

Full wwPDB X-ray Structure Validation Report (i)

Dec 8, 2023 - 04:14 am GMT

PDB ID	:	2W6Q
Title	:	Crystal structure of Biotin carboxylase from E. coli in complex with the
		triazine-2,4-diamine fragment
Authors	:	Mochalkin, I.; Miller, J.R.
Deposited on	:	2008-12-18
Resolution	:	2.05 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.05 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
Clashscore	141614	1773 (2.04-2.04)
Ramachandran outliers	138981	1752 (2.04-2.04)
Sidechain outliers	138945	1752 (2.04-2.04)
RSRZ outliers	127900	1672(2.04-2.04)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	449	.% 95%	•
1	В	449	93%	6% •

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	CL	В	1447	-	-	Х	-

2W6Q

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 7633 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called BIOTIN CARBOXYLASE.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	А	447	Total 3449	C 2173	N 616	O 638	S 22	0	5	1
1	В	446	Total 3447	C 2168	N 618	O 639	S 22	0	6	1

• Molecule 2 is 6-(2-phenoxyethoxy)-1,3,5-triazine-2,4-diamine (three-letter code: OA5) (formula: $C_{11}H_{13}N_5O_2$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
2	Δ	1	Total	С	Ν	0	0	0
	I	18	11	5	2	0	0	
9	P	1	Total	С	Ν	Ο	0	0
	D	1	18	11	5	2	0	0

• Molecule 3 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Cl 1 1	0	0
3	В	1	Total Cl 1 1	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	400	Total O 400 400	0	0
4	В	299	Total O 299 299	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: BIOTIN CARBOXYLASE

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	84.00Å 105.57Å 122.05Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution (Å)	16.00 - 2.05	Depositor
Resolution (A)	17.92 - 2.05	EDS
% Data completeness	96.9 (16.00-2.05)	Depositor
(in resolution range)	92.4(17.92-2.05)	EDS
R_{merge}	0.08	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.47 (at 2.05 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0005	Depositor
B B.	0.184 , 0.224	Depositor
n, n_{free}	0.184 , (Not available)	DCC
R_{free} test set	No test flags present.	wwPDB-VP
Wilson B-factor $(Å^2)$	23.8	Xtriage
Anisotropy	0.094	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35 , 44.4	EDS
L-test for $twinning^2$	$ < L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	7633	wwPDB-VP
Average B, all atoms $(Å^2)$	27.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.16% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OA5, $\rm CL$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.42	0/3537	0.53	0/4772	
1	В	0.42	0/3540	0.52	0/4777	
All	All	0.42	0/7077	0.53	0/9549	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3449	0	3485	9	0
1	В	3447	0	3473	22	0
2	А	18	0	13	0	0
2	В	18	0	13	0	0
3	А	1	0	0	0	0
3	В	1	0	0	2	0
4	А	400	0	0	1	0
4	В	299	0	0	2	0
All	All	7633	0	6984	31	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

A + a == 1	A + D	Interatomic	$\begin{tabular}{ c c c } \hline Clash \\ \hline overlap (Å) \\ \hline 0.71 \\ \hline 0.65 \\ \hline 0.63 \\ \hline 0.61 \\ \hline 0.59 \\ \hline 0.56 \\ \hline 0.56 \\ \hline 0.55 \\ \hline 0.55 \\ \hline 0.53 \\ \hline 0.53 \\ \hline 0.53 \\ \hline 0.53 \\ \hline 0.51 \\ \hline 0.51 \\ \hline 0.51 \\ \hline 0.51 \\ \hline 0.50 \\ \hline 0.49 \\ \hline 0.49 \\ \hline 0.49 \\ \hline 0.48 \\ \hline 0.45 \\ \hline 0.44 \\ \hline 0.43 \\ \hline 0.41 \\ \hline 0.11 \\ \hline 0.$
Atom-1	Atom-2	distance (\AA)	
1:B:232:MET:HE2	1:B:440:LEU:HB2	1.71	0.71
1:B:292:ARG:NH1	3:B:1447:CL:CL	2.67	0.65
1:B:232:MET:CE	1:B:440:LEU:HB2	2.29	0.63
1:B:152:ILE:CG2	1:B:202:LYS:HB2	2.30	0.61
1:B:152:ILE:HG21	1:B:202:LYS:HB2	1.83	0.59
1:B:232:MET:HE3	4:B:2289:HOH:O	2.04	0.56
1:A:79:HIS:HE2	1:A:312:GLN:NE2	2.04	0.56
1:B:79:HIS:HE2	1:B:312:GLN:NE2	2.04	0.55
1:A:105:PRO:HG2	1:A:291:THR:HB	1.90	0.53
1:A:113:MET:HE3	1:A:267:ILE:HD13	1.90	0.53
1:B:232:MET:HE2	1:B:232:MET:HA	1.90	0.53
1:A:298:PRO:O	1:A:302:MET:HG2	2.09	0.53
1:B:298:PRO:O	1:B:302:MET:HG2	2.10	0.51
1:A:113:MET:CE	1:A:267:ILE:HD13	2.41	0.51
1:B:40:LYS:HE3	1:B:370:HIS:HA	1.94	0.50
1:B:295:VAL:HG23	3:B:1447:CL:CL	2.49	0.49
1:B:5:ILE:HG22	1:B:77:ALA:HB3	1.95	0.49
1:A:340:ASN:HD22	1:A:384:MET:HA	1.79	0.48
1:A:5:ILE:HG22	1:A:77:ALA:HB3	1.98	0.46
1:B:314:ARG:NH2	4:B:2188:HOH:O	2.41	0.45
1:B:132:PRO:HB2	1:B:152:ILE:HG23	1.97	0.45
1:B:228:ARG:HH21	1:B:294:GLN:NE2	2.15	0.45
1:B:290:ASN:ND2	1:B:294:GLN:OE1	2.50	0.44
1:B:232:MET:CE	1:B:232:MET:HA	2.47	0.43
1:B:274:THR:HG21	1:B:294:GLN:HE22	1.83	0.43
1:B:274:THR:HG21	1:B:294:GLN:NE2	2.35	0.42
1:B:205:GLU:O	1:B:206:ASN:ND2	2.53	0.41
1:A:212:ILE:HD13	1:A:227:GLU:HB3	2.03	0.41
1:B:303:ILE:HD12	1:B:330:VAL:HG13	2.03	0.41
1:B:159:LYS:HG2	1:B:169:MET:HG2	2.02	0.40
1:A:442[B]:LYS:HD2	4:A:2399:HOH:O	2.20	0.40

All (31) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	450/449~(100%)	441 (98%)	9 (2%)	0	100 100
1	В	450/449~(100%)	442 (98%)	8 (2%)	0	100 100
All	All	900/898~(100%)	883 (98%)	17 (2%)	0	100 100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	А	363/361~(101%)	359~(99%)	4 (1%)	73	73	
1	В	363/361~(101%)	359~(99%)	4 (1%)	73	73	
All	All	726/722~(101%)	718 (99%)	8 (1%)	73	73	

All (8) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	106	LYS
1	А	235	ARG
1	А	237	GLN
1	А	323	ILE
1	В	111	ARG
1	В	143	ASP
1	В	232	MET
1	В	442	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	312	GLN
1	А	319	GLN
1	А	340	ASN
1	А	404	ASN
1	В	206	ASN
1	В	233	GLN
1	В	236	HIS
1	В	290	ASN
1	В	294	GLN
1	В	312	GLN
1	В	319	GLN
1	В	404	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 4 ligands modelled in this entry, 2 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chai	Chain	Thein Bog	Dec	Dec	Dog	Dog	Bos	Dog	Dog	Dec	Dog	Dec	Tinle	Bo	ond leng	$_{\rm sths}$	B	ond ang	les
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2									
2	OA5	В	1446	-	19,19,19	1.05	1 (5%)	22,24,24	1.97	6 (27%)									
2	OA5	А	1447	-	19,19,19	0.86	1 (5%)	22,24,24	1.96	6 (27%)									

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	OA5	В	1446	-	-	3/7/7/7	0/2/2/2
2	OA5	А	1447	-	-	2/7/7/7	0/2/2/2

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	В	1446	OA5	O4-C1	3.19	1.37	1.34
2	А	1447	OA5	O4-C1	2.43	1.36	1.34

All (12) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	В	1446	OA5	N3-C1-N2	-4.12	119.70	127.63
2	А	1447	OA5	N3-C6-N8	-3.83	119.42	125.42
2	А	1447	OA5	N3-C1-N2	-3.82	120.27	127.63
2	В	1446	OA5	C7-O4-C1	3.72	122.74	117.83
2	А	1447	OA5	C7-O4-C1	3.65	122.64	117.83
2	В	1446	OA5	N2-C5-N8	-3.53	119.89	125.42
2	В	1446	OA5	N3-C6-N8	-3.46	119.98	125.42
2	А	1447	OA5	N2-C5-N8	-3.15	120.47	125.42
2	А	1447	OA5	C5-N8-C6	3.11	120.08	114.83
2	В	1446	OA5	C5-N8-C6	3.06	120.00	114.83
2	А	1447	OA5	N10-C6-N8	2.75	121.54	117.25
2	В	1446	OA5	N9-C5-N8	2.04	120.43	117.25

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	А	1447	OA5	O12-C11-C7-O4
2	В	1446	OA5	O12-C11-C7-O4

Continued on next page...

Mol	Chain	Res	Type	Atoms
2	В	1446	OA5	C15-C13-O12-C11
2	В	1446	OA5	C14-C13-O12-C11
2	А	1447	OA5	C7-C11-O12-C13

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	447/449~(99%)	-0.29	5 (1%) 80 82	17, 23, 33, 44	0
1	В	446/449 (99%)	-0.05	49 (10%) 5 5	12, 21, 75, 81	0
All	All	893/898~(99%)	-0.17	54 (6%) 21 23	12, 23, 65, 81	0

All (54) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	447	GLN	8.5
1	В	446	LEU	7.9
1	А	446	LEU	5.8
1	В	182	ILE	5.5
1	В	168	GLY	5.4
1	В	152	ILE	5.0
1	В	193	PHE	5.0
1	В	167	ARG	4.6
1	В	191	ALA	4.4
1	В	176	ALA	4.3
1	В	164	GLY	4.1
1	В	143	ASP	4.0
1	В	166	GLY	3.8
1	В	141	ASP	3.7
1	В	142	MET	3.7
1	В	146	ARG	3.6
1	В	151	ARG	3.6
1	В	192	ALA	3.5
1	В	165	GLY	3.5
1	В	445	GLY	3.5
1	В	194	SER	3.4
1	В	183	SER	3.1
1	В	158	ILE	3.1
1	В	184	MET	3.1

Continued on next page...

Mol	Chain	Res	Type	RSRZ	
1	В	187	ALA	3.0	
1	А	445	GLY	3.0	
1	В	180	GLN	2.9	
1	В	144	LYS	2.9	
1	В	185	THR	2.8	
1	В	150	LYS	2.8	
1	В	189	ALA	2.8	
1	В	140	ASP	2.7	
1	В	190	LYS	2.6	
1	В	170	ARG	2.5	
1	В	281	ASN	2.5	
1	В	139	GLY	2.4	
1	В	174	GLY	2.4	
1	В	157	ILE	2.3	
1	В	138	LEU	2.3	
1	В	206	ASN	2.3	
1	В	162	GLY	2.3	
1	В	178	LEU	2.2	
1	В	163	GLY	2.2	
1	В	177	GLU	2.2	
1	В	1	MET	2.2	
1	А	326	GLU	2.2	
1	В	173	ARG	2.2	
1	В	254	ARG	2.2	
1	А	97	ARG	2.1	
1	В	147	ALA	2.1	
1	В	37	ARG	2.1	
1	В	442	LYS	2.0	
1	В	148	ILE	2.0	
1	В	172	VAL	2.0	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
2	OA5	В	1446	18/18	0.73	0.22	44,46,52,52	0
2	OA5	А	1447	18/18	0.86	0.19	26,29,42,42	0
3	CL	В	1447	1/1	0.98	0.14	34,34,34,34	0
3	CL	А	1448	1/1	0.99	0.04	25,25,25,25	0

6.5 Other polymers (i)

There are no such residues in this entry.

