

Full wwPDB X-ray Structure Validation Report (i)

Oct 5, 2023 – 01:29 AM EDT

PDB ID	:	6VXC
Title	:	Crystal structure of hydroxyproline dehydratase (HypD) from Clostridioides
		difficile
Authors	:	Backman, L.R.F.; Drennan, C.L.
Deposited on		
Resolution	:	2.05 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	FAILED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)		
Validation Pipeline (wwPDB-VP)	:	2.35.1
EDS Percentile statistics Ideal geometry (proteins)	: : :	FAILED 20191225.v01 (using entries in the PDB archive December 25th 2019) Engh & Huber (2001) Parkinson et al. (1996)

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\hbox{-}RAY\,DIFFRACTION$

The reported resolution of this entry is 2.05 Å.

There are no overall percentile quality scores available for this entry.

MolProbity and EDS failed to run properly - the sequence quality summary graphics cannot be shown.

6VXC

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 54911 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
1	1 A	789	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	А	169	6256	3946	1060	1210	40	0	0	0
1	В	789	Total	С	Ν	Ο	S	0	0	0
1	D	109	6256	3946	1060	1210	40	0	0	0
1	С	789	Total	С	Ν	Ο	S	0	0	0
1	U	109	6256	3946	1060	1210	40	0	0	
1	D	789	Total	С	Ν	Ο	S	0	0	0
1	D	109	6256	3946	1060	1210	40	0	0	U
1	Е	789	Total	С	Ν	Ο	\mathbf{S}	0	0	0
I	Ľ	103	6256	3946	1060	1210	40	0	0	U
1	F	789	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
1	Ľ	109	6256	3946	1060	1210	40	0	0	0
1	G	789	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	G	109	6256	3946	1060	1210	40	0	U	0
1	Н	789	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	11	109	6256	3946	1060	1210	40	0	0	0

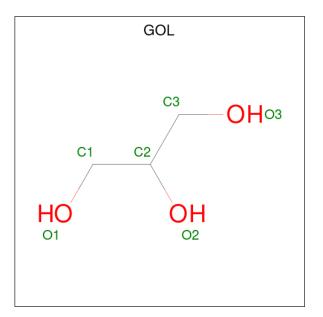
• Molecule 1 is a protein called Trans-4-hydroxy-L-proline dehydratase.

There are 160 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-19	MET	-	initiating methionine	UNP A0A031WDE4
А	-18	GLY	-	expression tag	UNP A0A031WDE4
А	-17	SER	-	expression tag	UNP A0A031WDE4
А	-16	SER	-	expression tag	UNP A0A031WDE4
А	-15	HIS	-	expression tag	UNP A0A031WDE4
А	-14	HIS	-	expression tag	UNP A0A031WDE4
А	-13	HIS	-	expression tag	UNP A0A031WDE4
А	-12	HIS	-	expression tag	UNP A0A031WDE4
A	-11	HIS	-	expression tag	UNP A0A031WDE4
А	-10	HIS	-	expression tag	UNP A0A031WDE4
А	-9	SER	-	expression tag	UNP A0A031WDE4
А	-8	SER	-	expression tag	UNP A0A031WDE4
А	-7	GLY	-	expression tag	UNP A0A031WDE4

