Full wwPDB NMR Structure Validation Report

Feb 21, 2018 – 05:15 pm GMT

PDB ID : 5WCL
Title : NMR structure of the N-domain of troponin C bound to switch region of troponin I and 3-methylidiphenylamine (solvent exposed mode)
Authors : Cai, F.; Hwang, P.M.; Sykes, B.D.
Deposited on : 2017-06-30

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- Cyrange : Kirchner and Güntert (2011)
- NmrClust : Kelley et al. (1996)
- MolProbity : 4.02b-467
- Mogul : 1.7.3 (157068), CSD as539be (2018)
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- RCI : v_1n_11_5_13_A (Berjanski et al., 2005)
- PANAV : Wang et al. (2010)
- ShiftChecker : trunk30686
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : trunk30686
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:
SOLUTION NMR

The overall completeness of chemical shifts assignment is 90%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>NMR archive (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>136279</td>
<td>12091</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>132675</td>
<td>10835</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>132484</td>
<td>10811</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>120</td>
<td>32% 42% 23%</td>
</tr>
</tbody>
</table>
2 Ensemble composition and analysis

This entry contains 8 models. Model 2 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: closest to the average.

The following residues are included in the computation of the global validation metrics.

<table>
<thead>
<tr>
<th>Well-defined (core) protein residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-defined core</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 1 clusters and 5 single-model clusters were found.

<table>
<thead>
<tr>
<th>Cluster number</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>Single-model clusters</td>
<td>1; 5; 6; 7; 8</td>
</tr>
</tbody>
</table>
3 Entry composition

There are 2 unique types of molecules in this entry. The entry contains 1901 atoms, of which 949 are hydrogens and 0 are deuteriums.

- Molecule 1 is a protein called Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>120</td>
<td>Total C H N O S</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1874 582 936 160 187 9</td>
<td></td>
</tr>
</tbody>
</table>

There are 4 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35</td>
<td>SER</td>
<td>CYS</td>
<td>engineered mutation</td>
<td>UNP P63316</td>
</tr>
<tr>
<td>A</td>
<td>84</td>
<td>SER</td>
<td>CYS</td>
<td>engineered mutation</td>
<td>UNP P63316</td>
</tr>
<tr>
<td>A</td>
<td>164</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P19429</td>
</tr>
<tr>
<td>A</td>
<td>165</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P19429</td>
</tr>
</tbody>
</table>

- Molecule 2 is 3-methyl-N-phenylaniline (three-letter code: 9XG) (formula: C_{13}H_{13}N).

![Diagram of 9XG](image)

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C H N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 13 13 1</td>
</tr>
</tbody>
</table>
4 Residue-property plots

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

- Molecule 1: Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle

Chain A:

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

- Molecule 1: Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle

Chain A:

4.2.2 Score per residue for model 2 (medoid)

- Molecule 1: Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle

Chain A:
4.2.3 Score per residue for model 3

• Molecule 1: Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle

Chain A:

4.2.4 Score per residue for model 4

• Molecule 1: Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle

Chain A:

4.2.5 Score per residue for model 5

• Molecule 1: Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle

Chain A:

4.2.6 Score per residue for model 6

• Molecule 1: Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle
4.2.7 Score per residue for model 7

- Molecule 1: Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle

Chain A:

4.2.8 Score per residue for model 8

- Molecule 1: Troponin C, slow skeletal and cardiac muscles, Troponin I, cardiac muscle

Chain A:
5 Refinement protocol and experimental data overview

The models were refined using the following method: *molecular dynamics*.

Of the 80 calculated structures, 8 were deposited, based on the following criterion: *structures with the lowest energy*.

The following table shows the software used for structure solution, optimisation and refinement.

<table>
<thead>
<tr>
<th>Software name</th>
<th>Classification</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIA2</td>
<td>structure calculation</td>
<td></td>
</tr>
<tr>
<td>ARIA2</td>
<td>refinement</td>
<td></td>
</tr>
</tbody>
</table>

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

<table>
<thead>
<tr>
<th>Chemical shift file(s)</th>
<th>5wcl_cs.str</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of chemical shift lists</td>
<td>1</td>
</tr>
<tr>
<td>Total number of shifts</td>
<td>1420</td>
</tr>
<tr>
<td>Number of shifts mapped to atoms</td>
<td>1420</td>
</tr>
<tr>
<td>Number of unparsed shifts</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping errors</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping warnings</td>
<td>0</td>
</tr>
<tr>
<td>Assignment completeness (well-defined parts)</td>
<td>90%</td>
</tr>
</tbody>
</table>

No validations of the models with respect to experimental NMR restraints is performed at this time.
6 Model quality

6.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: 9XG

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>714</td>
<td>692</td>
<td>692</td>
<td>48±7</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>14</td>
<td>13</td>
<td>0</td>
<td>1±1</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>5824</td>
<td>5640</td>
<td>5536</td>
<td>389</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 34.

