

Nov 4, 2024 – 07:55 AM JST

PDB ID	:	7W3F
EMDB ID	:	EMD-32278
Title	:	Structure of USP14-bound human 26S proteasome in substrate-engaged state
		ED1_USP14
Authors	:	Zhang, S.; Zou, S.; Yin, D.; Wu, Z.; Mao, Y.
Deposited on	:	2021-11-25
Resolution	:	3.30 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.30 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

207382

206894

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

16835

16415

Mol	Chain	Length	Quality of chain	
1	А	433	95%	• 5%
2	В	440	93%	7%
3	С	398	98%	••
4	D	418	91%	9%
5	Е	403	96%	•
6	F	439	90%	10%
7	G	246	98%	·
7	g	246	98%	••
8	Н	234	99%	·

Continued on next page...

Continued from previous page...

Chain Length Quality of chain Mol 8 h 23499% 9 Ι 26195% 5% 9 i 261. 96% J 10 24896% • 10 j 24896% • 11 Κ 24199% . 11 k 24197% • 12L 26989% 11% 121 269 88% 12% М 1325595% 5% 132556% \mathbf{m} 94% Ν 2391485% 15% 14239n 85% 15% 15Ο 27779% 21% 152770 79% 21% Р 1620599% 20516р 99% 20117Q 99% 201 17q 99% 18 \mathbf{R} 26376% 24% 18 263r 76% 24% \mathbf{S} 1924188% 12% 19241 \mathbf{S} 88% 12% Т 2026418% 81% 20264t 18% 82%

Continued on next page...

Mol	Chain	Length	Quality of chain	
21	U	953	91%	8%
22	Х	422	90%	10%
23	Y	389	97%	•
24	Ζ	324	86%	• 12%
25	a	376	99%	
26	b	377	5 0% 49%	
27	с	310	92%	7%
28	d	350	71%	27%
29	f	908	98%	
30	V	36	100%	
31	x	494	17%	
32	V	76	8%	
32	y W	456	9%	
24	VV	524	90%	••
54	V	334	. 82%	• 17%
35	е	70	71%	29%

Continued from previous page...

2 Entry composition (i)

There are 38 unique types of molecules in this entry. The entry contains 110751 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 26S protease regulatory subunit 7.

Mol	Chain	Residues		At	AltConf	Trace			
1	А	413	Total 3229	C 2034	N 566	0 611	S 18	0	0

• Molecule 2 is a protein called 26S protease regulatory subunit 4.

Mol	Chain	Residues		At	AltConf	Trace			
2	В	411	Total 3207	C 2022	N 548	O 622	S 15	0	0

• Molecule 3 is a protein called Isoform 2 of 26S proteasome regulatory subunit 8.

Mol	Chain	Residues		At	AltConf	Trace			
3	С	396	Total 3105	C 1954	N 558	O 576	S 17	0	0

• Molecule 4 is a protein called 26S protease regulatory subunit 6B.

Mol	Chain	Residues		At	AltConf	Trace			
4	D	380	Total 3040	C 1923	N 524	O 580	S 13	0	0

• Molecule 5 is a protein called 26S proteasome regulatory subunit 10B.

Mol	Chain	Residues		At	AltConf	Trace			
5	Е	389	Total 3097	C 1947	N 552	0 581	S 17	0	0

• Molecule 6 is a protein called 26S protease regulatory subunit 6A.

Mol	Chain	Residues		At	AltConf	Trace			
6	F	395	Total 3098	C 1951	N 533	O 596	S 18	0	0

• Molecule 7 is a protein called Proteasome subunit alpha type-6.

Mol	Chain	Residues		At	AltConf	Trace			
7	G	240	Total	С	Ν	Ο	\mathbf{S}	0	0
	240	1867	1187	312	355	13	0	0	
7	ď	244	Total	С	Ν	Ο	\mathbf{S}	0	0
1	g	244	1879	1193	318	355	13	0	0

• Molecule 8 is a protein called Proteasome subunit alpha type-2.

Mol	Chain	Residues		At	AltConf	Trace			
8	Н	232	Total 1801	C 1149	N 304	O 342	S 6	0	0
8	h	232	Total 1805	C 1154	N 307	O 338	S 6	0	0

• Molecule 9 is a protein called Proteasome subunit alpha type-4.

Mol	Chain	Residues		At	oms		AltConf	Trace	
9	Ι	248	Total 1933	C 1222	N 330	0 371	S 10	0	0
9	i	250	Total 1955	C 1234	N 336	0 375	S 10	0	0

• Molecule 10 is a protein called Proteasome subunit alpha type-7.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
10	т	230	Total	С	Ν	0	S	0	0
10	J	239	1861	1166	327	363	5	0	0
10	;	220	Total	С	Ν	0	S	0	0
10	J	239	1861	1168	332	356	5	0	0

• Molecule 11 is a protein called Proteasome subunit alpha type-5.

Mol	Chain	Residues		At		AltConf	Trace		
11	K	238	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
11	17	230	1813	1139	302	361	11	0	0
11	ŀ	234	Total	С	Ν	0	\mathbf{S}	0	0
11	K	234	1782	1119	295	357	11	0	0

• Molecule 12 is a protein called Isoform Long of Proteasome subunit alpha type-1.

