0.38	0/528	0.55	0/657
1	AG	0.38	0/528	0.55	0/657
1	AH	0.38	0/528	0.55	0/657
1	AI	0.38	0/528	0.55	0/657
1	AJ	0.38	0/528	0.55	0/657
1	AK	0.38	0/528	0.55	0/657
1	AL	0.38	0/528	0.55	0/657
1	AM	0.38	0/528	0.55	0/657
1	AN	0.38	0/528	0.55	0/657
1	BA	0.38	0/528	0.54	0/657
1	BB	0.38	0/528	0.55	0/657
1	BC	0.38	0/528	0.55	0/657
1	BD	0.38	0/528	0.55	0/657
1	BE	0.38	0/528	0.55	0/657
1	BF	0.38	0/528	0.55	0/657
1	BG	0.38	0/528	0.55	0/657
1	BH	0.38	0/528	0.55	0/657
1	BI	0.38	0/528	0.54	0/657
1	BJ	0.38	0/528	0.55	0/657
1	BK	0.38	0/528	0.55	0/657
1	BL	0.38	0/528	0.55	0/657
1	BM	0.38	0/528	0.55	0/657
1	BN	0.38	0/528	0.55	0/657
1	CA	0.38	0/528	0.55	0/657
1	CB	0.38	0/528	0.55	0/657
1	CC	0.38	0/528	0.55	0/657
1	CD	0.38	0/528	0.55	0/657
1	CE	0.38	0/528	0.55	0/657
1	CF	0.38	0/528	0.55	0/657

Mal Chain		Bond lengths		Bond angles	
INIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	CG	0.38	0/528	0.55	0/657
1	CH	0.38	0/528	0.54	0/657
1	CI	0.38	0/528	0.55	0/657
1	CJ	0.38	0/528	0.55	0/657
1	CK	0.38	0/528	0.55	0/657
1	CL	0.38	0/528	0.55	0/657
1	CM	0.38	0/528	0.55	0/657
1	CN	0.38	0/528	0.55	0/657
1	DA	0.38	0/528	0.55	0/657
1	DB	0.38	0/528	0.55	0/657
1	DC	0.38	0/528	0.55	0/657
1	DD	0.38	0/528	0.55	0/657
1	DE	0.38	0/528	0.55	0/657
1	DF	0.38	0/528	0.55	0/657
1	DG	0.38	0/528	0.55	0/657
1	DH	0.38	0/528	0.54	0/657
1	DI	0.37	0/528	0.55	0/657
1	DJ	0.38	0/528	0.55	0/657
1	DK	0.38	0/528	0.55	0/657
1	DL	0.38	0/528	0.55	0/657
1	DN	0.38	0/528	0.55	0/657
1	EA	0.38	0/528	0.55	0/657
1	EB	0.38	0/528	0.55	0/657
1	EC	0.38	0/528	0.55	0/657
1	ED	0.38	0/528	0.55	0/657
1	EE	0.38	0/528	0.55	0/657
1	EF	0.38	0/528	0.55	0/657
1	EG	0.38	0/528	0.55	0/657
1	EH	0.38	0/528	0.55	0/657
1	EI	0.38	0/528	0.55	0/657
1	EK	0.38	0/528	0.55	0/657
1	EL	0.38	0/528	0.55	0/657
1	EM	0.38	0/528	0.55	0/657
1	EN	0.38	0/528	0.55	0/657
1	FA	0.38	0/528	0.55	0/657
1	FB	0.38	0/528	0.55	0/657
1	FC	0.38	0/528	0.55	0/657
1	FD	0.38	0/528	0.55	0/657
1	FE	0.38	0/528	0.55	0/657
1	FF	0.38	0/528	0.55	0/657
1	FH	0.38	0/528	0.55	0/657
1	FI	0.38	0/528	0.55	0/657
1	FJ	0.38	0/528	0.55	0/657

Mal Chain		Bond lengths		Bond angles	
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	FK	0.38	0/528	0.55	0/657
1	FL	0.38	0/528	0.55	0/657
1	FM	0.38	0/528	0.55	0/657
1	FN	0.38	0/528	0.55	0/657
1	GA	0.38	0/528	0.55	0/657
1	GB	0.38	0/528	0.55	0/657
1	GC	0.38	0/528	0.55	0/657
1	GD	0.38	0/528	0.55	0/657
1	GE	0.38	0/528	0.55	0/657
1	GF	0.38	0/528	0.55	0/657
1	GG	0.38	0/528	0.55	0/657
1	GH	0.38	0/528	0.55	0/657
_ 1	GI	0.38	0/528	0.55	0/657
1	GJ	0.38	0/528	0.55	0/657
1	GK	0.38	0/528	0.55	0/657
1	GL	0.38	0/528	0.55	0/657
1	GM	0.38	0/528	0.55	0/657
1	GN	0.38	0/528	0.55	0/657
1	HA	0.38	0/528	0.54	0/657
1	HB	0.38	0/528	0.55	0/657
1	HC	0.38	0/528	0.55	0/657
1	HD	0.38	0/528	0.55	0/657
1	HE	0.38	0/528	0.55	0/657
1	HF	0.38	0/528	0.55	0/657
1	HG	0.38	0/528	0.55	0/657
1	HH	0.38	0/528	0.55	0/657
1	HI	0.38	0/528	0.55	0/657
1	HJ	0.38	0/528	0.55	0/657
1	HK	0.38	0/528	0.54	0/657
1	HL	0.38	0/528	0.55	0/657
1	HM	0.38	0/528	0.55	0/657
1	HN	0.38	0/528	0.55	0/657
1	IA	0.38	0/528	0.55	0/657
1	IB	0.38	0/528	0.54	0/657
1	IC	0.38	0/528	0.55	0/657
1	ID	0.38	0/528	0.55	0/657
1	IE	0.38	0/528	0.55	0/657
1	IF	0.38	0/528	0.55	0/657
1	IG	0.37	0/528	0.55	0/657
1	IH	0.38	0/528	0.55	0/657
1	II	0.38	0/528	0.55	0/657
1	IJ	0.38	0/528	0.55	0/657
1	IK	0.38	0/528	0.54	0/657