All unique clashes are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Clash(Å)</th>
<th>Distance(Å)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:23:ALA:HA</td>
<td>1:A:26:ILE:HD12</td>
<td>0.82</td>
<td>1.48</td>
<td>6</td>
</tr>
<tr>
<td>1:A:64:VAL:HG21</td>
<td>1:A:72:VAL:HG22</td>
<td>0.78</td>
<td>1.54</td>
<td>3</td>
</tr>
<tr>
<td>1:A:57:LEU:HA</td>
<td>1:A:60:MET:SD</td>
<td>0.77</td>
<td>2.19</td>
<td>8</td>
</tr>
<tr>
<td>1:A:80:MET:SD</td>
<td>1:A:83:ARG:HD3</td>
<td>0.76</td>
<td>2.20</td>
<td>2</td>
</tr>
<tr>
<td>1:A:8:ALA:O</td>
<td>1:A:12:LEU:HG</td>
<td>0.75</td>
<td>1.81</td>
<td>4</td>
</tr>
<tr>
<td>1:A:44:VAL:O</td>
<td>1:A:48:LEU:HG</td>
<td>0.74</td>
<td>1.82</td>
<td>8</td>
</tr>
<tr>
<td>1:A:6:LYS:HA</td>
<td>1:A:79:VAL:CG2</td>
<td>0.70</td>
<td>2.16</td>
<td>3</td>
</tr>
<tr>
<td>1:A:26:ILE:HB</td>
<td>1:A:157:LEU:HB3</td>
<td>0.70</td>
<td>1.63</td>
<td>8</td>
</tr>
<tr>
<td>1:A:13:THR:OG1</td>
<td>1:A:16:GLN:HG2</td>
<td>0.69</td>
<td>1.86</td>
<td>1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Clash(Å)</th>
<th>Distance(Å)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:3:ASP:HA</td>
<td>1:A:6:LYS:CB</td>
<td>0.69</td>
<td>2.17</td>
<td>6</td>
</tr>
<tr>
<td>1:A:26:ILE:CG2</td>
<td>1:A:157:LEU:HB3</td>
<td>0.67</td>
<td>2.18</td>
<td>4</td>
</tr>
<tr>
<td>1:A:20:PHE:HD2</td>
<td>1:A:78:LEU:CD1</td>
<td>0.66</td>
<td>2.04</td>
<td>5</td>
</tr>
<tr>
<td>1:A:6:LYS:HA</td>
<td>1:A:79:VAL:HG21</td>
<td>0.65</td>
<td>1.68</td>
<td>4</td>
</tr>
<tr>
<td>1:A:26:ILE:O</td>
<td>1:A:29:LEU:HG</td>
<td>0.65</td>
<td>1.90</td>
<td>5</td>
</tr>
<tr>
<td>1:A:8:ALA:HA</td>
<td>1:A:11:GLN:CB</td>
<td>0.65</td>
<td>1.69</td>
<td>3</td>
</tr>
<tr>
<td>1:A:5:TYR:CD2</td>
<td>1:A:83:ARG:HG3</td>
<td>0.64</td>
<td>2.28</td>
<td>5</td>
</tr>
<tr>
<td>1:A:64:VAL:HG21</td>
<td>1:A:72:VAL:CG2</td>
<td>0.64</td>
<td>2.22</td>
<td>3</td>
</tr>
<tr>
<td>1:A:5:TYR:CE1</td>
<td>1:A:83:ARG:HG3</td>
<td>0.63</td>
<td>2.28</td>
<td>6</td>
</tr>
<tr>
<td>1:A:36:ILE:O</td>
<td>1:A:71:THR:HA</td>
<td>0.63</td>
<td>1.94</td>
<td>8</td>
</tr>
<tr>
<td>1:A:9:VAL:O</td>
<td>1:A:17:LYS:HD3</td>
<td>0.62</td>
<td>1.95</td>
<td>6</td>
</tr>
<tr>
<td>1:A:21:LYS:HD3</td>
<td>1:A:74:PHE:CD1</td>
<td>0.61</td>
<td>2.30</td>
<td>6</td>
</tr>
<tr>
<td>1:A:46:ARG:HD2</td>
<td>1:A:52:PRO:HD2</td>
<td>0.61</td>
<td>1.73</td>
<td>1</td>
</tr>
<tr>
<td>1:A:157:LEU:HD22</td>
<td>1:A:157:LEU:HE</td>
<td>0.60</td>
<td>1.56</td>
<td>8</td>
</tr>
<tr>
<td>1:A:154:MET:O</td>
<td>1:A:158:LEU:HB2</td>
<td>0.60</td>
<td>1.96</td>
<td>2</td>
</tr>
<tr>
<td>1:A:43:LYS:HE3</td>
<td>1:A:47:MET:SD</td>
<td>0.60</td>
<td>2.37</td>
<td>1</td>
</tr>
<tr>
<td>1:A:48:LEU:CD2</td>
<td>1:A:156:ALA:HB2</td>
<td>0.60</td>
<td>2.27</td>
<td>8</td>
</tr>
<tr>
<td>1:A:5:TYR:CE2</td>
<td>1:A:83:ARG:HG3</td>
<td>0.60</td>
<td>2.31</td>
<td>5</td>
</tr>
<tr>
<td>1:A:9:VAL:HA</td>
<td>1:A:12:LEU:HD12</td>
<td>0.59</td>
<td>1.72</td>
<td>6</td>
</tr>
<tr>
<td>1:A:26:ILE:HG23</td>
<td>1:A:29:LEU:HD11</td>
<td>0.59</td>
<td>1.73</td>
<td>4</td>
</tr>
<tr>
<td>1:A:27:PHE:HE1</td>
<td>1:A:153:MET:SD</td>
<td>0.58</td>
<td>2.20</td>
<td>2</td>
</tr>
<tr>
<td>1:A:44:VAL:O</td>
<td>1:A:47:MET:HB2</td>
<td>0.57</td>
<td>2.00</td>
<td>7</td>
</tr>
<tr>
<td>1:A:21:LYS:CE</td>
<td>1:A:25:ASP:HB2</td>
<td>0.57</td>
<td>2.29</td>