Mol	Chain	Residues		At		AltConf	Trace		
19	т	240	Total	С	Ν	0	\mathbf{S}	0	0
12		240	1876	1175	338	352	11	0	0
19	1	228	Total	С	Ν	0	S	0	0
12	1	230	1861	1165	335	350	11	0	0

• Molecule 13 is a protein called Proteasome subunit alpha type-3.

Mol	Chain	Residues		At		AltConf	Trace		
12	М	242	Total	С	Ν	0	\mathbf{S}	0	0
10	111	242	1890	1200	323	356	11	0	0
12	m	240	Total	С	Ν	0	S	0	0
15	111	240	1881	1193	321	356	11	0	0

• Molecule 14 is a protein called Proteasome subunit beta type-6.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	Ν	203	Total 1521	C 954	N 259	O 296	S 12	0	0
14	n	202	Total 1510	C 947	N 258	O 293	S 12	0	0

• Molecule 15 is a protein called Proteasome subunit beta type-7.

Mol	Chain	Residues		At	oms		AltConf	Trace	
15	0	220	Total	С	Ν	0	S	0	0
15 0		220	1645	1035	278	320	12	0	0
15	0	220	Total	С	Ν	0	S	0	0
10	0	220	1659	1044	283	320	12	0	0

• Molecule 16 is a protein called Proteasome subunit beta type-3.

Mol	Chain	Residues		At		AltConf	Trace		
16	D	204	Total	С	Ν	Ο	\mathbf{S}	0	0
10 F	204	1587	1010	264	294	19	0	0	
16	n	204	Total	С	Ν	Ο	\mathbf{S}	0	0
10	Р	204	1591	1013	265	294	19	U	U

• Molecule 17 is a protein called Proteasome subunit beta type-2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
17	Q	199	Total 1588	C 1017	N 270	O 292	S 9	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace
17	q	199	Total 1578	C 1012	N 267	O 290	S 9	0	0

• Molecule 18 is a protein called Proteasome subunit beta type-5.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	В	201	Total	С	Ν	0	S	0	0
10	п	201	1559	982	274	294	9	0	0
18	r	201	Total	С	Ν	0	S	0	0
10	I	201	1549	977	270	293	9	0	0

• Molecule 19 is a protein called Proteasome subunit beta type-1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	q	212	Total	С	Ν	0	\mathbf{S}	0	0
19 5	210	1641	1041	281	309	10	0	0	
10	G	012	Total	С	Ν	0	\mathbf{S}	0	0
19	5	210	1650	1044	283	313	10	0	0

• Molecule 20 is a protein called Proteasome subunit beta type-4.

Mol	Chain	Residues		At		AltConf	Trace		
20	Т	216	Total	С	Ν	Ο	\mathbf{S}	0	0
20 1	L	210	1683	1062	291	318	12	0	0
20	+	216	Total	С	Ν	Ο	\mathbf{S}	0	0
20	U	210	1687	1064	291	320	12	0	0

• Molecule 21 is a protein called 26S proteasome non-ATPase regulatory subunit 1.

Mol	Chain	Residues		Α	Atoms					
21	U	872	Total 6828	C 4328	N 1157	0 1298	S 45	0	0	

• Molecule 22 is a protein called 26S proteasome non-ATPase regulatory subunit 11.

Mol	Chain	Residues		At	AltConf	Trace			
22	Х	380	Total 3009	C 1918	N 509	O 570	S 12	0	0

• Molecule 23 is a protein called 26S proteasome non-ATPase regulatory subunit 6.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	Y	378	Total 3115	C 1987	N 533	O 578	S 17	0	0

• Molecule 24 is a protein called 26S proteasome non-ATPase regulatory subunit 7.

Mol	Chain	Residues		Ate	AltConf	Trace			
24	Ζ	286	Total 2281	C 1457	N 392	0 427	${ m S}{ m 5}$	0	0

• Molecule 25 is a protein called 26S proteasome non-ATPase regulatory subunit 13.

Mol	Chain	Residues		At	AltConf	Trace			
25	a	373	Total 2995	C 1911	N 510	O 559	S 15	0	0

• Molecule 26 is a protein called 26S proteasome non-ATPase regulatory subunit 4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	b	191	Total 1458	C 910	N 261	0 279	S 8	0	0

• Molecule 27 is a protein called 26S proteasome non-ATPase regulatory subunit 14.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	С	287	Total 2260	C 1430	N 389	O 422	S 19	0	0

• Molecule 28 is a protein called 26S proteasome non-ATPase regulatory subunit 8.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	d	257	Total 2116	C 1371	N 346	O 390	S 9	0	0

• Molecule 29 is a protein called 26S proteasome non-ATPase regulatory subunit 2.

Mol	Chain	Residues		Α	AltConf	Trace			
29	f	889	Total 6866	C 4315	N 1174	0 1331	S 46	0	0

• Molecule 30 is a protein called Substrate.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
30	V	36	Total 180	C 108	N 36	O 36	0	0

• Molecule 31 is a protein called Ubiquitin carboxyl-terminal hydrolase 14.