Mal Chain		Bond lengths		Bond angles	
INIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	IL	0.38	0/528	0.55	0/657
1	IM	0.38	0/528	0.55	0/657
1	IN	0.38	0/528	0.55	0/657
1	JA	0.38	0/528	0.55	0/657
1	JB	0.38	0/528	0.54	0/657
1	JC	0.38	0/528	0.55	0/657
1	JD	0.38	0/528	0.55	0/657
1	JE	0.38	0/528	0.55	0/657
1	JF	0.38	0/528	0.54	0/657
1	JG	0.38	0/528	0.55	0/657
1	JH	0.38	0/528	0.55	0/657
1	JI	0.38	0/528	0.55	0/657
1	JJ	0.38	0/528	0.55	0/657
1	JK	0.38	0/528	0.55	0/657
1	JL	0.38	0/528	0.55	0/657
1	JM	0.38	0/528	0.55	0/657
1	JN	0.38	0/528	0.55	0/657
1	KA	0.38	0/528	0.55	0/657
1	KB	0.38	0/528	0.55	0/657
1	KC	0.38	0/528	0.55	0/657
1	KD	0.38	0/528	0.55	0/657
1	KE	0.38	0/528	0.55	0/657
1	KF	0.38	0/528	0.55	0/657
1	KG	0.38	0/528	0.55	0/657
1	KH	0.38	0/528	0.55	0/657
1	KI	0.38	0/528	0.55	0/657
1	KJ	0.38	0/528	0.55	0/657
1	KK	0.38	0/528	0.55	0/657
1	KL	0.38	0/528	0.55	0/657
1	KM	0.38	0/528	0.55	0/657
1	KN	0.38	0/528	0.54	0/657
1	LA	0.38	0/528	0.55	0/657
1	LB	0.38	0/528	0.55	0/657
1	LC	0.38	0/528	0.55	0/657
1	LD	0.38	0/528	0.55	0/657
1	LE	0.38	0/528	0.55	0/657
1	LF	0.38	0/528	0.55	0/657
1	LG	0.38	0/528	0.55	0/657
1	LH	0.38	0/528	0.55	0/657
1	LI	0.38	0/528	0.54	0/657
1	LJ	0.38	0/528	0.55	0/657
1	LK	0.38	0/528	0.55	0/657
1	LL	0.38	0/528	0.55	0/657

Mol Chain		Bond	Bond lengths		l angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	LM	0.38	0/528	0.55	0/657
1	LN	0.38	0/528	0.55	0/657
1	MA	0.38	0/528	0.55	0/657
1	MB	0.38	0/528	0.54	0/657
1	MC	0.38	0/528	0.55	0/657
1	MD	0.38	0/528	0.55	0/657
1	ME	0.38	0/528	0.55	0/657
1	MF	0.38	0/528	0.55	0/657
1	MG	0.38	0/528	0.55	0/657
1	MH	0.38	0/528	0.55	0/657
1	MI	0.38	0/528	0.55	0/657
1	MJ	0.38	0/528	0.55	0/657
1	MK	0.38	0/528	0.55	0/657
1	ML	0.38	0/528	0.55	0/657
1	MM	0.38	0/528	0.55	0/657
1	MN	0.38	0/528	0.55	0/657
1	NA	0.38	0/528	0.55	0/657
2	EJ	0.27	0/1676	0.58	0/2092
All	All	0.38	0/96716	0.55	0/120352

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	AA	529	0	140	1	0
1	AB	529	0	140	2	0
1	AC	529	0	140	1	0
1	AD	529	0	140	1	0
1	AE	529	0	140	1	0
1	AF	529	0	140	2	0
1	AG	529	0	140	1	0

	Chain	Non-H	$\mathbf{H}(\mathbf{modol})$	H(addod)	Clashos	Symm_Clashos
1		520		140		Symm-Clashes
		529	0	140	1	0
1		529	0	140	1	0
1		529	0	140	2	0
1		529	0	140	1	0
1		529	0	140	1	0
1		529	0	140	2	0
1	RΔ	529	0	140	1	0
1	BR	520	0	140	1	0
1	BC	529	0	140	1	0
1	BD	529	0	140	0	0
1	BD	529	0	140	1	0
1	BE	529	0	140	2	0
1	BC BC	529	0	140	2 1	0
1	DG DU	529	0	140	1	0
1		529	0	140	2	0
1		529	0	140	2	0
1	DJ DV	529	0	140	2	0
1		529	0	140	2	0
	DL DM	529	0	140	<u> </u>	0
		529	0	140	1	0
		529	0	140	2	0
	CA	529	0	140	2	0
	CB	529	0	140	2	0
		529	0	140	0	0
	CD	529	0	140	1	0
	CE	529	0	140	1	0
	CF	529	0	140	2	0
	CG	529	0	140	0	0
	CH	529	0	140	2	0
	CI	529	0	140	2	0
	CJ	529	0	140	0	0
		529	0	140	2	0
		529	0	140	2	0
	CM	529	0	140	2	0
		529	0	140	2	0
	DA	529	0	140	2	0
	DR	529	0	140	2	0
		529	0	140		0
		529	0	140	0	0
	DE	529	0	140		0
	DF	529	0	140	0	0
1	DG	529	0	140	2	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	DH	529	0	140	2	0
1	DI	529	0	140	2	0
1	DJ	529	0	140	3	0
1	DK	529	0	140	1	0
1	DL	529	0	140	2	0
1	DN	529	0	140	3	0
1	EA	529	0	140	2	0
1	EB	529	0	140	2	0
1	EC	529	0	140	4	0
1	ED	529	0	140	2	0
1	EE	529	0	140	2	0
1	EF	529	0	140	1	0
1	EG	529	0	140	2	0
1	EH	529	0	140	1	0
1	EI	529	0	140	2	0
1	EK	529	0	140	1	0
1	EL	529	0	140	1	0
1	EM	529	0	140	2	0
1	EN	529	0	140	2	0
1	FA	529	0	140	1	0
1	FB	529	0	140	1	0
1	FC	529	0	140	1	0
1	FD	529	0	140	2	0
1	FE	529	0	140	2	0
1	FF	529	0	140	2	0
1	FH	529	0	140	1	0
1	FI	529	0	140	0	0
1	FJ	529	0	140	2	0
	FK	529	0	140	0	0
	FL DM	529	0	140	2	0
	FM	529	0	140	1	0
	FN	529	0	140	2	0
	GA	529	0	140	0	0
	GB	529	0	140		0
	GC CD	529	0	140	2	0
1	GD CF	529	0	140	2	0
		529	0	140	2 1	0
		529	0	140	1	0
1	CH CH	529	0	140	2	0
	CI	529	0	140	$\frac{2}{2}$	0
1	CI	529	0	140	1	0
L 1	05	040			1	U U