<td>2</td>
</tr>
<tr>
<td>1:A:5:TYR:CE2</td>
<td>1:A:83:ARG:HA</td>
<td>0.57</td>
<td>2.34</td>
<td>7</td>
</tr>
<tr>
<td>1:A:7:ALA:HA</td>
<td>1:A:10:GLU:HG3</td>
<td>0.57</td>
<td>1.76</td>
<td>2</td>
</tr>
<tr>
<td>1:A:26:ILE:CB</td>
<td>1:A:157:LEU:HB3</td>
<td>0.57</td>
<td>2.29</td>
<td>8</td>
</tr>
<tr>
<td>1:A:55:GLU:O</td>
<td>1:A:59:GLU:HG2</td>
<td>0.57</td>
<td>2.00</td>
<td>5</td>
</tr>
<tr>
<td>1:A:20:PHE:HD1</td>
<td>1:A:78:LEU:CD1</td>
<td>0.57</td>
<td>2.13</td>
<td>2</td>
</tr>
<tr>
<td>1:A:5:TYR:HB1</td>
<td>1:A:79:VAL:HG13</td>
<td>0.56</td>
<td>1.75</td>
<td>2</td>
</tr>
<tr>
<td>1:A:78:LEU:O</td>
<td>1:A:81:MET:HB2</td>
<td>0.56</td>
<td>1.99</td>
<td>2</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Clash(Å)</th>
<th>Distance(Å)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:3:ASP:HA</td>
<td>1:A:6:LYS:HB3</td>
<td>0.56</td>
<td>1.76</td>
<td>6</td>
</tr>
<tr>
<td>1:A:81:MET:HA</td>
<td>1:A:81:MET:CE</td>
<td>0.56</td>
<td>2.31</td>
<td>3</td>
</tr>
<tr>
<td>1:A:12:LEU:HB3</td>
<td>1:A:16:GLN:CB</td>
<td>0.55</td>
<td>2.31</td>
<td>1</td>
</tr>
<tr>
<td>1:A:72:VAL:HA</td>
<td>1:A:76:GLU:OE2</td>
<td>0.55</td>
<td>2.01</td>
<td>3</td>
</tr>
<tr>
<td>1:A:74:PHE:CE2</td>
<td>1:A:78:LEU:HD22</td>
<td>0.54</td>
<td>2.36</td>
<td>8</td>
</tr>
<tr>
<td>1:A:3:ASP:HA</td>
<td>1:A:6:LYS:HB2</td>
<td>0.54</td>
<td>1.80</td>
<td>3</td>
</tr>
<tr>
<td>1:A:21:LYS:O</td>
<td>1:A:24:PHE:HB3</td>
<td>0.54</td>
<td>2.03</td>
<td>2</td>
</tr>
<tr>
<td>1:A:78:LEU:O</td>
<td>1:A:81:MET:HB3</td>
<td>0.54</td>
<td>2.02</td>
<td>4</td>
</tr>
<tr>
<td>1:A:21:LYS:HA</td>
<td>1:A:74:PHE:CE2</td>
<td>0.54</td>
<td>2.38</td>
<td>7</td>
</tr>
<tr>
<td>1:A:79:VAL:O</td>
<td>1:A:83:ARG:HB2</td>
<td>0.53</td>
<td>2.04</td>
<td>7</td>
</tr>
<tr>
<td>1:A:6:LYS:CA</td>
<td>1:A:79:VAL:HG21</td>
<td>0.53</td>
<td>2.33</td>
<td>4</td>
</tr>
<tr>
<td>1:A:64:VAL:HG11</td>
<td>1:A:80:MET:HB2</td>
<td>0.53</td>
<td>1.81</td>
<td>4</td>
</tr>
<tr>
<td>1:A:22:ALA:O</td>
<td>1:A:26:ILE:HD12</td>
<td>0.53</td>
<td>2.03</td>
<td>4</td>
</tr>
<tr>
<td>1:A:9:VAL:HG23</td>
<td>1:A:78:LEU:HD13</td>
<td>0.52</td>
<td>1.81</td>
<td>3</td>
</tr>
<tr>
<td>1:A:74:PHE:CZ</td>
<td>1:A:78:LEU:HD22</td>
<td>0.52</td>
<td>2.40</td>
<td>1</td>
</tr>
<tr>
<td>1:A:23:ALA:HA</td>
<td>1:A:157:LEU:HD12</td>
<td>0.52</td>
<td>1.81</td>
<td>7</td>
</tr>
<tr>
<td>1:A:44:VAL:CG2</td>
<td>1:A:157:LEU:HD21</td>
<td>0.52</td>
<td>2.34</td>
<td>4</td>
</tr>
<tr>
<td>1:A:41:LEU:HD13</td>
<td>2:A:201:9XG:CAB</td>
<td>0.52</td>
<td>2.35</td>
<td>5</td>
</tr>
<tr>
<td>1:A:5:TYR:CD1</td>
<td>1:A:83:ARG:HG3</td>
<td>0.52</td>
<td>2.40</td>
<td>7</td>
</tr>
<tr>
<td>1:A:150:ALA:O</td>
<td>1:A:154:MET:HB2</td>
<td>0.52</td>
<td>2.04</td>
<td>6</td>
</tr>
<tr>
<td>1:A:9:VAL:CG2</td>
<td>1:A:78:LEU:HD13</td>
<td>0.52</td>
<td>2.34</td>
<td>7</td>
</tr>
<tr>
<td>1:A:46:THR:O</td>
<td>1:A:57:LEU:HD13</td>
<td>0.52</td>
<td>2.04</td>
<td>6</td>
</tr>
<tr>
<td>1:A:27:PHE:CD2</td>
<td>1:A:50:GLN:O</td>
<td>0.52</td>
<td>2.05</td>
<td>7</td>
</tr>
<tr>
<td>1:A:154:MET:O</td>
<td>1:A:158:LEU:HG</td>
<td>0.51</td>
<td>2.05</td>
<td>7</td>
</tr>
<tr>
<td>1:A:41:LEU:HD23</td>
<td>1:A:61:ILE:HG13</td>
<td>0.51</td>
<td>1.82</td>
<td>6</td>
</tr>
<tr>
<td>1:A:27:PHE:HE1</td>
<td>1:A:41:LEU:HD12</td>
<td>0.51</td>
<td>1.64</td>
<td>1</td>
</tr>
<tr>