Mol	Chain	Residues		At	AltConf	Trace			
31	x	494	Total 3929	C 2485	N 647	O 769	S 28	0	0

• Molecule 32 is a protein called Ubiquitin.

Mol	Chain	Residues	Atoms			AltConf	Trace		
32	У	76	Total 601	C 378	N 105	0 117	S 1	0	0

• Molecule 33 is a protein called 26S proteasome non-ATPase regulatory subunit 12.

Mol	Chain	Residues	Atoms			AltConf	Trace		
33	W	446	Total 3635	C 2302	N 622	O 687	$\begin{array}{c} \mathrm{S} \\ \mathrm{24} \end{array}$	0	0

• Molecule 34 is a protein called 26S proteasome non-ATPase regulatory subunit 3.

Mol	Chain	Residues	Atoms			AltConf	Trace		
34	V	444	Total 3612	C 2301	N 645	O 653	S 13	0	0

• Molecule 35 is a protein called 26S proteasome complex subunit DSS1.

Mol	Chain	Residues	Atoms			AltConf	Trace	
35	е	50	Total 425	C 260	N 65	O 100	0	0

• Molecule 36 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			AltConf
26	٨	1	Total	С	Ν	Ο	Р	0
- 50	A	1	31	10	5	13	3	0
26	D	1	Total	С	Ν	0	Р	0
- 30	D	1	31	10	5	13	3	0
26	С	1	Total	С	Ν	Ο	Р	0
- 50	U	1	31	10	5	13	3	0
26	Л	1	Total	С	Ν	Ο	Р	0
- 30		1	31	10	5	13	3	U

• Molecule 37 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf	
37	F	1	Total	С	Ν	Ο	Р	0
57	Ľ	1	27	10	5	10	2	0

• Molecule 38 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
38	с	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 26S protease regulatory subunit 7

Chain A:	95%	• 5%
MET PRO ASP ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA CLV CLV ASP ASP ASP ASP	1157 1157 1158 1158 1158 1158	
• Molecule 2: 26S protease	e regulatory subunit 4	
Chain B:	93%	7%
MET MET GLY GLN GLN GLY GLY GLY GLY GLY CLY GLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LVS LVS LVS LVS LVS PRD PRD PRD PRD PRD PRD PRD PRD PRD PRD	
• Molecule 3: Isoform 2 of	26S proteasome regulatory subunit	8
Chain C:	98%	
MET 0LU 6L1 612 813 813 8113 81109 8113 8113 8113 8113 8113 8113 8113 811		
• Molecule 4: 26S protease	e regulatory subunit 6B	
Chain D:	91%	9%
MET MET GLU GLU GLU GLU GLU CEU CEU GLU GLU GLU FRO ALA ALA ALA ALA ALA CEU SER SER	VAL SER ARG GLN THR CLN CLN CLU SER PHE LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	
• Molecule 5: 26S protease	ome regulatory subunit 10B	
Chain E:	96%	•
MET ALA TLE TLE PRO GLY GLY GLY GLY GLU LEU LEU LEU ARG ARG GL ARG GL ARG GLA CO CO CO CO CO CO CO CO CO CO CO CO CO	D6 L3 33 V3 89 V3 89 V3 V3 89 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3	
• Molecule 6: 26S protease	e regulatory subunit 6A	

Chain F:	90%	10%
MET ASN LEU LEU PRO PRO ASN ILE GLU CLU CLN GLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ALA ALA ALA E25 Q26 Q26 C28 C28 C28 C28 C28 C28 C28 C28 C28 C28	ASP PRO ASP ASP ASN ALU GLU GLU ALA ALA ALA ALA ALA ALA CLY CLY CLY CLY
A 439		
• Molecule 7: Proteasome su	ıbunit alpha type-6	
Chain G:	98%	·
MET SER ARG GLY SER SER ASP ASP		
• Molecule 7: Proteasome su	ıbunit alpha type-6	
Chain g:	98%	
MET S2 R3 M131 V220 V220 V222 V222 R245 ASP		
• Molecule 8: Proteasome su	ıbunit alpha type-2	
Chain H:	99%	
MET ALA 53 4234		
• Molecule 8: Proteasome su	ıbunit alpha type-2	
Chain h:	99%	
MET ALA ALA A234		
• Molecule 9: Proteasome su	ıbunit alpha type-4	
Chain I:	95%	5%
MET SER ARG ARG ARG CU CU CUU CUU CUU CUU CUU CUU CUU CUU		
• Molecule 9: Proteasome su	ıbunit alpha type-4	
Chain i:	96%	

• Molecule 10: Proteasome subunit alpha type-7

Chain J: 96%

96%

99%

• Molecule 10: Proteasome subunit alpha type-7

Chain j:

• Molecule 11: Proteasome subunit alpha type-5

Chain K:

 \bullet Molecule 11: Proteasome subunit alpha type-5

Chain k: 97% •

• Molecule 12: Isoform Long of Proteasome subunit alpha type-1

Chain L:	89%	11%
MET GLN CLN LEU SER LYS LYS F2 F2 F2 AL96 ARG LYS ARG LYS ARG	PRO PRO ALLA ALLA ALLA ALLA ALA ALA ALA ALA AL	
• Molecule 12: Isofo	rm Long of Proteasome subunit alpha type-1	
Chain l:	88%	12%
MET GLN LEU LEU LYS LYS VAL LYS PHE ARG ARG ARG ARG AC41 AR241 AR241 AR241 AR241 AR241 AR241 AR241 AR321 A AR321 A A A A A A A A A A A A A A A A	LYS GLN GLN GLN GLN GLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	
• Molecule 13: Prot	easome subunit alpha type-3	
Chain M:	95%	5%

• Molecule 17: Proteasome subunit beta type-2

Chain Q:

• Molecule 17: Proteasome subunit beta type-2

Chain q:

99%

• Molecule 18: Proteasome subunit beta type-5

Chain R:	76%	24%
MET ALA LEU LEU VAL LEU GLU GLU CLU CLU CLU FRO	VAL ARA GLY GLY FHE GLY GLY ARG GLY ASP ASP ASP PRO GLY ASP SER SER SER	GLY LEU LEU ALA ALA ALA PRO GLY GLY GLU GLU GLU GLU GLU GLU GLY GLY GLY

99%

• Molecule 18: Proteasome subunit beta type-5

Chain r:	76%	24%	
MET ALA LEU ALA SER VAL LEU	ARIC ARIC PRO PRO PRO PRO ARIC ARIC ARIC PHE PHE PHE ARIC ARIC ARIC ARIC ARIC ARIC ARIC ARIC	PRU GLY GLY GLV PRO GLU GLU GLU GLU	MET LEU HIS GLY T1

• Molecule 19: Proteasome subunit beta type-1

• Molecule 20:	Proteasome subunit beta type-4	
Chain T:	81%	18%
MET GLU PHE LEU CLY SER SER SER CLY	TRP GLY GLY GLY GLY FRO GLY FRO GLY FRO GLY FRO FRO FRO FRO FRO FRO FRO FRO FRO FRO	K195 821 6 911 911 011 011
• Molecule 20:	Proteasome subunit beta type-4	
Chain t:	82%	18%
MET GLU GLU ALA PHE LEU CLY SER SER SER CLY	TRP ALA ALA ALA ALA ALA ARA ARA ARA ARA ARA	CLY CLY CLU CLU
• Molecule 21:	26S proteasome non-ATPase regulatory subunit	1
Chain U:	91%	8%
MET ILE THR SER ALA ALA GI C C C C	THR THR CUAL CUAL CUAL CUAL THR THR THR THR THR THR THR THR THR THR	SER SER ALA ALA PHE VAL CLY CLY CLY CLY SER PRO GLU CLU
PRO LYS D320 N373 T431 K821	K823 E524 K825 K849 K849 K853 K854 E855 K855 E855 K861 K861 K861 K861 K861 K861 K861 K861	VAL ALA ALA ALA ALA ALA ALA CLA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
GLU TYR ILE ASP ASP		
• Molecule 22:	26S proteasome non-ATPase regulatory subunit	11
Chain X:	90%	10%
MET ALA ALA ALA ALA ALA VAL VAL CLU GLU GLN ARG	ALA GLN SER LEU SER ARS ARS ARS ARS ARS ARS ARS ARS ARS AR	1156 B155 A101 1422
• Molecule 23:	26S proteasome non-ATPase regulatory subunit	6
Chain Y:	97%	.
MET PRO LLEU GLU GLU GLU GLU CLU CLEU CLEU	P12 M389	
• Molecule 24:	26S proteasome non-ATPase regulatory subunit	7
Chain Z:	86%	• 12%
MET PRO CILU CILU LEU LEU V144 H145 D1466 D146 D146 D146 D148	1149 1149 1149 1149 1148 1148 1148 1148	GLU LYS LYS