	Chain	Non H	page	H(addod)	Clashos	Symm Clashes
		520		140		Symm-Clashes
1	GN	529	0	140	1	0
	CM	529	0	140		0
	CN GM	529	0	140	1	0
		529	0	140	1	0
		529	0	140	2	0
		529	0	140	2	0
1		529	0	140	0	0
1		529	0	140	1	0
		529	0	140	1	0
		529	0	140	1	0
	пG uu	529	0	140	2	0
1	 ПП	529	0	140	<u> </u>	0
1		529	0	140	1	0
	пј ЦV	529	0	140	1	0
1		529	0	140	1	0
1		529	0	140		0
1		529	0	140	1	0
1		529	0	140	1	0
	IA ID	529	0	140	1	0
1	ID	529	0	140	1	0
		529	0	140	2 1	0
		529	0	140	1	0
		529	0	140	2	0
		529	0	140	2	0
		529	0	140	0	0
		529	0	140	1	0
1		529	0	140	1	0
1		529	0	140	2	0
1		529	0	140	2	0
1	IL	529	0	140	2	0
1	IN	529	0	140		0
1		529	0	140	2	0
1	IR	529	0	140	1	0
1	JD	529	0	140	1	0
1	JU	529 520	0	140	1	0
1	IE	529	0	1/0	1	0
1	JE JE	529	0	1/0	1	0
1	IC	529 520	0	140	1	0
1	ла IH	529	0	1/0	2	0
1	II	529	0	1/0	$\frac{2}{2}$	0
1	JI JI	529	0	1/0	1	0
1	00	049	U	140	1	U