<td>1:A:24:PHE:CZ</td>
<td>1:A:73:ASP:HA</td>
<td>0.51</td>
<td>2.41</td>
<td>8</td>
</tr>
<tr>
<td>1:A:5:TYR:CB</td>
<td>1:A:79:VAL:HG13</td>
<td>0.51</td>
<td>2.36</td>
<td>3</td>
</tr>
<tr>
<td>1:A:26:ILE:HG21</td>
<td>1:A:157:LEU:HB3</td>
<td>0.51</td>
<td>1.80</td>
<td>4</td>
</tr>
<tr>
<td>1:A:21:LYS:HD2</td>
<td>1:A:21:LYS:O</td>
<td>0.51</td>
<td>2.06</td>
<td>8</td>
</tr>
<tr>
<td>1:A:6:LYS:O</td>
<td>1:A:10:GLU:HG3</td>
<td>0.50</td>
<td>2.06</td>
<td>7</td>
</tr>
<tr>
<td>1:A:60:MET:HB2</td>
<td>2:A:201:9XG:CAI</td>
<td>0.50</td>
<td>2.36</td>
<td>6</td>
</tr>
<tr>
<td>1:A:27:PHE:HE1</td>
<td>1:A:41:LEU:HD13</td>
<td>0.50</td>
<td>1.66</td>
<td>6</td>
</tr>
<tr>
<td>1:A:61:ILE:O</td>
<td>1:A:64:VAL:HG22</td>
<td>0.50</td>
<td>2.07</td>
<td>3</td>
</tr>
<tr>
<td>2:A:201:9XG:CAG</td>
<td>2:A:201:9XG:CAI</td>
<td>0.50</td>
<td>2.89</td>
<td>6</td>
</tr>
<tr>
<td>1:A:13:THR:O</td>
<td>1:A:16:GLN:HB2</td>
<td>0.50</td>
<td>2.06</td>
<td>8</td>
</tr>
<tr>
<td>1:A:21:LYS:HE3</td>
<td>1:A:25:ASP:HB2</td>
<td>0.50</td>
<td>1.82</td>
<td>4</td>
</tr>
<tr>
<td>1:A:41:LEU:HD21</td>
<td>1:A:60:MET:HE3</td>
<td>0.50</td>
<td>1.83</td>
<td>1</td>
</tr>
<tr>
<td>1:A:46:ARG:HG3</td>
<td>1:A:50:GLN:O</td>
<td>0.50</td>
<td>2.07</td>
<td>3</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Clash(Å)</th>
<th>Distance(Å)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:9:VAL:CG1</td>
<td>1:A:17:LYS:HE3</td>
<td>0.50</td>
<td>2.36</td>
<td>4</td>
</tr>
<tr>
<td>1:A:26:ILE:HA</td>
<td>1:A:29:LEU:CB</td>
<td>0.49</td>
<td>2.37</td>
<td>8</td>
</tr>
<tr>
<td>1:A:42:GLY:O</td>
<td>1:A:46:ARG:HD3</td>
<td>0.49</td>
<td>2.06</td>
<td>5</td>
</tr>
<tr>
<td>1:A:22:ALA:O</td>
<td>1:A:26:ILE:HG13</td>
<td>0.49</td>
<td>2.07</td>
<td>6</td>
</tr>
<tr>
<td>1:A:41:LEU:HG</td>
<td>1:A:57:LEU:CD2</td>
<td>0.49</td>
<td>2.38</td>
<td>6</td>
</tr>
<tr>
<td>1:A:64:VAL:CG1</td>
<td>1:A:80:MET:HB2</td>
<td>0.49</td>
<td>2.37</td>
<td>4</td>
</tr>
<tr>
<td>1:A:23:ALA:HA</td>
<td>1:A:157:LEU:CD1</td>
<td>0.49</td>
<td>2.37</td>
<td>7</td>
</tr>
<tr>
<td>1:A:41:LEU:HD11</td>
<td>1:A:60:MET:CE</td>
<td>0.48</td>
<td>2.38</td>
<td>5</td>
</tr>
<tr>
<td>1:A:44:VAL:HG22</td>
<td>1:A:157:LEU:HD11</td>
<td>0.48</td>
<td>1.84</td>
<td>1</td>
</tr>
<tr>
<td>1:A:81:MET:HA</td>
<td>1:A:81:MET:HE2</td>
<td>0.48</td>
<td>1.85</td>
<td>3</td>
</tr>
<tr>
<td>1:A:57:LEU:O</td>
<td>1:A:60:MET:HG2</td>
<td>0.48</td>
<td>2.08</td>
<td>8</td>
</tr>
<tr>
<td>1:A:26:ILE:HA</td>
<td>1:A:29:LEU:HB2</td>
<td>0.48</td>
<td>1.84</td>
<td>8</td>
</tr>
<tr>
<td>1:A:81:MET:SD</td>
<td>1:A:81:MET:C</td>
<td>0.48</td>
<td>2.92</td>
<td>8</td>
</tr>
<tr>
<td>1:A:27:PHE:CE2</td>
<td>1:A:44:VAL:HB</td>
<td>0.48</td>
<td>2.43</td>
<td>2</td>
</tr>
<tr>
<td>1:A:7:ALA:HA</td>
<td>1:A:10:GLU:OE1</td>
<td>0.48</td>
<td>2.09</td>
<td>2</td>
</tr>
<tr>
<td>1:A:60:MET:HB3</td>
<td>2:A:201:9XG:CAN</td>
<td>0.48</td>
<td>2.39</td>
<td>3</td>
</tr>
<tr>
<td>1:A:46:ARG:NE</td>
<td>1:A:51:ASN:HA</td>
<td>0.47</td>
<td>2.24</td>
<td>8</td>
</tr>
<tr>
<td>1:A:5:TYR:CD2</td>
<td>1:A:82:VAL:HG13</td>
<td>0.47</td>
<td>2.44</td>
<td>8</td>
</tr>
<tr>
<td>1:A:53:THR:O</td>
<td>1:A:56:GLU:HG2</td>
<td>0.47</td>
<td>2.09</td>
<td>7</td>
</tr>
<tr>
<td>1:A:4:ILE:HG23</td>
<td>1:A:5:TYR:N</td>
<td>0.47</td>
<td>2.24</td>
<td>6</td>
</tr>
<tr>
<td>1:A:81:MET:HG3</td>