Chain	Residue	vious page Modelled	Actual	Comment	Reference
A	-6	LEU	-	expression tag	UNP A0A031WDE4
A	-5	VAL	_	expression tag	UNP A0A031WDE4
A	-4	PRO	_	expression tag	UNP A0A031WDE4
A	-3	ARG	_	expression tag	UNP A0A031WDE4
A	-2	GLY	_	expression tag	UNP A0A031WDE4
A	-1	SER	-	expression tag	UNP A0A031WDE4
A	0	HIS	_	expression tag	UNP A0A031WDE4
В	-19	MET	_	initiating methionine	UNP A0A031WDE4
В	-18	GLY	_	expression tag	UNP A0A031WDE4
В	-17	SER	_	expression tag	UNP A0A031WDE4
В	-16	SER	_	expression tag	UNP A0A031WDE4
В	-15	HIS	-	expression tag	UNP A0A031WDE4
B	-14	HIS	-	expression tag	UNP A0A031WDE4
B	-13	HIS	-	expression tag	UNP A0A031WDE4
B	-12	HIS	-	expression tag	UNP A0A031WDE4
В	-11	HIS	-	expression tag	UNP A0A031WDE4
B	-10	HIS	_	expression tag	UNP A0A031WDE4
В	-9	SER	_	expression tag	UNP A0A031WDE4
В	-8	SER	-	expression tag	UNP A0A031WDE4
B	-7	GLY	_	expression tag	UNP A0A031WDE4
В	-6	LEU	_	expression tag	UNP A0A031WDE4
В	-5	VAL	_	expression tag	UNP A0A031WDE4
В	-4	PRO	_	expression tag	UNP A0A031WDE4
В	-3	ARG	-	expression tag	UNP A0A031WDE4
В	-2	GLY	_	expression tag	UNP A0A031WDE4
В	-1	SER	_	expression tag	UNP A0A031WDE4
В	0	HIS	_	expression tag	UNP A0A031WDE4
С	-19	MET	-	initiating methionine	UNP A0A031WDE4
С	-18	GLY	-	expression tag	UNP A0A031WDE4
С	-17	SER	_	expression tag	UNP A0A031WDE4
С	-16	SER	-	expression tag	UNP A0A031WDE4
С	-15	HIS	-	expression tag	UNP A0A031WDE4
С	-14	HIS	-	expression tag	UNP A0A031WDE4
C	-13	HIS	_	expression tag	UNP A0A031WDE4
C	-12	HIS	_	expression tag	UNP A0A031WDE4
C	-11	HIS	_	expression tag	UNP A0A031WDE4
С	-10	HIS	_	expression tag	UNP A0A031WDE4
C	-9	SER	_	expression tag	UNP A0A031WDE4
C	-8	SER	_	expression tag	UNP A0A031WDE4
С	-7	GLY	_	expression tag	UNP A0A031WDE4
C	-6	LEU	_	expression tag	UNP A0A031WDE4
		VAL		expression tag	UNP A0A031WDE4

Continued from previous pageChainResidueModelledActualCommentReference							
C	-4	PRO	-	expression tag	UNP A0A031WDE4		
C	-3	ARG	-	expression tag	UNP A0A031WDE4		
C	-2	GLY	-	expression tag	UNP A0A031WDE4		
C	-1	SER	-	expression tag	UNP A0A031WDE4		
С	0	HIS	-	expression tag	UNP A0A031WDE4		
D	-19	MET	-	initiating methionine	UNP A0A031WDE4		
D	-18	GLY	-	expression tag	UNP A0A031WDE4		
D	-17	SER	-	expression tag	UNP A0A031WDE4		
D	-16	SER	-	expression tag	UNP A0A031WDE4		
D	-15	HIS	-	expression tag	UNP A0A031WDE4		
D	-14	HIS	-	expression tag	UNP A0A031WDE4		
D	-13	HIS	-	expression tag	UNP A0A031WDE4		
D	-12	HIS	-	expression tag	UNP A0A031WDE4		
D	-11	HIS	-	expression tag	UNP A0A031WDE4		
D	-10	HIS	-	expression tag	UNP A0A031WDE4		
D	-9	SER	-	expression tag	UNP A0A031WDE4		
D	-8	SER	-	expression tag	UNP A0A031WDE4		
D	-7	GLY	-	expression tag	UNP A0A031WDE4		
D	-6	LEU	-	expression tag	UNP A0A031WDE4		
D	-5	VAL	-	expression tag	UNP A0A031WDE4		
D	-4	PRO	-	expression tag	UNP A0A031WDE4		
D	-3	ARG	-	expression tag	UNP A0A031WDE4		
D	-2	GLY	-	expression tag	UNP A0A031WDE4		
D	-1	SER	-	expression tag	UNP A0A031WDE4		
D	0	HIS	-	expression tag	UNP A0A031WDE4		
Е	-19	MET	-	initiating methionine	UNP A0A031WDE4		
Е	-18	GLY	-	expression tag	UNP A0A031WDE4		
Е	-17	SER	-	expression tag	UNP A0A031WDE4		
Е	-16	SER	-	expression tag	UNP A0A031WDE4		
Е	-15	HIS	-	expression tag	UNP A0A031WDE4		
Е	-14	HIS	_	expression tag	UNP A0A031WDE4		
Е	-13	HIS	_	expression tag	UNP A0A031WDE4		
Е	-12	HIS	_	expression tag	UNP A0A031WDE4		
Е	-11	HIS	_	expression tag	UNP A0A031WDE4		
Е	-10	HIS	_	expression tag	UNP A0A031WDE4		
Е	-9	SER	_	expression tag	UNP A0A031WDE4		
Е	-8	SER	_	expression tag	UNP A0A031WDE4		
Е	-7	GLY	_	expression tag	UNP A0A031WDE4		
E	-6	LEU	-	expression tag	UNP A0A031WDE4		
E	-5	VAL	-	expression tag	UNP A0A031WDE4		
E	-4	PRO	-	expression tag	UNP A0A031WDE4		
E	-3	ARG	_	expression tag	UNP A0A031WDE4		
<u></u>		11100			tinued on nert nage		