 \bullet Molecule 25: 26S proteasome non-ATPase regulatory subunit 13

WORLDWIDE PROTEIN DATA BANK

Chain a:	99% .	
MET LYS ASP V4 T88 L343 1375		
• Molecule 26	26S proteasome non-ATP ase regulatory subunit 4	
Chain b:	50% 49%	
M1 R100 L189 A190 G191 GL7 GL7 GL7 GL7	MET LEU CLEV CLEV CLEV CLEV CLEV CLEV ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA ALA
GLU ALA GLY ILE ALA ALA THR THR THR GLY GLU	ASP ASP ALA ALA ALA ASP LEU LEU LEU LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	GLU
SER ALA ASP IILE ASP ALA ALA ALA MET	THR SER GLU PRO GLU PRO GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	THR
LYS ASP GLY GLY ASP LYS CLU GLU GLU	TAS	
• Molecule 27:	26S proteasome non-ATPase regulatory subunit 14	
Chain c:	92% 7%	
MET ASP ARC LEU LEU LEU CLY GLY GLY	CLV CLV CLV CLV CLN CLN CLN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
• Molecule 28	26S proteasome non-ATPase regulatory subunit 8	
Chain d:	71% · 27%	
MET PHE ILLE LYS GLY ARG ARG ARG ARG	ARG ARG ARG ARG ARG ARG ARG CLY ARG CLY VAL LEU ARG CLY VAL LEU ARG ARG ARG CLY ARG ARG CLY ARG CLEU ARG CLY ARG CLU VAL LEU ARG CLY VAL LEU ARG CLY VAL LEU ARG CLY VAL LEU ARG CLY VAL LEU ARG CLY VAL LEU ARG CLY VAL LEU ARG CLY VAL LEU ARG CLY CLY VAL LEU ARG CLY CLY VAL LEU ARG CLY CLY VAL LEU ARG CLY CLY VAL LEU ARG CLY VAL LEU ARG CLY CLA VAL LEU ARG CLY VAL CLU VAL C C C C C C C C C C C C C C C C C C C	ALA
SER ARG MET MET ALA ALA ALA ALA ALA ALA ALA	ALA ALA ALA ALA SER SER SER SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	P232
• Molecule 29	$26\mathrm{S}$ proteasome non-ATP ase regulatory subunit 2	
Chain f:	98%	
M1 R6 E26 A74 R80	H100 P101 H102 H102 H102 H102 H154 V192 E306 E306 E306 E306 B363 C362 E306 E306 E306 B363 C362 E306 E306 C362 C362 C362 C362 C362 C362 C362 C36	TYR ASP LEU
• Molecule 30:	Substrate	
Chain v:	100%	
There are no o	tlier residues recorded for this chain.	

• Molecule 31: Ubiquitin carboxyl-terminal hydrolase 14

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	124597	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	400	Depositor
Maximum defocus (nm)	5000	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.022	Depositor
Minimum map value	-0.004	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.005	Depositor
Map size (Å)	438.4, 438.4, 438.4	wwPDB
Map dimensions	640, 640, 640	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.685, 0.685, 0.685	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP, ZN, ATP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.27	0/3283	0.59	1/4433~(0.0%)
2	В	0.26	0/3254	0.55	0/4388
3	С	0.27	0/3146	0.58	0/4226
4	D	0.26	0/3090	0.55	0/4168
5	Ε	0.25	0/3145	0.55	1/4233~(0.0%)
6	F	0.26	0/3137	0.55	1/4223~(0.0%)
7	G	0.27	0/1901	0.50	0/2572
7	g	0.27	0/1913	0.52	0/2589
8	Н	0.27	0/1840	0.51	0/2495
8	h	0.26	0/1844	0.50	0/2497
9	Ι	0.25	0/1963	0.51	0/2650
9	i	0.26	0/1985	0.51	0/2677
10	J	0.25	0/1887	0.53	0/2553
10	j	0.25	0/1887	0.55	0/2549
11	Κ	0.27	0/1841	0.51	0/2486
11	k	0.26	0/1809	0.50	0/2444
12	L	0.26	0/1911	0.53	0/2584
12	1	0.26	0/1896	0.55	0/2565
13	М	0.28	0/1925	0.53	0/2592
13	m	0.26	0/1916	0.48	0/2580
14	Ν	0.26	0/1548	0.52	0/2097
14	n	0.26	0/1536	0.51	0/2080
15	0	0.26	0/1672	0.52	0/2267
15	0	0.26	0/1686	0.53	0/2282
16	Р	0.26	0/1616	0.54	0/2180
16	р	0.26	0/1620	0.52	0/2184
17	Q	0.27	0/1621	0.51	0/2194
17	q	0.26	$0/1\overline{611}$	0.51	$0/2\overline{182}$
18	R	0.26	0/1590	0.52	0/2147
18	r	0.27	0/1580	0.55	0/2135
19	S	0.27	0/1671	0.53	$0/2\overline{252}$
19	S	0.26	0/1680	0.53	0/2264

Mal	Chain	Bond	lengths	B	ond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
20	Т	0.26	0/1716	0.54	0/2323
20	t	0.26	0/1720	0.53	0/2328
21	U	0.26	0/6945	0.52	0/9382
22	Х	0.25	0/3053	0.53	0/4115
23	Y	0.27	0/3173	0.57	0/4273
24	Ζ	0.26	0/2324	0.52	1/3150~(0.0%)
25	а	0.26	0/3053	0.56	0/4133
26	b	0.25	0/1478	0.53	0/2001
27	с	0.26	0/2302	0.57	0/3110
28	d	0.27	0/2162	0.54	0/2919
29	f	0.28	0/6980	0.59	0/9433
31	Х	0.26	0/4002	0.53	0/5390
32	У	0.26	0/607	0.56	0/816
33	W	0.26	0/3683	0.56	1/4952~(0.0%)
34	V	0.26	0/3681	0.54	1/4969~(0.0%)
35	е	0.29	0/437	0.55	0/595
All	All	0.26	0/112320	0.54	6/151657~(0.0%)

There are no bond length outliers.