<td>1:A:85:MET:HE3</td>
<td>0.47</td>
<td>1.85</td>
<td>4</td>
</tr>
<tr>
<td>1:A:44:VAL:HA</td>
<td>1:A:47:MET:SD</td>
<td>0.47</td>
<td>2.50</td>
<td>4</td>
</tr>
<tr>
<td>1:A:5:TYR:HA</td>
<td>1:A:8:ALA:HB3</td>
<td>0.47</td>
<td>1.85</td>
<td>8</td>
</tr>
<tr>
<td>1:A:36:ILE:HB</td>
<td>1:A:72:VAL:HB</td>
<td>0.47</td>
<td>1.87</td>
<td>3</td>
</tr>
<tr>
<td>1:A:12:LEU:HB3</td>
<td>1:A:16:GLN:HB3</td>
<td>0.46</td>
<td>1.86</td>
<td>6</td>
</tr>
<tr>
<td>1:A:27:PHE:CE1</td>
<td>1:A:41:LEU:HD12</td>
<td>0.46</td>
<td>2.45</td>
<td>1</td>
</tr>
<tr>
<td>1:A:7:ALA:HA</td>
<td>1:A:10:GLU:OE1</td>
<td>0.46</td>
<td>2.09</td>
<td>2</td>
</tr>
<tr>
<td>1:A:45:MET:HG2</td>
<td>1:A:50:GLN:HB2</td>
<td>0.45</td>
<td>1.88</td>
<td>3</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Clash(Å)</th>
<th>Distance(Å)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:17:LYS:CG</td>
<td>1:A:78:LEU:HD21</td>
<td>0.45</td>
<td>2.42</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:17:LYS:HG2</td>
<td>1:A:78:LEU:HD21</td>
<td>0.45</td>
<td>1.88</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:23:ALA:O</td>
<td>1:A:27:PHE:HD2</td>
<td>0.45</td>
<td>1.94</td>
<td>7 1</td>
</tr>
<tr>
<td>1:A:7:ALA:CA</td>
<td>1:A:10:GLU:HG3</td>
<td>0.45</td>
<td>2.41</td>
<td>2 1</td>
</tr>
<tr>
<td>1:A:12:LEU:HB3</td>
<td>1:A:16:GLN:HB2</td>
<td>0.45</td>
<td>1.89</td>
<td>1 1</td>
</tr>
<tr>
<td>1:A:157:LEU:N</td>
<td>1:A:157:LEU:HD22</td>
<td>0.44</td>
<td>2.25</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:72:VAL:HG11</td>
<td>1:A:77:PHE:HB2</td>
<td>0.44</td>
<td>1.89</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:78:LEU:O</td>
<td>1:A:78:LEU:HD12</td>
<td>0.44</td>
<td>2.12</td>
<td>5 1</td>
</tr>
<tr>
<td>1:A:48:LEU:HD11</td>
<td>1:A:153:MET:HG3</td>
<td>0.44</td>
<td>1.89</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:44:VAL:HG21</td>
<td>1:A:157:LEU:HD11</td>
<td>0.44</td>
<td>1.88</td>
<td>5 1</td>
</tr>
<tr>
<td>1:A:81:MET:HE2</td>
<td>1:A:81:MET:HA</td>
<td>0.44</td>
<td>1.89</td>
<td>6 1</td>
</tr>
<tr>
<td>1:A:7:ALA:O</td>
<td>1:A:11:GLN:N</td>
<td>0.44</td>
<td>2.51</td>
<td>7 1</td>
</tr>
<tr>
<td>1:A:27:PHE:CE1</td>
<td>1:A:157:LEU:HD21</td>
<td>0.43</td>
<td>2.48</td>
<td>8 2</td>
</tr>
<tr>
<td>1:A:52:PRO:HA</td>
<td>1:A:56:GLU:OE2</td>
<td>0.43</td>
<td>2.12</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:9:VAL:HG12</td>
<td>1:A:17:LYS:HE3</td>
<td>0.43</td>
<td>1.89</td>
<td>4 1</td>
</tr>
<tr>
<td>1:A:27:PHE:HE2</td>
<td>1:A:41:LEU:HD12</td>
<td>0.43</td>
<td>1.74</td>
<td>4 1</td>
</tr>
<tr>
<td>1:A:44:VAL:HA</td>
<td>1:A:47:MET:HB2</td>
<td>0.43</td>
<td>1.90</td>
<td>5 3</td>
</tr>
<tr>
<td>1:A:44:VAL:HG21</td>
<td>1:A:157:LEU:HD21</td>
<td>0.43</td>
<td>1.90</td>
<td>3 1</td>
</tr>
<tr>
<td>1:A:154:MET:O</td>
<td>1:A:157:LEU:HD12</td>
<td>0.43</td>
<td>2.14</td>
<td>6 1</td>
</tr>
<tr>
<td>1:A:24:PHE:O</td>
<td>1:A:28:VAL:HG22</td>
<td>0.43</td>
<td>2.12</td>
<td>7 1</td>
</tr>
<tr>
<td>1:A:78:LEU:HD12</td>
<td>1:A:78:LEU:O</td>
<td>0.43</td>
<td>2.13</td>
<td>4 1</td>
</tr>
<tr>
<td>1:A:20:PHE:HB3</td>
<td>1:A:81:MET:HG3</td>
<td>0.43</td>
<td>1.91</td>
<td>3 1</td>
</tr>
<tr>
<td>1:A:52:PRO:HB2</td>
<td>1:A:57:LEU:HD11</td>
<td>0.43</td>
<td>1.90</td>
<td>4 1</td>
</tr>
<tr>
<td>1:A:27:PHE:CD1</td>
<td>1:A:44:VAL:HG21</td>
<td>0.43</td>
<td>2.48</td>
<td>3 1</td>