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	JK	529	0	140	2	0
1	JL	529	0	140	0	0
1	JM	529	0	140	2	0
1	JN	529	0	140	2	0
1	KA	529	0	140	0	0
1	KB	529	0	140	1	0
1	KC	529	0	140	2	0
1	KD	529	0	140	2	0
1	KE	529	0	140	2	0
1	KF	529	0	140	2	0
1	KG	529	0	140	1	0
1	KH	529	0	140	2	0
1	KI	529	0	140	2	0
1	KJ	529	0	140	2	0
1	KK	529	0	140	1	0
1	KL	529	0	140	2	0
1	KM	529	0	140	1	0
1	KN	529	0	140	1	0
1	LA	529	0	140	1	0
1	LB	529	0	140	0	0
1	LC	529	0	140	1	0
1	LD	529	0	140	2	0
1	LE	529	0	140	1	0
1	LF	529	0	140	1	0
1	LG	529	0	140	1	0
1	LH	529	0	140	2	0
1	LI	529	0	140	1	0
1	LJ	529	0	140	2	0
1	LK	529	0	140	2	0
1	LL	529	0	140	1	0
1	LM	529	0	140	1	0
1	LN	529	0	140	1	0
1	MA	529	0	140	0	0
1	MB	529	0	140	1	0
1	MC	529	0	140	2	0
1	MD	529	0	140	1	0
1	ME	529	0	140	1	0
1	MF	529	0	140	2	0
1	MG	529	0	140	1	0
1	MH	529	0	140	0	0
1	MI	529	0	140	2	0
1	MJ	529	0	140	2	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	MK	529	0	140	1	0
1	ML	529	0	140	1	0
1	MM	529	0	140	1	0
1	MN	529	0	140	1	0
1	NA	529	0	140	1	0
2	EJ	1677	0	456	1	0
All	All	96897	0	25656	255	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (255) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:DN:76:ALA:O	1:EC:78:GLY:O	2.27	0.52
1:EC:76:ALA:O	1:EE:78:GLY:O	2.30	0.48
1:JD:22:ASN:N	1:JD:36:SER:O	2.44	0.47
1:KL:22:ASN:N	1:KL:36:SER:O	2.44	0.47
1:CL:22:ASN:N	1:CL:36:SER:O	2.44	0.47
1:HD:22:ASN:N	1:HD:36:SER:O	2.44	0.47
1:IN:22:ASN:N	1:IN:36:SER:O	2.44	0.47
1:LM:22:ASN:N	1:LM:36:SER:O	2.44	0.47
1:GJ:22:ASN:N	1:GJ:36:SER:O	2.44	0.47
1:HH:22:ASN:N	1:HH:36:SER:O	2.44	0.46
1:KK:22:ASN:N	1:KK:36:SER:O	2.44	0.46
1:DB:22:ASN:N	1:DB:36:SER:O	2.44	0.46
1:BD:22:ASN:N	1:BD:36:SER:O	2.44	0.46
1:IK:22:ASN:N	1:IK:36:SER:O	2.44	0.46
1:GD:22:ASN:N	1:GD:36:SER:O	2.44	0.46
1:BI:22:ASN:N	1:BI:36:SER:O	2.44	0.46
1:BB:22:ASN:N	1:BB:36:SER:O	2.44	0.46
1:FF:22:ASN:N	1:FF:36:SER:O	2.44	0.46
1:KI:22:ASN:N	1:KI:36:SER:O	2.44	0.46
1:KM:22:ASN:N	1:KM:36:SER:O	2.44	0.46
1:LE:22:ASN:N	1:LE:36:SER:O	2.44	0.46
1:GC:22:ASN:N	1:GC:36:SER:O	2.44	0.46
1:IM:22:ASN:N	1:IM:36:SER:O	2.44	0.45
1:KJ:22:ASN:N	1:KJ:36:SER:O	2.44	0.45
1:IE:22:ASN:N	1:IE:36:SER:O	2.44	0.45
1:LF:22:ASN:N	1:LF:36:SER:O	2.44	0.45
1:LK:22:ASN:N	1:LK:36:SER:O	2.44	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:DA:22:ASN:N	1:DA:36:SER:O	2.44	0.45
1:EM:22:ASN:N	1:EM:36:SER:O	2.44	0.45
1:KB:22:ASN:N	1:KB:36:SER:O	2.44	0.45
1:EE:22:ASN:N	1:EE:36:SER:O	2.44	0.45
1:GB:22:ASN:N	1:GB:36:SER:O	2.44	0.45
1:JN:22:ASN:N	1:JN:36:SER:O	2.44	0.45
1:KC:22:ASN:N	1:KC:36:SER:O	2.44	0.45
1:EC:22:ASN:N	1:EC:36:SER:O	2.44	0.45
1:FH:22:ASN:N	1:FH:36:SER:O	2.44	0.45
1:ID:22:ASN:N	1:ID:36:SER:O	2.44	0.45
1:MC:22:ASN:N	1:MC:36:SER:O	2.44	0.45
1:IL:22:ASN:N	1:IL:36:SER:O	2.44	0.45
1:KE:22:ASN:N	1:KE:36:SER:O	2.44	0.45
1:ED:22:ASN:N	1:ED:36:SER:O	2.44	0.45
1:EI:22:ASN:N	1:EI:36:SER:O	2.44	0.45
1:FL:22:ASN:N	1:FL:36:SER:O	2.44	0.45
1:FN:22:ASN:N	1:FN:36:SER:O	2.44	0.45
1:HN:22:ASN:N	1:HN:36:SER:O	2.44	0.45
1:JM:22:ASN:N	1:JM:36:SER:O	2.44	0.45
1:LD:22:ASN:N	1:LD:36:SER:O	2.44	0.45
1:EF:22:ASN:N	1:EF:36:SER:O	2.44	0.45
1:IC:22:ASN:N	1:IC:36:SER:O	2.44	0.45
1:ED:122:ILE:O	1:ED:126:ASP:N	2.48	0.45
1:FE:122:ILE:O	1:FE:126:ASP:N	2.48	0.45
1:HH:122:ILE:O	1:HH:126:ASP:N	2.48	0.45
1:AM:122:ILE:O	1:AM:126:ASP:N	2.48	0.45
1:CE:122:ILE:O	1:CE:126:ASP:N	2.48	0.45
1:EK:122:ILE:O	1:EK:126:ASP:N	2.48	0.45
1:EN:22:ASN:N	1:EN:36:SER:O	2.44	0.45
1:JA:22:ASN:N	1:JA:36:SER:O	2.44	0.45
1:DK:122:ILE:O	1:DK:126:ASP:N	2.48	0.45
1:JB:22:ASN:N	1:JB:36:SER:O	2.44	0.44
1:LN:122:ILE:O	1:LN:126:ASP:N	2.48	0.44
1:HL:122:ILE:O	1:HL:126:ASP:N	2.48	0.44
1:IN:122:ILE:O	1:IN:126:ASP:N	2.48	0.44
1:AK:122:ILE:O	1:AK:126:ASP:N	2.48	0.44
1:KD:22:ASN:N	1:KD:36:SER:O	2.44	0.44
1:MG:22:ASN:N	1:MG:36:SER:O	2.44	0.44
1:BN:122:ILE:O	1:BN:126:ASP:N	2.48	0.44
1:DI:122:ILE:O	1:DI:126:ASP:N	2.48	0.44
1:GM:22:ASN:N	1:GM:36:SER:O	2.44	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:HG:22:ASN:N	1:HG:36:SER:O	2.44	0.44
1:DJ:22:ASN:N	1:DJ:36:SER:O	2.44	0.44
1:EH:22:ASN:N	1:EH:36:SER:O	2.44	0.44
1:JH:122:ILE:O	1:JH:126:ASP:N	2.48	0.44
1:JK:22:ASN:N	1:JK:36:SER:O	2.44	0.44
1:IJ:22:ASN:N	1:IJ:36:SER:O	2.44	0.44
1:AK:22:ASN:N	1:AK:36:SER:O	2.44	0.44
1:MF:122:ILE:O	1:MF:126:ASP:N	2.48	0.44
1:CI:22:ASN:N	1:CI:36:SER:O	2.44	0.44
1:FF:122:ILE:O	1:FF:126:ASP:N	2.48	0.44
1:GG:22:ASN:N	1:GG:36:SER:O	2.44	0.44
1:BA:22:ASN:N	1:BA:36:SER:O	2.44	0.44
1:BH:22:ASN:N	1:BH:36:SER:O	2.44	0.44
1:CA:22:ASN:N	1:CA:36:SER:O	2.44	0.44
1:CD:22:ASN:N	1:CD:36:SER:O	2.44	0.44
1:DH:22:ASN:N	1:DH:36:SER:O	2.44	0.44
1:DL:122:ILE:O	1:DL:126:ASP:N	2.48	0.44
1:GK:22:ASN:N	1:GK:36:SER:O	2.44	0.44
1:GN:22:ASN:N	1:GN:36:SER:O	2.44	0.44
1:DE:22:ASN:N	1:DE:36:SER:O	2.44	0.44
1:FB:22:ASN:N	1:FB:36:SER:O	2.44	0.44
1:FE:22:ASN:N	1:FE:36:SER:O	2.44	0.44
1:AF:22:ASN:N	1:AF:36:SER:O	2.44	0.44
1:HB:122:ILE:O	1:HB:126:ASP:N	2.48	0.44
1:LI:22:ASN:N	1:LI:36:SER:O	2.44	0.44
1:DI:22:ASN:N	1:DI:36:SER:O	2.44	0.44
1:GD:122:ILE:O	1:GD:126:ASP:N	2.48	0.44
1:IF:122:ILE:O	1:IF:126:ASP:N	2.48	0.43
1:MI:22:ASN:N	1:MI:36:SER:O	2.44	0.43
1:MJ:22:ASN:N	1:MJ:36:SER:O	2.44	0.43
1:BL:22:ASN:N	1:BL:36:SER:O	2.44	0.43
1:EG:22:ASN:N	1:EG:36:SER:O	2.44	0.43
1:HF:22:ASN:N	1:HF:36:SER:O	2.44	0.43
1:IB:22:ASN:N	1:IB:36:SER:O	2.44	0.43
1:AJ:122:ILE:O	1:AJ:126:ASP:N	2.48	0.43
1:AM:22:ASN:N	1:AM:36:SER:O	2.44	0.43
1:KH:122:ILE:O	1:KH:126:ASP:N	2.48	0.43
1:CF:122:ILE:O	1:CF:126:ASP:N	2.48	0.43
1:EL:22:ASN:N	1:EL:36:SER:O	2.44	0.43
1:EN:122:ILE:O	1:EN:126:ASP:N	2.48	0.43
1:GI:22:ASN:N	1:GI:36:SER:O	2.44	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:CA:122:ILE:O	1:CA:126:ASP:N	2.48	0.43
1:AB:22:ASN:N	1:AB:36:SER:O	2.44	0.43
1:DN:22:ASN:N	1:DN:36:SER:O	2.44	0.43
1:GE:122:ILE:O	1:GE:126:ASP:N	2.48	0.43
1:IH:122:ILE:O	1:IH:126:ASP:N	2.48	0.43
1:AN:122:ILE:O	1:AN:126:ASP:N	2.48	0.43
1:BF:22:ASN:N	1:BF:36:SER:O	2.44	0.43
1:BK:122:ILE:O	1:BK:126:ASP:N	2.48	0.43
1:BN:22:ASN:N	1:BN:36:SER:O	2.44	0.43
1:JC:22:ASN:N	1:JC:36:SER:O	2.44	0.43
1:CF:22:ASN:N	1:CF:36:SER:O	2.44	0.43
1:DJ:122:ILE:O	1:DJ:126:ASP:N	2.48	0.43
1:DN:122:ILE:O	1:DN:126:ASP:N	2.48	0.43
1:EB:122:ILE:O	1:EB:126:ASP:N	2.48	0.43
1:FD:122:ILE:O	1:FD:126:ASP:N	2.48	0.43
1:GC:122:ILE:O	1:GC:126:ASP:N	2.48	0.43
1:JF:122:ILE:O	1:JF:126:ASP:N	2.48	0.43
1:LA:122:ILE:O	1:LA:126:ASP:N	2.48	0.43
1:LC:122:ILE:O	1:LC:126:ASP:N	2.48	0.43
1:CN:122:ILE:O	1:CN:126:ASP:N	2.48	0.43
1:IK:122:ILE:O	1:IK:126:ASP:N	2.48	0.43
1:KF:122:ILE:O	1:KF:126:ASP:N	2.48	0.43
1:KJ:122:ILE:O	1:KJ:126:ASP:N	2.48	0.43
1:NA:122:ILE:O	1:NA:126:ASP:N	2.48	0.43
1:DB:122:ILE:O	1:DB:126:ASP:N	2.48	0.43
1:FD:22:ASN:N	1:FD:36:SER:O	2.44	0.43
1:AG:122:ILE:O	1:AG:126:ASP:N	2.48	0.43
1:LG:22:ASN:N	1:LG:36:SER:O	2.44	0.43
1:FA:22:ASN:N	1:FA:36:SER:O	2.44	0.43
1:GI:122:ILE:O	1:GI:126:ASP:N	2.48	0.43
1:JG:22:ASN:N	1:JG:36:SER:O	2.44	0.43
1:JJ:22:ASN:N	1:JJ:36:SER:O	2.44	0.43
1:KD:122:ILE:O	1:KD:126:ASP:N	2.48	0.43
1:KF:22:ASN:N	1:KF:36:SER:O	2.44	0.43
1:LL:122:ILE:O	1:LL:126:ASP:N	2.48	0.43
1:GL:122:ILE:O	1:GL:126:ASP:N	2.48	0.43
1:HI:22:ASN:N	1:HI:36:SER:O	2.44	0.42
1:JE:22:ASN:N	1:JE:36:SER:O	2.44	0.42
1:JN:122:ILE:O	1:JN:126:ASP:N	2.48	0.42
1:DC:22:ASN:N	1:DC:36:SER:O	2.44	0.42
1:EG:122:ILE:O	1:EG:126:ASP:N	2.48	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:FC:22:ASN:N	1:FC:36:SER:O	2.44	0.42
1:AF:122:ILE:O	1:AF:126:ASP:N	2.48	0.42
1:AI:122:ILE:O	1:AI:126:ASP:N	2.48	0.42
1:BE:22:ASN:N	1:BE:36:SER:O	2.44	0.42
1:IC:122:ILE:O	1:IC:126:ASP:N	2.48	0.42
1:LD:122:ILE:O	1:LD:126:ASP:N	2.48	0.42
1:ME:122:ILE:O	1:ME:126:ASP:N	2.48	0.42
1:CH:22:ASN:N	1:CH:36:SER:O	2.44	0.42
1:CM:122:ILE:O	1:CM:126:ASP:N	2.48	0.42
1:CN:22:ASN:N	1:CN:36:SER:O	2.44	0.42
1:AD:122:ILE:O	1:AD:126:ASP:N	2.48	0.42
1:GB:122:ILE:O	1:GB:126:ASP:N	2.48	0.42
1:IE:122:ILE:O	1:IE:126:ASP:N	2.48	0.42
1:IL:122:ILE:O	1:IL:126:ASP:N	2.48	0.42
1:JH:22:ASN:N	1:JH:36:SER:O	2.44	0.42
1:AL:22:ASN:N	1:AL:36:SER:O	2.44	0.42
1:LJ:122:ILE:O	1:LJ:126:ASP:N	2.48	0.42
1:CM:22:ASN:N	1:CM:36:SER:O	2.44	0.42
1:KC:122:ILE:O	1:KC:126:ASP:N	2.48	0.42
1:DH:122:ILE:O	1:DH:126:ASP:N	2.48	0.42
2:EJ:9:ARG:N	2:EJ:17:LEU:O	2.39	0.42
1:FL:122:ILE:O	1:FL:126:ASP:N	2.48	0.42
1:JA:122:ILE:O	1:JA:126:ASP:N	2.48	0.42
1:LK:122:ILE:O	1:LK:126:ASP:N	2.48	0.42
1:MC:122:ILE:O	1:MC:126:ASP:N	2.48	0.42
1:BI:122:ILE:O	1:BI:126:ASP:N	2.48	0.42
1:EA:22:ASN:N	1:EA:36:SER:O	2.44	0.42
1:AE:122:ILE:O	1:AE:126:ASP:N	2.48	0.42
1:HK:22:ASN:N	1:HK:36:SER:O	2.44	0.42
1:JK:122:ILE:O	1:JK:126:ASP:N	2.48	0.42
1:EC:122:ILE:O	1:EC:126:ASP:N	2.48	0.42
1:FN:122:ILE:O	1:FN:126:ASP:N	2.48	0.42
1:LH:122:ILE:O	1:LH:126:ASP:N	2.48	0.42
1:GG:122:ILE:O	1:GG:126:ASP:N	2.48	0.42
1:AH:22:ASN:N	1:AH:36:SER:O	2.44	0.42
1:IA:122:ILE:O	1:IA:126:ASP:N	2.48	0.42
1:KE:122:ILE:O	1:KE:126:ASP:N	2.48	0.42
1:BE:122:ILE:O	1:BE:126:ASP:N	2.48	0.42
1:BF:122:ILE:O	1:BF:126:ASP:N	2.48	0.42
1:GF:22:ASN:N	1:GF:36:SER:O	2.44	0.42
1:HA:122:ILE:O	1:HA:126:ASP:N	2.48	0.42

		Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
1:MB:122:ILE:O	1:MB:126:ASP:N	2.48	0.42		
1:BK:22:ASN:N	1:BK:36:SER:O	2.44	0.42		
1:FJ:22:ASN:N	1:FJ:36:SER:O	2.44	0.42		
1:ML:122:ILE:O	1:ML:126:ASP:N	2.48	0.41		
1:HA:22:ASN:N	1:HA:36:SER:O	2.44	0.41		
1:HG:122:ILE:O	1:HG:126:ASP:N	2.48	0.41		
1:MF:22:ASN:N	1:MF:36:SER:O	2.44	0.41		
1:CI:122:ILE:O	1:CI:126:ASP:N	2.48	0.41		
1:BL:122:ILE:O	1:BL:126:ASP:N	2.48	0.41		
1:AC:22:ASN:N	1:AC:36:SER:O	2.44	0.41		
1:EI:122:ILE:O	1:EI:126:ASP:N	2.48	0.41		
1:GH:22:ASN:N	1:GH:36:SER:O	2.44	0.41		
1:HB:22:ASN:N	1:HB:36:SER:O	2.44	0.41		
1:JI:22:ASN:N	1:JI:36:SER:O	2.44	0.41		
1:JI:122:ILE:O	1:JI:126:ASP:N	2.48	0.41		
1:MD:22:ASN:N	1:MD:36:SER:O	2.44	0.41		
1:BH:122:ILE:O	1:BH:126:ASP:N	2.48	0.41		
1:HE:22:ASN:N	1:HE:36:SER:O	2.44	0.41		
1:HJ:22:ASN:N	1:HJ:36:SER:O	2.44	0.41		
1:HM:22:ASN:N	1:HM:36:SER:O	2.44	0.41		
1:KN:22:ASN:N	1:KN:36:SER:O	2.44	0.41		
1:BJ:22:ASN:N	1:BJ:36:SER:O	2.44	0.41		
1:CK:22:ASN:N	1:CK:36:SER:O	2.44	0.41		
1:EM:122:ILE:O	1:EM:126:ASP:N	2.48	0.41		
1:GL:22:ASN:N	1:GL:36:SER:O	2.44	0.41		
1:KG:22:ASN:N	1:KG:36:SER:O	2.44	0.41		
1:AN:22:ASN:N	1:AN:36:SER:O	2.44	0.41		
1:BM:122:ILE:O	1:BM:126:ASP:N	2.48	0.41		
1:EB:22:ASN:N	1:EB:36:SER:O	2.44	0.41		
1:GH:122:ILE:O	1:GH:126:ASP:N	2.48	0.41		
1:IF:22:ASN:N	1:IF:36:SER:O	2.44	0.41		
1:IM:122:ILE:O	1:IM:126:ASP:N	2.48	0.41		
1:AA:22:ASN:N	1:AA:36:SER:O	2.44	0.41		
1:EA:122:ILE:O	1:EA:126:ASP:N	2.48	0.41		
1:HL:22:ASN:N	1:HL:36:SER:O	2.44	0.41		
1:AJ:22:ASN:N	1:AJ:36:SER:O	2.44	0.41		
1:KH:22:ASN:N	1:KH:36:SER:O	2.44	0.41		
1:MI:122:ILE:O	1:MI:126:ASP:N	2.48	0.41		
1:BJ:122:ILE:O	1:BJ:126:ASP:N	2.48	0.41		
1:CH:122:ILE:O	1:CH:126:ASP:N	2.48	0.41		
1:DA:122:ILE:O	1:DA:126:ASP:N	2.48	0.41		