Chain	Residue	Modelled	Actual	Comment	Reference
Е	-2	GLY	-	expression tag	UNP A0A031WDE4
Е	-1	SER	_	expression tag	UNP A0A031WDE4
Е	0	HIS	-	expression tag	UNP A0A031WDE4
F	-19	MET	-	initiating methionine	UNP A0A031WDE4
F	-18	GLY	-	expression tag	UNP A0A031WDE4
F	-17	SER	-	expression tag	UNP A0A031WDE4
F	-16	SER	_	expression tag	UNP A0A031WDE4
F	-15	HIS	-	expression tag	UNP A0A031WDE4
F	-14	HIS	-	expression tag	UNP A0A031WDE4
F	-13	HIS	-	expression tag	UNP A0A031WDE4
F	-12	HIS	-	expression tag	UNP A0A031WDE4
F	-11	HIS	-	expression tag	UNP A0A031WDE4
F	-10	HIS	-	expression tag	UNP A0A031WDE4
F	-9	SER	-	expression tag	UNP A0A031WDE4
F	-8	SER	-	expression tag	UNP A0A031WDE4
F	-7	GLY	-	expression tag	UNP A0A031WDE4
F	-6	LEU	-	expression tag	UNP A0A031WDE4
F	-5	VAL	-	expression tag	UNP A0A031WDE4
F	-4	PRO	-	expression tag	UNP A0A031WDE4
F	-3	ARG	-	expression tag	UNP A0A031WDE4
F	-2	GLY	-	expression tag	UNP A0A031WDE4
F	-1	SER	-	expression tag	UNP A0A031WDE4
F	0	HIS	_	expression tag	UNP A0A031WDE4
G	-19	MET	_	initiating methionine	UNP A0A031WDE4
G	-18	GLY	_	expression tag	UNP A0A031WDE4
G	-17	SER	_	expression tag	UNP A0A031WDE4
G	-16	SER	_	expression tag	UNP A0A031WDE4
G	-15	HIS	_	expression tag	UNP A0A031WDE4
G	-14	HIS	_	expression tag	UNP A0A031WDE4
G	-13	HIS	_	expression tag	UNP A0A031WDE4
G	-12	HIS	_	expression tag	UNP A0A031WDE4
G	-11	HIS	-	expression tag	UNP A0A031WDE4
G	-10	HIS	-	expression tag	UNP A0A031WDE4
G	-9	SER	_	expression tag	UNP A0A031WDE4
G	-8	SER	-	expression tag	UNP A0A031WDE4
G	-7	GLY	-	expression tag	UNP A0A031WDE4
G	-6	LEU	_	expression tag	UNP A0A031WDE4
G	-5	VAL	-	expression tag	UNP A0A031WDE4
G	-4	PRO	_	expression tag	UNP A0A031WDE4
G	-3	ARG	-	expression tag	UNP A0A031WDE4
G	-2	GLY	-	expression tag	UNP A0A031WDE4
G	-1	SER	-	expression tag	UNP A0A031WDE4