</tr>
<tr>
<td>1:A:5:TYR:O</td>
<td>1:A:79:VAL:HG22</td>
<td>0.43</td>
<td>2.14</td>
<td>3 1</td>
</tr>
<tr>
<td>1:A:20:PHE:N</td>
<td>1:A:20:PHE:CD1</td>
<td>0.43</td>
<td>2.86</td>
<td>5 1</td>
</tr>
<tr>
<td>1:A:9:VAL:HG23</td>
<td>1:A:17:LYS:HE3</td>
<td>0.42</td>
<td>1.90</td>
<td>1 1</td>
</tr>
<tr>
<td>2:A:201:9XG:CAJ</td>
<td>2:A:201:9XG:CAH</td>
<td>0.42</td>
<td>2.98</td>
<td>5 1</td>
</tr>
<tr>
<td>1:A:5:TYR:C</td>
<td>1:A:79:VAL:HG22</td>
<td>0.42</td>
<td>2.34</td>
<td>2 1</td>
</tr>
<tr>
<td>1:A:27:PHE:HE2</td>
<td>1:A:41:LEU:HD13</td>
<td>0.42</td>
<td>1.74</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:81:MET:SD</td>
<td>1:A:153:MET:HE1</td>
<td>0.42</td>
<td>2.54</td>
<td>2 1</td>
</tr>
<tr>
<td>1:A:52:PRO:HB2</td>
<td>1:A:57:LEU:CD1</td>
<td>0.42</td>
<td>2.44</td>
<td>4 1</td>
</tr>
<tr>
<td>1:A:41:LEU:HD12</td>
<td>1:A:45:MET:CG</td>
<td>0.42</td>
<td>2.44</td>
<td>7 2</td>
</tr>
<tr>
<td>1:A:37:SER:CB</td>
<td>1:A:71:THR:HG22</td>
<td>0.42</td>
<td>2.44</td>
<td>7 1</td>
</tr>
<tr>
<td>1:A:41:LEU:HG</td>
<td>1:A:57:LEU:HD22</td>
<td>0.42</td>
<td>1.91</td>
<td>5 1</td>
</tr>
<tr>
<td>1:A:72:VAL:HG13</td>
<td>1:A:73:ASP:O</td>
<td>0.42</td>
<td>2.15</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:8:ALA:HB1</td>
<td>1:A:82:VAL:HG21</td>
<td>0.42</td>
<td>1.91</td>
<td>4 1</td>
</tr>
<tr>
<td>1:A:46:ARG:CD</td>
<td>1:A:51:ASN:HA</td>
<td>0.41</td>
<td>2.44</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:44:VAL:HG22</td>
<td>1:A:157:LEU:CD2</td>
<td>0.41</td>
<td>2.45</td>
<td>6 1</td>
</tr>
<tr>
<td>1:A:21:LYS:HD2</td>
<td>1:A:21:LYS:C</td>
<td>0.41</td>
<td>2.35</td>
<td>8 1</td>
</tr>
<tr>
<td>1:A:5:TYR:HA</td>
<td>1:A:8:ALA:CB</td>
<td>0.41</td>
<td>2.45</td>
<td>8 1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Clash(Å)</th>
<th>Distance(Å)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:41:LEU:HD13</td>
<td>2:A:201:9XG:CAD</td>
<td>0.41</td>
<td>2.46</td>
<td>2</td>
</tr>
<tr>
<td>1:A:56:GLU:O</td>
<td>1:A:59:GLU:HG2</td>
<td>0.41</td>
<td>2.16</td>
<td>6</td>
</tr>
<tr>
<td>1:A:45:MET:O</td>
<td>1:A:50:GLN:HB2</td>
<td>0.41</td>
<td>2.15</td>
<td>8</td>
</tr>
<tr>
<td>1:A:23:ALA:CB</td>
<td>1:A:157:LEU:HD23</td>
<td>0.41</td>
<td>2.44</td>
<td>1</td>
</tr>
<tr>
<td>1:A:72:VAL:HG13</td>
<td>1:A:76:GLU:CB</td>
<td>0.41</td>
<td>2.44</td>
<td>1</td>
</tr>
<tr>
<td>1:A:8:ALA:O</td>
<td>1:A:12:LEU:N</td>
<td>0.41</td>
<td>2.54</td>
<td>5</td>
</tr>
<tr>
<td>1:A:44:VAL:HG22</td>
<td>1:A:157:LEU:HD21</td>
<td>0.41</td>
<td>1.93</td>
<td>4</td>
</tr>
<tr>
<td>1:A:57:LEU:HD23</td>
<td>1:A:60:MET:SD</td>
<td>0.41</td>
<td>2.56</td>
<td>8</td>
</tr>
<tr>
<td>1:A:81:MET:HE2</td>
<td>1:A:150:ALA:HB1</td>
<td>0.41</td>
<td>1.92</td>
<td>8</td>
</tr>
<tr>
<td>1:A:64:VAL:HG11</td>
<td>1:A:79:VAL:HG12</td>
<td>0.41</td>
<td>1.93</td>
<td>1</td>
</tr>
<tr>
<td>1:A:9:VAL:HA</td>
<td>1:A:12:LEU:CD1</td>
<td>0.41</td>
<td>2.46</td>
<td>3</td>
</tr>
<tr>
<td>1:A:150:ALA:O</td>
<td>1:A:154:MET:HG2</td>
<td>0.40</td>
<td>2.16</td>
<td>8</td>
</tr>
<tr>
<td>1:A:36:ILE:CG2</td>
<td>1:A:41:LEU:HB2</td>
<td>0.40</td>
<td>2.47</td>
<td>7</td>
</tr>
<tr>
<td>1:A:43:LYS:HG2</td>
<td>1:A:47:MET:SD</td>
<td>0.40</td>
<td>2.57</td>
<td>4</td>
</tr>
<tr>
<td>1:A:154:MET:O</td>
<td>1:A:158:LEU:N</td>
<td>0.40</td>
<td>2.53</td>
<td>1</td>
</tr>
</tbody>
</table>