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	А	157	ILE	C-N-CA	5.88	136.40	121.70
24	Ζ	257	MET	CA-CB-CG	5.57	122.77	113.30
6	F	139	LEU	CA-CB-CG	5.26	127.39	115.30
5	Е	303	LEU	CA-CB-CG	5.24	127.35	115.30
33	W	190	MET	CG-SD-CE	5.17	108.47	100.20
34	V	100	MET	CB-CG-SD	5.05	127.56	112.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	411/433~(95%)	371 (90%)	39 (10%)	1 (0%)	44	71
2	В	409/440~(93%)	367~(90%)	41 (10%)	1 (0%)	44	71
3	С	394/398~(99%)	351 (89%)	41 (10%)	2 (0%)	25	56
4	D	378/418~(90%)	336 (89%)	42 (11%)	0	100	100
5	Ε	387/403~(96%)	348 (90%)	39 (10%)	0	100	100
6	F	391/439~(89%)	364 (93%)	27 (7%)	0	100	100
7	G	238/246~(97%)	224 (94%)	14 (6%)	0	100	100
7	g	242/246~(98%)	235 (97%)	7 (3%)	0	100	100
8	Н	230/234~(98%)	215 (94%)	15 (6%)	0	100	100
8	h	230/234~(98%)	218 (95%)	12 (5%)	0	100	100
9	Ι	246/261~(94%)	236 (96%)	10 (4%)	0	100	100
9	i	248/261~(95%)	241 (97%)	7 (3%)	0	100	100
10	J	237/248~(96%)	230 (97%)	7 (3%)	0	100	100
10	j	237/248~(96%)	227 (96%)	10 (4%)	0	100	100
11	K	236/241~(98%)	231 (98%)	5 (2%)	0	100	100
11	k	232/241~(96%)	223 (96%)	9 (4%)	0	100	100
12	L	238/269~(88%)	232 (98%)	6 (2%)	0	100	100
12	1	236/269~(88%)	228 (97%)	8 (3%)	0	100	100
13	М	240/255~(94%)	231 (96%)	9 (4%)	0	100	100
13	m	238/255~(93%)	236 (99%)	2 (1%)	0	100	100
14	Ν	201/239~(84%)	195 (97%)	6 (3%)	0	100	100
14	n	200/239~(84%)	192 (96%)	8 (4%)	0	100	100
15	Ο	218/277~(79%)	215 (99%)	3 (1%)	0	100	100
15	О	218/277~(79%)	209 (96%)	9 (4%)	0	100	100
16	Р	202/205~(98%)	195 (96%)	7 (4%)	0	100	100
					Continued of	on next	page

PROTEIN DATA BANK

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	р	202/205~(98%)	191~(95%)	11 (5%)	0	100	100
17	Q	197/201~(98%)	189~(96%)	8 (4%)	0	100	100
17	q	197/201~(98%)	189~(96%)	8 (4%)	0	100	100
18	R	199/263~(76%)	192~(96%)	7~(4%)	0	100	100
18	r	199/263~(76%)	195~(98%)	4(2%)	0	100	100
19	S	211/241~(88%)	206~(98%)	5(2%)	0	100	100
19	\mathbf{S}	211/241~(88%)	205~(97%)	6 (3%)	0	100	100
20	Т	214/264~(81%)	210~(98%)	4(2%)	0	100	100
20	t	214/264~(81%)	210~(98%)	4(2%)	0	100	100
21	U	868/953~(91%)	816 (94%)	52~(6%)	0	100	100
22	Х	378/422~(90%)	363~(96%)	15~(4%)	0	100	100
23	Y	376/389~(97%)	339~(90%)	37~(10%)	0	100	100
24	Z	284/324~(88%)	256~(90%)	27~(10%)	1 (0%)	30	61
25	a	371/376~(99%)	348~(94%)	22~(6%)	1 (0%)	37	66
26	b	189/377~(50%)	173~(92%)	16 (8%)	0	100	100
27	с	285/310~(92%)	255~(90%)	30~(10%)	0	100	100
28	d	255/350~(73%)	221~(87%)	32~(12%)	2(1%)	16	46
29	f	887/908~(98%)	771 (87%)	$116\ (13\%)$	0	100	100
31	х	492/494~(100%)	455~(92%)	37~(8%)	0	100	100
32	У	74/76~(97%)	70~(95%)	4 (5%)	0	100	100
33	W	444/456~(97%)	420~(95%)	23~(5%)	1 (0%)	44	71
34	V	442/534~(83%)	432 (98%)	9(2%)	1 (0%)	44	71
35	е	48/70~(69%)	42 (88%)	6 (12%)	0	100	100
All	All	$13\overline{974/15458}~(90\%)$	13098 (94%)	866~(6%)	10 (0%)	50	76

Continued from previous page...