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:DG:22:ASN:N	1:DG:36:SER:O	2.44	0.41
1:FJ:122:ILE:O	1:FJ:126:ASP:N	2.48	0.41
1:KI:122:ILE:O	1:KI:126:ASP:N	2.48	0.41
1:LJ:22:ASN:N	1:LJ:36:SER:O	2.44	0.41
1:MJ:122:ILE:O	1:MJ:126:ASP:N	2.48	0.41
1:MM:122:ILE:O	1:MM:126:ASP:N	2.48	0.41
1:BG:22:ASN:N	1:BG:36:SER:O	2.44	0.41
1:CK:78:GLY:O	1:DJ:76:ALA:O	2.39	0.41
1:JM:122:ILE:O	1:JM:126:ASP:N	2.48	0.40
1:MK:122:ILE:O	1:MK:126:ASP:N	2.48	0.40
1:CL:122:ILE:O	1:CL:126:ASP:N	2.48	0.40
1:DG:122:ILE:O	1:DG:126:ASP:N	2.48	0.40
1:DL:22:ASN:N	1:DL:36:SER:O	2.44	0.40
1:AB:122:ILE:O	1:AB:126:ASP:N	2.48	0.40
1:LH:22:ASN:N	1:LH:36:SER:O	2.44	0.40
1:CB:22:ASN:N	1:CB:36:SER:O	2.44	0.40
1:GE:22:ASN:N	1:GE:36:SER:O	2.44	0.40
1:II:22:ASN:N	1:II:36:SER:O	2.44	0.40
1:IJ:122:ILE:O	1:IJ:126:ASP:N	2.48	0.40
1:KL:122:ILE:O	1:KL:126:ASP:N	2.48	0.40
1:MN:122:ILE:O	1:MN:126:ASP:N	2.48	0.40
1:CB:122:ILE:O	1:CB:126:ASP:N	2.48	0.40
1:FM:22:ASN:N	1:FM:36:SER:O	2.44	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	AA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	AB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	AC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	AD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	AE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	AF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	AG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	AH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	AI	130/133~(98%)	122~(94%)	8~(6%)	0	100	100
1	AJ	130/133~(98%)	122~(94%)	8 (6%)	0	100	100
1	AK	130/133~(98%)	122~(94%)	8~(6%)	0	100	100
1	AL	130/133~(98%)	122~(94%)	8 (6%)	0	100	100
1	AM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	AN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	BA	130/133~(98%)	122~(94%)	8 (6%)	0	100	100
1	BB	130/133~(98%)	122~(94%)	8 (6%)	0	100	100
1	BC	130/133~(98%)	122~(94%)	8 (6%)	0	100	100
1	BD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	BE	130/133~(98%)	122~(94%)	8 (6%)	0	100	100
1	BF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	BG	130/133~(98%)	122~(94%)	8 (6%)	0	100	100
1	BH	130/133~(98%)	122~(94%)	8 (6%)	0	100	100
1	BI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	BJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	BK	130/133~(98%)	122~(94%)	8 (6%)	0	100	100
1	BL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	BM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	BN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CC	$\overline{130/133}\ (98\%)$	122 (94%)	8 (6%)	0	100	100
1	CD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CE	$130/\overline{133}~(98\%)$	122 (94%)	8 (6%)	0	100	100

Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	CF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	CN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	DN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	ED	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100

Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	EK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	EN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	FN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	GN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	HA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	$_{ m HF}$	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	HN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	ID	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	II	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	IN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	JD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	JN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	KN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	LA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	LB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	LC	$\overline{130/133}\ (98\%)$	122 (94%)	8 (6%)	0	100	100
1	LD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	LE	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	LF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	LG	130/133~(98%)	122~(94%)	8~(6%)	0	100	100
1	LH	130/133~(98%)	122~(94%)	8~(6%)	0	100	100
1	LI	130/133~(98%)	122~(94%)	8~(6%)	0	100	100
1	LJ	130/133~(98%)	122 (94%)	8~(6%)	0	100	100
1	LK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	LL	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	LM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	LN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MB	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MC	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MD	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	ME	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MF	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MG	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MH	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MI	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MJ	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MK	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	ML	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MM	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	MN	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
1	NA	130/133~(98%)	122 (94%)	8 (6%)	0	100	100
2	EJ	417/420 (99%)	399~(96%)	17 (4%)	1 (0%)	47	81
All	All	23817/24360~(98%)	22359 (94%)	1457 (6%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	EJ	290	GLY

5.3.2 Protein sidechains (i)

There are no protein residues with a non-rotameric sidechain to report in this entry.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-8709. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 160

Y Index: 160

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 136

Y Index: 76

Z Index: 243

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.015. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1612 nm^3 ; this corresponds to an approximate mass of 1456 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.227 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-8709 and PDB model 5VLZ. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.015 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.015).