6.3 Torsion angles

6.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>92/120 (77%)</td>
<td>89±1 (96±1%)</td>
<td>3±1 (3±1%)</td>
<td>1±1 (1±1%)</td>
<td>28 74</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>736/960 (77%)</td>
<td>708 (96%)</td>
<td>23 (3%)</td>
<td>5 (1%)</td>
<td>28 74</td>
</tr>
</tbody>
</table>

All 2 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Models (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>65</td>
<td>ASP</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>158</td>
<td>LEU</td>
<td>2</td>
</tr>
</tbody>
</table>
6.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>78/101 (77%)</td>
<td>69±2 (88±2%)</td>
<td>9±2 (12±2%)</td>
<td>9 52</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>624/808 (77%)</td>
<td>549 (88%)</td>
<td>75 (12%)</td>
<td>9 52</td>
</tr>
</tbody>
</table>

All 24 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Models (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>4</td>
<td>ILE</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>157</td>
<td>LEU</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>40</td>
<td>GLU</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>27</td>
<td>PHE</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>21</td>
<td>LYS</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>46</td>
<td>ARG</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>158</td>
<td>LEU</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>79</td>
<td>VAL</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>9</td>
<td>VAL</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>41</td>
<td>LEU</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>78</td>
<td>LEU</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>81</td>
<td>MET</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>153</td>
<td>MET</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>75</td>
<td>ASP</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>73</td>
<td>ASP</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>39</td>
<td>LYS</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>14</td>
<td>GLU</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>37</td>
<td>SER</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>67</td>
<td>ASP</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>19</td>
<td>GLU</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>11</td>
<td>GLN</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>80</td>
<td>MET</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>29</td>
<td>LEU</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>64</td>
<td>VAL</td>
<td>1</td>
</tr>
</tbody>
</table>

6.3.3 RNA

There are no RNA molecules in this entry.
6.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates

There are no carbohydrates in this entry.