Chain	Residue	Modelled	Actual	Comment	Reference
G	0	HIS	-	expression tag	UNP A0A031WDE4
Н	-19	MET	-	initiating methionine	UNP A0A031WDE4
Н	-18	GLY	-	expression tag	UNP A0A031WDE4
Н	-17	SER	-	expression tag	UNP A0A031WDE4
Н	-16	SER	-	expression tag	UNP A0A031WDE4
Н	-15	HIS	-	expression tag	UNP A0A031WDE4
Н	-14	HIS	-	expression tag	UNP A0A031WDE4
Н	-13	HIS	-	expression tag	UNP A0A031WDE4
Н	-12	HIS	-	expression tag	UNP A0A031WDE4
H	-11	HIS	-	expression tag	UNP A0A031WDE4
Н	-10	HIS	-	expression tag	UNP A0A031WDE4
Н	-9	SER	-	expression tag	UNP A0A031WDE4
Н	-8	SER	-	expression tag	UNP A0A031WDE4
Н	-7	GLY	-	expression tag	UNP A0A031WDE4
Н	-6	LEU	-	expression tag	UNP A0A031WDE4
Н	-5	VAL	-	expression tag	UNP A0A031WDE4
Н	-4	PRO	-	expression tag	UNP A0A031WDE4
Н	-3	ARG	-	expression tag	UNP A0A031WDE4
Н	-2	GLY	-	expression tag	UNP A0A031WDE4
Н	-1	SER	-	expression tag	UNP A0A031WDE4
Н	0	HIS	_	expression tag	UNP A0A031WDE4

• Molecule 2 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
2	А	1	Total 6	С 3	O 3	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	Ε	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	F	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	Н	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	657	Total O 657 657	0	0
3	В	427	Total O 427 427	0	0
3	С	612	Total O 612 612	0	0
3	D	516	Total O 516 516	0	0
3	Е	646	Total O 646 646	0	0
3	F	664	Total O 664 664	0	0
3	G	676	Total O 676 676	0	0
3	Н	617	Total O 617 617	0	0

MolProbity and EDS failed to run properly - this section is therefore empty.

3 Data and refinement statistics (i)

Property	Value	Source	
Space group	P 1 21 1	Depositor	
Cell constants	100.35Å 341.65Å 122.61Å	Depositor	
a, b, c, α , β , γ	90.00° 107.14° 90.00°	Depositor	
Resolution (Å)	49.82 - 2.05	Depositor	
% Data completeness	98.8 (49.82-2.05)	Depositor	
(in resolution range)		1	
R _{merge}	(Not available)	Depositor	
R _{sym}	0.17	Depositor	
$< I/\sigma(I) > 1$	$2.31 (at 2.05 \text{\AA})$	Xtriage	
Refinement program	PHENIX 1.16_3549	Depositor	
R, R_{free}	0.167 , 0.195	Depositor	
Wilson B-factor $(Å^2)$	21.1	Xtriage	
Anisotropy	0.133	Xtriage	
L-test for twinning ²	$ L > = 0.47, < L^2 > = 0.30$	Xtriage	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	54911	wwPDB-VP	
Average B, all atoms $(Å^2)$	21.0	wwPDB-VP	

EDS failed to run properly - this section is therefore incomplete.

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.84% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

4 Model quality (i)

4.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

4.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

8 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

		Chain		T 1	Bond lengths			Bond angles		
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	GOL	D	801	-	$5,\!5,\!5$	0.49	0	$5,\!5,\!5$	0.60	0
2	GOL	В	801	-	5,5,5	0.45	0	$5,\!5,\!5$	0.29	0
2	GOL	Е	801	-	$5,\!5,\!5$	0.47	0	$5,\!5,\!5$	0.70	0
2	GOL	G	801	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.61	0
2	GOL	Н	801	-	5,5,5	0.40	0	$5,\!5,\!5$	0.17	0
2	GOL	А	801	-	5,5,5	0.39	0	$5,\!5,\!5$	0.25	0
2	GOL	F	801	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.64	0
2	GOL	С	801	-	$5,\!5,\!5$	0.44	0	$5,\!5,\!5$	0.45	0

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GOL	D	801	-	-	0/4/4/4	-
2	GOL	В	801	-	-	0/4/4/4	-
2	GOL	Е	801	-	-	0/4/4/4	-
2	GOL	G	801	-	-	2/4/4/4	-
2	GOL	Н	801	-	-	1/4/4/4	-
2	GOL	А	801	-	-	2/4/4/4	-
2	GOL	F	801	-	-	0/4/4/4	-
2	GOL	С	801	-	-	0/4/4/4	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	А	801	GOL	C1-C2-C3-O3
2	G	801	GOL	O1-C1-C2-C3
2	Н	801	GOL	C1-C2-C3-O3
2	А	801	GOL	O2-C2-C3-O3
2	G	801	GOL	O1-C1-C2-O2

There are no ring outliers.

No monomer is involved in short contacts.

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

5 Fit of model and data (i)

5.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

5.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

5.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