9.4 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 92% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.015) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9170	0.3730
AA	0.9400	0.3730
AB	0.9130	0.3790
AC	0.9360	0.3870
AD	0.9400	0.3780
AE	0.9170	0.3720
AF	0.9580	0.4050
AG	0.9410	0.3910
AH	0.9220	0.3720
AI	0.9360	0.3830
AJ	0.9340	0.3720
AK	0.9240	0.3790
AL	0.9090	0.3950
AM	0.9320	0.3920
AN	0.9400	0.4000
BA	0.9340	0.3970
BB	0.9490	0.3930
BC	0.9490	0.3930
BD	0.9170	0.3920
BE	0.9280	0.3880
BF	0.9410	0.3850
BG	0.9210	0.3640
BH	0.9400	0.3910
BI	0.9340	0.3920
BJ	0.9470	0.3870
BK	0.9210	0.3690
BL	0.9410	0.3940
BM	0.9260	0.3830
BN	0.9000	0.3610
CA	0.9470	0.3920
CB	0.9190	0.3830
CC	0.9190	0.3680
CD	0.9450	0.3830
CE	0.9130	0.3720
CF	0.9620	0.4000

Continued from previous page...

Chain	Atom inclusion	Q-score
CG	0.9400	0.3930
CH	0.9450	0.3730
CI	0.9260	0.3990
CJ	0.9110	0.3780
CK	0.8900	0.3430
CL	0.8090	0.2900
CM	0.8130	0.2820
CN	0.9360	0.3760
DA	0.8980	0.3260
DB	0.3630	0.0750
DC	0.9210	0.3600
DD	0.9430	0.3840
DE	0.9300	0.3760
DF	0.9260	0.3850
DG	0.9340	0.3580
DH	0.9360	0.3930
DI	0.9130	0.3660
DJ	0.9300	0.3600
DK	0.9210	0.3780
DL	0.8560	0.3300
DN	0.9070	0.3570
EA	0.8960	0.3400
EB	0.8490	0.3180
EC	0.9220	0.3680
ED	0.7900	0.2730
EE	0.9220	0.3750
EF	0.8660	0.3350
EG	0.9090	0.3810
EH	0.9470	0.3740
EI	0.9320	0.3760
EJ	0.7110	0.2090
EK	0.8920	0.3540
EL	0.9240	0.3660
EM	0.9530	0.3860
EN	0.9040	0.3640
FA	0.9380	0.3950
FB	0.9380	0.3970
FC	0.9130	0.3880
FD	0.9410	0.3930
FE	0.9400	0.3870
FF	0.9260	0.4090
FH	0.9410	0.3890

$\alpha \cdot \cdot \cdot$	C		
Continued	trom	nremous	naae
Contracta	110110	proceeduo	pagom

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
FI	0.9340	0.3860
FJ	0.9340	0.3800
FK	0.9360	0.3920
FL	0.9470	0.4070
FM	0.9380	0.3970
FN	0.9430	0.4050
GA	0.9470	0.3750
GB	0.9090	0.3890
GC	0.9320	0.3850
GD	0.3310	0.0910
GE	0.9380	0.3990
GF	0.9240	0.3900
GG	0.9490	0.3940
GH	0.9240	0.3920
GI	0.9190	0.3890
GJ	0.9380	0.3980
GK	0.9400	0.3840
GL	0.9400	0.3950
GM	0.9410	0.3830
GN	0.9400	0.4060
НА	0.9320	0.3840
HB	0.9220	0.3910
HC	0.9470	0.3920
HD	0.9300	0.3800
HE	0.9130	0.3790
HF	0.9430	0.3830
HG	0.9070	0.3640
HH	0.9340	0.3670
HI	0.9450	0.3870
HJ	0.9210	0.3590
HK	0.9360	0.3820
HL	0.9430	0.3930
HM	0.9050	0.3780
HN	0.9360	0.3820
IA	0.9400	0.3730
IB	0.9260	0.3930
IC	0.9430	0.3960
ID	0.9410	0.4050
IE	0.9280	0.3880
IF	0.9300	0.3920
IG	0.9410	0.3910
IH	0.9320	0.4000

Continued	£		
Continuea	Jrom	previous	page

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
II	0.9380	0.3820
IJ	0.9410	0.3890
IK	0.9260	0.3960
IL	0.9410	0.3920
IM	0.9450	0.4040
IN	0.9040	0.3670
JA	0.9360	0.3870
JB	0.9400	0.3990
JC	0.9190	0.3760
JD	0.9210	0.3520
JE	0.9260	0.3770
JF	0.9190	0.3700
JG	0.9410	0.3780
JH	0.9380	0.3740
JI	0.9300	0.3990
JJ	0.9170	0.3330
JK	0.8730	0.3400
JL	0.9190	0.3460
JM	0.8620	0.3110
JN	0.9170	0.3690
KA	0.9400	0.3850
KB	0.9130	0.3800
KC	0.9210	0.3840
KD	0.9510	0.3880
KE	0.9400	0.3950
KF	0.9280	0.3890
KG	0.9400	0.3910
KH	0.9700	0.4120
KI	0.9150	0.3780
KJ	0.9340	0.3790
KK	0.9360	0.3870
KL	0.9380	0.4060
KM	0.9550	0.4020
KN	0.9410	0.4020
LA	0.9240	0.3820
LB	0.9210	0.3710
LC	0.9490	0.4090
LD	0.9280	0.3900
LE	0.9430	0.3780
LF	0.9380	0.3730
LG	0.9150	0.3810
LH	0.9470	0.3940

Chain	Atom inclusion	Q-score
LI	0.9260	0.3860
LJ	0.9380	0.3820
LK	0.9260	0.3810
LL	0.9510	0.3840
LM	0.9050	0.3790
LN	0.9340	0.3870
MA	0.9360	0.3840
MB	0.9190	0.3730
MC	0.9380	0.3840
MD	0.9240	0.3850
ME	0.9110	0.3730
MF	0.9340	0.3610
MG	0.9340	0.3850
MH	0.9380	0.3950
MI	0.9260	0.3890
MJ	0.9430	0.3780
MK	0.9240	0.3800
ML	0.9430	0.3750
MM	0.9450	0.3970
MN	0.9280	0.3760
NA	0.9340	0.3820

Continued from previous page...