All (10) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	158	ASP
3	С	112	CYS
28	d	203	PRO
33	W	140	ILE
24	Ζ	145	HIS
28	d	200	PHE

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
3	С	90	HIS
25	a	343	LEU
2	В	356	PRO
34	V	466	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	348/372~(94%)	347~(100%)	1 (0%)	91	94
2	В	357/385~(93%)	356~(100%)	1 (0%)	91	94
3	\mathbf{C}	340/346~(98%)	335~(98%)	5 (2%)	60	77
4	D	333/366~(91%)	332 (100%)	1 (0%)	91	94
5	Е	341/353~(97%)	341 (100%)	0	100	100
6	F	340/379~(90%)	339 (100%)	1 (0%)	91	94
7	G	202/210~(96%)	202 (100%)	0	100	100
7	g	201/210~(96%)	197~(98%)	4 (2%)	50	71
8	Н	187/191~(98%)	187~(100%)	0	100	100
8	h	188/191~(98%)	188 (100%)	0	100	100
9	Ι	202/221~(91%)	202 (100%)	0	100	100
9	i	206/221~(93%)	206 (100%)	0	100	100
10	J	197/211~(93%)	197~(100%)	0	100	100
10	j	196/211~(93%)	195~(100%)	1 (0%)	86	91
11	Κ	197/203~(97%)	197~(100%)	0	100	100
11	k	195/203~(96%)	195~(100%)	0	100	100
12	L	202/230~(88%)	201~(100%)	1 (0%)	86	91
12	1	201/230~(87%)	200 (100%)	1 (0%)	86	91
13	М	198/212~(93%)	198 (100%)	0	100	100
13	m	198/212~(93%)	197~(100%)	1 (0%)	86	91

Continued on next page...

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	page
00100000000	J. 01.0	proceed as	P ~ 9 0 · · · ·

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
14	Ν	158/181~(87%)	158 (100%)	0	100	100
14	n	156/181~(86%)	156~(100%)	0	100	100
15	Ο	178/228~(78%)	178~(100%)	0	100	100
15	О	181/228 (79%)	181 (100%)	0	100	100
16	Р	172/174~(99%)	171 (99%)	1 (1%)	84	90
16	р	173/174~(99%)	172 (99%)	1 (1%)	84	90
17	Q	168/171~(98%)	167~(99%)	1 (1%)	84	90
17	q	166/171~(97%)	166 (100%)	0	100	100
18	R	156/202~(77%)	155 (99%)	1 (1%)	84	90
18	r	154/202~(76%)	154 (100%)	0	100	100
19	S	175/199~(88%)	174 (99%)	1 (1%)	84	90
19	s	177/199~(89%)	176 (99%)	1 (1%)	84	90
20	Т	178/215~(83%)	177 (99%)	1 (1%)	84	90
20	t	179/215~(83%)	179 (100%)	0	100	100
21	U	748/816~(92%)	746 (100%)	2 (0%)	91	94
22	Х	327/362~(90%)	327 (100%)	0	100	100
23	Y	334/344~(97%)	334 (100%)	0	100	100
24	Ζ	257/295~(87%)	253 (98%)	4 (2%)	58	76
25	a	333/336~(99%)	333 (100%)	0	100	100
26	b	167/312~(54%)	166 (99%)	1 (1%)	84	90
27	с	252/268~(94%)	251 (100%)	1 (0%)	89	93
28	d	231/294~(79%)	226 (98%)	5 (2%)	47	69
29	f	745/763~(98%)	743 (100%)	2 (0%)	91	94
31	x	439/439~(100%)	439 (100%)	0	100	100
32	У	68/68~(100%)	68 (100%)	0	100	100
33	W	410/416 (99%)	404 (98%)	6 (2%)	60	77
34	V	390/460~(85%)	388 (100%)	2 (0%)	86	91
35	е	44/63~(70%)	44 (100%)	0	100	100
All	All	11945/13133 (91%)	11898 (100%)	47 (0%)	88	93

All (47) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	200	ARG
2	В	410	ARG
3	С	53	ASN
3	С	109	THR
3	С	113	ARG
3	С	213	ARG
3	С	287	LYS
4	D	294	ASN
6	F	144	LYS
12	L	196	ARG
16	Р	99	ARG
17	Q	145	ARG
18	R	107	ARG
19	S	100	ARG
20	Т	195	LYS
21	U	129	ARG
21	U	373	ASN
24	Ζ	144	VAL
24	Ζ	146	ASP
24	Ζ	147	ASP
24	Ζ	149	THR
26	b	100	ARG
27	с	209	LYS
28	d	11	ARG
28	d	196	ARG
28	d	201	ASN
28	d	204	LYS
28	d	205	LYS
29	f	6	ARG
29	f	680	ARG
7	g	131	MET
7	g	220	VAL
7	g	222	VAL
7	g	224	ASN
10	i	227	LYS
12]	101	ARG
13	m	181	MET
16	b	99	ARG
19	r S	100	ARG
33	W	94	ARG
33	W	116	THR
33	W	117	ASP
33	W	118	LEU

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
33	W	160	LYS
33	W	303	LYS
34	V	106	ARG
34	V	180	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (16) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	150	HIS
2	В	241	ASN
3	С	278	ASN
5	Ε	55	GLN
5	Е	121	ASN
21	U	525	ASN
23	Y	363	ASN
24	Ζ	235	ASN
27	с	115	HIS
28	d	116	HIS
28	d	201	ASN
29	f	540	GLN
9	i	155	ASN
11	k	99	HIS
33	W	215	GLN
35	е	37	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 1 is monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	B	ond ang	les
WIOI	туре	Unam	res		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
36	ATP	А	501	-	26,33,33	0.59	0	31,52,52	0.74	1 (3%)
36	ATP	С	501	-	26,33,33	0.61	0	31,52,52	0.74	2 (6%)
36	ATP	В	501	-	26,33,33	0.61	0	31,52,52	0.75	2 (6%)
37	ADP	Е	501	-	24,29,29	0.95	1 (4%)	29,45,45	1.40	4 (13%)
36	ATP	D	501	-	26,33,33	0.61	0	31,52,52	0.76	2 (6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
36	ATP	А	501	-	-	4/18/38/38	0/3/3/3
36	ATP	С	501	-	-	4/18/38/38	0/3/3/3
36	ATP	В	501	-	-	6/18/38/38	0/3/3/3
37	ADP	Е	501	-	-	5/12/32/32	0/3/3/3
36	ATP	D	501	-	-	0/18/38/38	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
37	Ε	501	ADP	C5-C4	2.45	1.47	1.40

All (11) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
37	Е	501	ADP	C3'-C2'-C1'	3.47	106.20	100.98
37	Е	501	ADP	N3-C2-N1	-3.08	123.87	128.68
37	Е	501	ADP	C4-C5-N7	-2.82	106.46	109.40

Continued on next page...

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
37	Е	501	ADP	PA-O3A-PB	-2.66	123.69	132.83
36	D	501	ATP	C5-C6-N6	2.30	123.84	120.35
36	В	501	ATP	C5-C6-N6	2.30	123.84	120.35
36	А	501	ATP	C5-C6-N6	2.27	123.81	120.35
36	С	501	ATP	C5-C6-N6	2.27	123.80	120.35
36	В	501	ATP	PB-O3B-PG	2.04	139.83	132.83
36	D	501	ATP	PB-O3B-PG	2.02	139.76	132.83
36	С	501	ATP	PB-O3B-PG	2.01	139.74	132.83

Continued from previous page...

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
36	В	501	ATP	C5'-O5'-PA-O1A
36	В	501	ATP	C5'-O5'-PA-O2A
36	А	501	ATP	C3'-C4'-C5'-O5'
36	В	501	ATP	O4'-C4'-C5'-O5'
36	В	501	ATP	C3'-C4'-C5'-O5'
36	А	501	ATP	O4'-C4'-C5'-O5'
37	Е	501	ADP	O4'-C4'-C5'-O5'
37	Е	501	ADP	C3'-C4'-C5'-O5'
36	В	501	ATP	C5'-O5'-PA-O3A
37	Е	501	ADP	C5'-O5'-PA-O3A
37	Е	501	ADP	C5'-O5'-PA-O1A
36	В	501	ATP	C4'-C5'-O5'-PA
36	А	501	ATP	PG-O3B-PB-O2B
36	С	501	ATP	C4'-C5'-O5'-PA
36	С	501	ATP	PB-O3A-PA-O1A
36	С	501	ATP	C3'-C4'-C5'-O5'
36	А	501	ATP	C5'-O5'-PA-O3A
36	С	501	ATP	C5'-O5'-PA-O1A
37	Е	501	ADP	C5'-O5'-PA-O2A

All (19) torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be

highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-32278. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 320

Y Index: 320

Z Index: 320

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 368

Y Index: 361

Z Index: 297

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.005. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2376 nm^3 ; this corresponds to an approximate mass of 2146 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.303 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-32278 and PDB model 7W3F. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.005 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.005).

9.4 Atom inclusion (i)

At the recommended contour level, 98% of all backbone atoms, 95% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.005) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score		
All	0.9500	0.3990		
А	0.9700	0.2880		
В	0.9640	0.3620		
С	0.9680	0.3860		
D	0.9770	0.3870		
Е	0.9400	0.3080		
F	0.9460	0.2300		
G	0.9860	0.5120		
Н	0.9930	0.5130		
Ι	0.9770	0.5000		
J	0.9760	0.4850		
K	0.9820	0.5030		
L	0.9860	0.5230		
М	0.9810	0.5110		
Ν	0.9910	0.5420		
О	0.9940	0.5330		
Р	0.9940	0.5420		
\mathbf{Q}	0.9920	0.5370		
R	0.9950	0.5390		
\mathbf{S}	0.9910	0.5340		
Т	0.9860	0.5430		
U	0.9220	0.3380		
V	0.9320	0.3150		
W	0.8470	0.2750		
X	0.9440	0.3210		
Y	0.9530	0.3440		
Z	0.9720	0.3510		
a	0.9240	0.2800		
b	0.9400	0.2870		
c	0.9620	0.3580		
d	0.8560	0.2470		
e	0.9280	0.3210		
f	0.9240	0.2440		
g	0.9740	0.5140		
h	0.9820	0.5230		

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
i	0.9610	0.4970
j	0.9650	0.4680
k	0.9770	0.5110
l	0.9860	0.5280
m	0.9830	0.5190
n	0.9950	0.5500
0	0.9910	0.5360
р	0.9960	0.5480
q	0.9940	0.5480
r	0.9960	0.5490
s	0.9910	0.5380
t	0.9850	0.5470
V	0.9780	0.3210
X	0.7510	0.2040
V	0.7870	0.1750