6.6 Ligand geometry

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds for which Mogul statistics could be retrieved, the number of bonds that are observed in the model and the number of bonds that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length is the number of standard deviations the observed value is removed from the expected value. A bond length with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond lengths.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Counts</th>
<th>RMSZ</th>
<th>#Z>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9XG</td>
<td>A</td>
<td>201</td>
<td>-</td>
<td>15,15,15</td>
<td>1.54±0.01</td>
<td>0±0 (0±0%)</td>
<td></td>
</tr>
</tbody>
</table>

In the following table, the Counts columns list the number of angles for which Mogul statistics could be retrieved, the number of angles that are observed in the model and the number of angles that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond angle is the number of standard deviations the observed value is removed from the expected value. A bond angle with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond angles.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond angles</th>
<th>Counts</th>
<th>RMSZ</th>
<th>#Z>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9XG</td>
<td>A</td>
<td>201</td>
<td>-</td>
<td>19,19,19</td>
<td>0.47±0.05</td>
<td>0±0 (0±0%)</td>
<td></td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9XG</td>
<td>A</td>
<td>201</td>
<td>-</td>
<td>-</td>
<td>0±0,4,4,4</td>
<td>0±0,2,2,2</td>
</tr>
</tbody>
</table>
There are no bond-length outliers.
There are no bond-angle outliers.
There are no chirality outliers.
There are no torsion outliers.
There are no ring outliers.

6.7 Other polymers

There are no such molecules in this entry.

6.8 Polymer linkage issues

There are no chain breaks in this entry.
7 Chemical shift validation

The completeness of assignment taking into account all chemical shift lists is 90% for the well-defined parts and 86% for the entire structure.

7.1 Chemical shift list 1

File name: 5wcl_cs.str
Chemical shift list name: assigned_chem_shift_list_0

7.1.1 Bookkeeping

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

<table>
<thead>
<tr>
<th>Total number of shifts</th>
<th>1420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of shifts mapped to atoms</td>
<td>1420</td>
</tr>
<tr>
<td>Number of unparsed shifts</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping errors</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping warnings</td>
<td>0</td>
</tr>
<tr>
<td>Number of shift outliers (ShiftChecker)</td>
<td>0</td>
</tr>
</tbody>
</table>

7.1.2 Chemical shift referencing

The following table shows the suggested chemical shift referencing corrections.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th># values</th>
<th>Correction ± precision, ppm</th>
<th>Suggested action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{13}C_{\alpha}$</td>
<td>119</td>
<td>-0.14 ± 0.09</td>
<td>None needed (< 0.5 ppm)</td>
</tr>
<tr>
<td>$^{13}C_{\beta}$</td>
<td>110</td>
<td>0.09 ± 0.03</td>
<td>None needed (< 0.5 ppm)</td>
</tr>
<tr>
<td>$^{13}C'$</td>
<td>114</td>
<td>-0.40 ± 0.06</td>
<td>None needed (< 0.5 ppm)</td>
</tr>
<tr>
<td>^{15}N</td>
<td>111</td>
<td>0.04 ± 0.17</td>
<td>None needed (< 0.5 ppm)</td>
</tr>
</tbody>
</table>

7.1.3 Completeness of resonance assignments

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 90%, i.e. 984 atoms were assigned a chemical shift out of a possible 1088. 13 out of 15 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total</th>
<th>1H</th>
<th>^{13}C</th>
<th>^{15}N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone</td>
<td>456/456 (100%)</td>
<td>182/182 (100%)</td>
<td>184/184 (100%)</td>
<td>90/90 (100%)</td>
</tr>
<tr>
<td>Sidechain</td>
<td>497/579 (86%)</td>
<td>305/335 (91%)</td>
<td>192/226 (85%)</td>
<td>0/18 (0%)</td>
</tr>
</tbody>
</table>

Continued on next page...
The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 86%, i.e. 1266 atoms were assigned a chemical shift out of a possible 1471. 15 out of 17 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>1H</th>
<th>13C</th>
<th>15N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatic</td>
<td>31/53 (58%)</td>
<td>17/29 (59%)</td>
<td>14/24 (58%)</td>
<td>0/0 (—%)</td>
</tr>
<tr>
<td>Overall</td>
<td>984/1088 (90%)</td>
<td>504/546 (92%)</td>
<td>390/434 (90%)</td>
<td>90/108 (83%)</td>
</tr>
<tr>
<td>Backbone</td>
<td>574/594 (97%)</td>
<td>230/237 (97%)</td>
<td>233/240 (97%)</td>
<td>111/117 (95%)</td>
</tr>
<tr>
<td>Sidechain</td>
<td>659/807 (82%)</td>
<td>408/472 (86%)</td>
<td>251/297 (85%)</td>
<td>0/38 (0%)</td>
</tr>
<tr>
<td>Aromatic</td>
<td>33/70 (47%)</td>
<td>18/38 (47%)</td>
<td>15/30 (50%)</td>
<td>0/2 (0%)</td>
</tr>
<tr>
<td>Overall</td>
<td>1266/1471 (86%)</td>
<td>656/747 (88%)</td>
<td>499/567 (88%)</td>
<td>111/157 (71%)</td>
</tr>
</tbody>
</table>

7.1.4 **Statistically unusual chemical shifts**

There are no statistically unusual chemical shifts.

7.1.5 **Random Coil Index (RCI) plots**

The image below reports random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A: