

wwPDB X-ray Structure Validation Summary Report (i)

Jan 4, 2024 - 01:39 am GMT

PDB ID	:	4WFB
Title	:	The crystal structure of the large ribosomal subunit of Staphylococcus aureus
		in complex with BC-3205
Authors	:	Eyal, Z.; Matzov, D.; Krupkin, M.; Wekselman, I.; Zimmerman, E.; Rozen-
		berg, H.; Bashan, A.; Yonath, A.E.
Deposited on	:	2014-09-14
Resolution	:	3.43 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.43 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1278 (3.50-3.38)
Clashscore	141614	1361 (3.50-3.38)
Ramachandran outliers	138981	1327 (3.50-3.38)
Sidechain outliers	138945	1328 (3.50-3.38)
RSRZ outliers	127900	1192 (3.50-3.38)
RNA backbone	3102	1024 (3.92-2.96)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain								
1	Х	2923	48%	34% 1	0% • 7%						
2	Y	114	41%	52%	6% •						
3	А	277	16%	27%	6% •						

Mol	Chain	Length	Quality of ch	ain	
	D	220	5%		
4	В	220	56%	30%	12% •
5	С	207	560/	20%	90/
	0	201	25%	52 70	070 •
6	D	179	70%	6% •	22%
			12%		
7	E	178	65%	21%	• 12%
8	С	145	19%	270/	C 0/
	u	140	22%	57%	6%
9	Н	122	72%		25% •
			6%		
10	I	146	49%	33%	8% 10%
11	т	144	17%		
	J	144	50%	40%	5% 6%
12	Κ	122	52%	36%	9% •
			8%		
13	L	119	63%	24%	5% 8%
14	м	110	2%		
14	IVI	110	56%	30%	8% 6%
15	Ν	118	64%	32%	,
			7%		-
16	0	102	64%	30%	5% •
17	л	117	16%		
11	P	117	56%	32%	5% 7%
18	Q	91	66%	29º	% • •
	~~	01	17%		
19	R	105	56%	30%	10% 5%
20	G	015	7%		
20	S	217	48% 19%	5%	28%
21	Т	94	56%	19%	20%
	-	01	40%	15/0	2070
22	U	62	61%	10%	29%
	T 7	60	6%		
23	V	69	65%	25%	• 6%
24	W	59	0, TC	210/	
<u></u>	• •	0.5	2%		••
25	Ζ	58	45% 26%	ő 5%	24%
	-		9%		
26	2	45	53%	38%	7% •
97	2	66		270/	00/
	J	00	<u> </u>	27%	9%
28	4	37	59%	35%	5%

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
31	MG	Х	3046	-	-	-	Х
31	MG	Х	3089	-	-	-	Х
31	MG	Х	3101	-	-	-	Х
31	MG	Х	3119	-	-	-	Х
31	MG	Х	3173	-	-	-	Х
31	MG	Х	3185	-	-	-	Х
31	MG	Х	3186	-	-	-	Х
31	MG	Х	3409	-	-	-	Х
31	MG	Х	3411	-	-	-	Х
31	MG	Х	3412	-	-	-	Х
32	MN	Х	3040	_	_	-	Х
32	MN	Х	3085	-	-	-	Х
32	MN	Х	3142	-	_	-	Х
32	MN	Х	3184	-	-	-	Х
32	MN	Х	3197	-	-	-	Х
32	MN	Х	3198	_	_	-	Х
32	MN	Х	3228	-	_	-	Х
32	MN	Х	3231	_	_	-	Х
32	MN	Х	3249	-	_	-	Х
32	MN	Х	3316	-	-	-	Х
32	MN	Х	3320	_	_	-	Х
32	MN	Х	3356	_	_	-	Х
32	MN	Х	3361	-	_	-	Х
32	MN	Х	3394	_	_	_	Х
34	SPD	Х	3425	-	_	-	Х
34	SPD	Х	3434	_	_	Х	-
35	EOH	W	102	_	_	_	X

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

4WFB

2 Entry composition (i)

There are 35 unique types of molecules in this entry. The entry contains 81184 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms	ZeroOcc	AltConf	Trace		
1	Х	2707	Total 58034	C 25908	N 10634	O 18785	Р 2707	0	0	0

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		At	toms		ZeroOcc	AltConf	Trace	
2	Y	114	Total 2430	C 1086	N 436	0 794	Р 114	0	0	0

• Molecule 3 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
3	А	271	Total 1608	$\begin{array}{c} \mathrm{C} \\ 975 \end{array}$	N 318	0 311	$\frac{S}{4}$	0	0	0

• Molecule 4 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	В	215	Total 1547	C 969	N 290	O 283	${f S}{5}$	0	0	0

• Molecule 5 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
5	С	199	Total 1318	C 817	N 254	0 245	${ m S} { m 2}$	0	0	0

• Molecule 6 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	D	139	Total 707	C 421	N 139	0 146	S 1	0	0	0

• Molecule 7 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
7	Е	156	Total 934	C 571	N 176	0 186	S 1	0	0	0

• Molecule 8 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
8	G	145	Total 1083	C 679	N 203	0 198	${ m S} { m 3}$	0	0	0

• Molecule 9 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
9	Н	122	Total 824	C 501	N 161	0 158	$\frac{S}{4}$	0	0	0

• Molecule 10 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
10	Ι	131	Total 820	C 498	N 165	0 156	S 1	0	0	0

• Molecule 11 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
11	J	136	Total 1013	C 650	N 184	0 175	$\frac{S}{4}$	0	0	0

• Molecule 12 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
12	K	119	Total 886	С 543	N 172	0 170	S 1	0	0	0

• Molecule 13 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
13	L	110	Total 678	C 416	N 135	O 127	0	0	0

• Molecule 14 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
14	М	109	Total 822	$\begin{array}{c} \mathrm{C} \\ 520 \end{array}$	N 163	O 139	0	0	0

• Molecule 15 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
15	Ν	116	Total 932	C 587	N 188	0 153	${S \over 4}$	0	0	0

• Molecule 16 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		Ato	\mathbf{ms}		ZeroOcc	AltConf	Trace
16	0	101	Total 738	C 468	N 135	O 135	0	0	0

• Molecule 17 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
17	Р	109	Total 823	C 515	N 157	0 149	${ m S} { m 2}$	0	0	0

• Molecule 18 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
18	Q	89	Total 572	C 353	N 105	0 111	${ m S} { m 3}$	0	0	0

• Molecule 19 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	R	100	Total 607	C 368	N 117	0 121	S 1	0	0	0

• Molecule 20 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20	S	157	Total 1020	C 639	N 180	0 199	${ m S} { m 2}$	0	0	0

• Molecule 21 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ator	\mathbf{ns}		ZeroOcc	AltConf	Trace
21	Т	75	Total 539	C 336	N 105	O 98	0	0	0

• Molecule 22 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
22	U	44	Total 246	C 149	N 51	O 46	0	0	0

• Molecule 23 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
23	V	65	Total 459	C 283	N 85	O 91	0	0	0

• Molecule 24 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
24	W	57	Total 413	C 255	N 79	O 79	0	0	0

• Molecule 25 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
25	Ζ	44	Total 342	C 209	N 72	O 58	S 3	0	0	0

• Molecule 26 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
26	2	44	Total 348	C 211	N 83	O 53	S 1	0	0	0

• Molecule 27 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
27	3	60	Total 405	C 249	N 82	0 72	${ m S} { m 2}$	0	0	0

• Molecule 28 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
28	4	37	Total 245	C 149	N 51	0 41	$\frac{S}{4}$	0	0	0

• Molecule 29 is BC-3205 (three-letter code: 3LK) (formula: $C_{32}H_{54}N_2O_5S$).

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf
29	Х	1	Total 40	C 32	N 2	O 5	S 1	0	0

• Molecule 30 is (4S)-2-METHYL-2,4-PENTANEDIOL (three-letter code: MPD) (formula: $C_6H_{14}O_2$).

Mol	Chain	Residues	Atom	s	ZeroOcc	AltConf
30	v	1	Total C	0	0	0
30	Λ	1	8 6	2	0	0
30	Х	1	Total C	0	0	0
			$\frac{8}{100}$	2		
30	Х	1	Total C	$\frac{0}{2}$	0	0
			Total C	$\frac{2}{0}$		
30	Х	1	8 6	$\frac{0}{2}$	0	0
	V	1	Total C	0	0	0
30	Х	1	8 6	2	0	0
20	V	1	Total C	Ο	0	0
30	Λ	1	8 6	2	0	0
30	x	1	Total C	Ο	0	0
50	Λ	1	8 6	2	0	0
30	x	1	Total C	Ο	0	0
00		1	8 6	2	0	0
30	X	1	Total C	Ο	0	0
00		1	8 6	2	0	0
30	X	1	Total C	Ο	0	0
50	11	Ĩ	8 6	2	0	0
30	x	1	Total C	Ο	0	0
50	Λ	1	8 6	2	0	0
30	v	1	Total C	0	0	0
30	Λ	1	8 6	2	0	0
20	V	1	Total C	0	0	0
90	Λ	L	8 6	2	U	
20	v	1	Total C	Ο	0	0
50	Λ	1	8 6	2	0	
30	v	1	Total C	Ο	0	0
30	Λ	T	8 6	2	0	

• Molecule 31 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
31	Х	100	Total Mg 100 100	0	0
31	Y	4	Total Mg 4 4	0	0
31	А	1	Total Mg 1 1	0	0
31	В	2	Total Mg 2 2	0	0
31	С	1	Total Mg 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf				
31	Е	1	Total Mg 1 1	0	0				
31	G	1	Total Mg 1 1	0	0				
31	О	1	Total Mg 1 1	0	0				

• Molecule 32 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
32	Х	306	Total Mn 306 306	0	0
32	Y	3	Total Mn 3 3	0	0
32	А	1	Total Mn 1 1	0	0
32	R	1	Total Mn 1 1	0	0

• Molecule 33 is 4-(2-HYDROXYETHYL)-1-PIPERAZINE ETHANESULFONIC ACID (three-letter code: EPE) (formula: C₈H₁₈N₂O₄S).

Mol	Chain	Residues		Ato	\mathbf{ms}		ZeroOcc	AltConf	
22	v	1	Total	С	Ν	0	S	0	0
55	Λ	L	15	8	2	4	1	0	0
<u> </u>	v	1	Total	С	Ν	Ο	S	0	0
აა	Λ		15	8	2	4	1		0

Continued	fmom	mmoniouo	maaa
Continuea	jrom	previous	page

Mol	Chain	Residues		Ato	oms		ZeroOcc	AltConf		
22	v	1	Total	С	Ν	0	S	0	0	
- 55	Λ	1	15	8	2	4	1	0	0	
22	v	1	Total	С	Ν	0	S	0	0	
აა	Λ		15	8	2	4	1		0	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
34	Х	1	Total C N 10 7 3	0	0
34	Х	1	Total C N 10 7 3	0	0
34	Х	1	Total C N 10 7 3	0	0
34	Х	1	Total C N 10 7 3	0	0
34	Х	1	Total C N 10 7 3	0	0
34	Х	1	Total C N 10 7 3	0	0
34	Х	1	Total C N 10 7 3	0	0
34	Х	1	Total C N 10 7 3	0	0
34	Х	1	Total C N 10 7 3	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
34	Х	1	Total C N 10 7 3	0	0
34	С	1	$\begin{array}{c cccc} 10 & 7 & 0 \\ \hline Total & C & N \\ 10 & 7 & 3 \end{array}$	0	0

• Molecule 35 is ETHANOL (three-letter code: EOH) (formula: C_2H_6O).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
35	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 3 & 2 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
35	Y	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	К	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
35	W	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 3 & 2 & 1 \end{array}$	0	0
35	W	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 3 & 2 & 1 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 23S rRNA

A824	G825 A826	A827	U829	U830 C831	C832	U835	C836 C837	A838	A849	G850	CS51	C857	U858 C859	U860	C862 C862	G863	A864 A865		U873 U873	1007	G878 C878	0879	U884	C885	0889 (890	A891	1887 1	A897 U898		6901 A902	G903 G904	1000	G907 A908		C921 G922	A923	G924 G925	
G926	უ ი	00	00	D C	n	ა დ	G937 G938	0939	0940 A941	C942	C943 G944	A945	A946 U947	U948	A955	A956	C959	C960	TOP	C967	A969 A969	U U971	-	A977 A978	(983	G984	4985 G986	U987 C988	A989	6890	0000	<mark>G1000</mark>	A1001 U1002	A1003	A1004 G1005		01013 01014	
C1015	G1016 A1017	A1018	A1023	A1024 A1025	C1026		C1030	A1034	A1037	C1038	C1039 A1040		01043	C1049	A1053	A1054	A1055 U1056	A1057	G1061	U1062	01003 A1064	A1065 G1066	U1067	G1068 G1069	A1070 A1071	A1072	U1077	11084	U1085	G1 086	C1089 A1090	G1091	A1092 C1093	A1094	A1095	A1098	G 1088	
A	D U	n	o U	ප ව	n	A	G	Ä	ප ව	Å	3 0	G	A U	U -	A U	U :	D A	Å	G A	A	• 0	ర ల	5;	U A	A U	e V	G C1144	U1145 C1146	A1147	C1148 U1149	G1154	A	G1156	C1162	01163	G1169		
U1174	61175 U1176	A1177 C1178	C1179	G1180	U1185 1186	A1187	A1188	A1195	A1199	A1200	U1205	G1206	<mark>G1207</mark> A1208	U1209	01210 G1211	U1212	C1213 C1214	U1215	o D	G1218 C1210	0171A	G1226 U1227	A1228	67.719	01237	A1241	A1242	G1247 U1248	U1249	61250	G1261	A1264	C1268	A1269	A1275		G1278 C1279	
U1280	U1281 A1282	41 285	G1286	U1287 G1288	A1289	41290 A1291	A1292 111293	G1294	C1295 C1296		01299 G1300	U1301	G1302 A1303	G1304	COSTO	61309	A1310 A1311	A1312	A1314	C1315	A1321	A1324	U1325	C1326 C1327	C1328 G1329	U1330	C1331 C1332	G1336	A1337	U1338 U1339	G1340	G1346	G1347 U1348	U1349	01350 C1351	C1352	A1353 G1354	
A1355	G1356 G1357	A1358 A1359		G1365 U1366	C1367	C1370	111.378	A1379	G1380	G1383	G1384	U1389	A1390 A1391	G1392	G1395		C1400 G1401	A1402	C1403 A1404	G1405	G1407	G1408 U1409	A1410	G1411 G1412	C1413 G1414	A1415	01416 G1417	A1421	A1422	C1423 A1424	G1429	A1430	U1431 A1432	U1433	01434 C1435	C1436	0143/	
A1440	C1441	C1444 C1445		U1448 A1449	A1450	01451 C1452	G1453 111454	n	n	A	A1459 U1460		A1463 U1464	G1465	G1467 G1467	G1468	G1469 G1470	A1471	C14/ Z G1473	C1474	61476	U1477 A1478			G1487 A1488	A	G1490 C1491	G1492 U1493	G1494	C1495 G1496	A1497 111498	U1499	G1500 G1501	A1502	U U1504	G1505		
C1508	G1509 U1510	C1511 11512	A1513	A1514 G1515	C1516	A151/ G1518	U1519 A1520	A1521	G1522 G1523	C1524	01525 G1526	A1527	G1528 U1529	A1530	0.0	Ā		C	A1537 A1538	A1539	01540 C1541	C1542 G1543	G1544	01545 A1546	C1547 U1548	C1549	U	U A	A	G1556 G1556	C1557 111558	G1559	A1560 G1561	C1562	U1563 G1564	U1565	61560 A1567	
U1568	G G1570	G1571	A1575	A1576 G1577	A1578	A	n	o 19 -	G	n	םכ	Û	ი ი	A1592	61594 U1594	C1595	G1596 U1597	U1598	A1600	U1601 114602	01602 U1603	C1604 A1605	C1606	G1613	A1614 G1615	A1616	A161/ A1618	A1619	C1622	01623 C1624	U1625	A1628	U1629 A1630	G1631	A1632 A	A	A1635 U1636	
A1637	G1638 G1639	U1640 C1641	C1642	C1643 C1644	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A1052 A1653	A1654	A1658	A1662	<mark>G1663</mark>	C1669	A1670	01674	G1675			C1682 U1683	A1684	61686	C 16 00	41690 A1690	G1691 C1692	G1693	A1694 G1695	A 16.98	A1699	C1700 U1701	C1702 U1703		U1705 U1707	A1708 A1709	G1710	A1713		C1716 G1717	G1718	C1/19 A1720	
A1721	A1722 A1723	A1796		C1730	U1737	G1740	A 17 44	A1745	G1746 G1747	G1748	G1/49 U1750		U1756 U1757	A1758	G1760	G1761	01/62 01763	A1764	A1/05 C1766	G1767	C1769	C1770 A1771	G1772	G1777	G1780	C1781		U1788 • A1789 •	G1790	G1792	A 1800		U1805 U1806	A1807	01808 01809	A1810	A1811 A1812	
A1813	A1814 C1815	A1816 C1817	A1818	U1821	C1822	679T0	G1826 C1827		A1830 A1831	C1832	C1833 G1834	U1835	A1836 A1837	G1838	01840	G1841	A1842 U1843	G1844	01645 A1846	U1847	A1040 G1849	G1850 G1851		01854 G1855	A1856	C1860	01861	C1864 C1865	G	G1867	A1875	G1885	A1886	U1891	U1892 A1893	G1894	a c	
ñ	a c	G1900 C1901	G1902	U1907	A1908	G1910 G1910	A1911 A1912		A1923 G1924		G1930 G1931	C1932	G1933 G1934	C1935	CTA2O	n	A A	U :	A	n	A	ບບ	5	u C1951	C1952 U1953	A1954	A1955 G1956	G1957 U1958	A1959	G1960 C1961	G1962 A1963	A1964	A1965 U1966	U1967	01970	020	01979 A1979	

• Molecule 11: 50S ribosomal protein L16 17% Chain J: 50% 40% 5% 6% E136 LEU GLY GLY GLU ASN GLU SER • Molecule 12: 50S ribosomal protein L17 Chain K: 52% 36% 9% • Molecule 13: 50S ribosomal protein L18 8% Chain L: 63% 24% 5% 8% K38 139 ALA ARG GLU GLU SER GLY LEU LEU CLU PHE • Molecule 14: 50S ribosomal protein L19 Chain M: 56% 30% 8% 6% ARG ILE GLN GLU ILE ARG • Molecule 15: 50S ribosomal protein L20 Chain N: 64% 32%

 \bullet Molecule 16: 50S ribosomal protein L21

 \bullet Molecule 26: 50S ribosomal protein L34 9% Chain 2: 53% 38% 7%• MET R22 • Molecule 27: 50S ribosomal protein L35 5% Chain 3: 64% 27% 9% LEU ALA TYR LYS LYS \bullet Molecule 28: 50S ribosomal protein L36 65% Chain 4: 59% 35% 5%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 65 2 2	Depositor
Cell constants	280.92Å 280.92Å 875.59Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
$\mathbf{Posolution} \left(\overset{\circ}{\mathbf{A}} \right)$	49.54 - 3.43	Depositor
Resolution (A)	49.54 - 3.41	EDS
% Data completeness	91.8 (49.54-3.43)	Depositor
(in resolution range)	91.8 (49.54 - 3.41)	EDS
R_{merge}	0.15	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.72 (at 3.40 \text{\AA})$	Xtriage
Refinement program	PHENIX (phenix.refine: 1.8.2_1309)	Depositor
P. P.	0.204 , 0.242	Depositor
Π, Π_{free}	0.204 , 0.241	DCC
R_{free} test set	12763 reflections $(5.03%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	98.3	Xtriage
Anisotropy	0.249	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.20, 62.5	EDS
L-test for $twinning^2$	$< L >=0.46, < L^2>=0.29$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.90	EDS
Total number of atoms	81184	wwPDB-VP
Average B, all atoms $(Å^2)$	80.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.35% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: EOH, MN, MG, EPE, MPD, SPD, 3LK

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	lengths Bond an	
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	Х	0.57	13/64978~(0.0%)	1.06	182/101293~(0.2%)
2	Y	0.54	0/2717	1.12	16/4232~(0.4%)
3	А	0.32	0/1635	0.62	0/2256
4	В	0.50	0/1570	0.78	0/2116
5	С	0.44	0/1337	0.67	0/1829
6	D	0.26	0/704	0.53	0/973
7	Е	0.31	0/943	0.57	0/1301
8	G	0.45	0/1105	0.65	0/1498
9	Н	0.42	0/830	0.66	1/1125~(0.1%)
10	Ι	0.47	0/827	0.84	0/1120
11	J	0.42	0/1037	0.69	0/1404
12	Κ	0.42	0/889	0.73	1/1192~(0.1%)
13	L	0.33	0/683	0.60	0/935
14	М	0.45	0/834	0.68	0/1125
15	Ν	0.57	0/944	0.75	0/1252
16	0	0.44	0/748	0.70	0/1007
17	Р	0.47	0/831	0.68	0/1122
18	Q	0.35	0/577	0.59	0/791
19	R	0.39	0/611	0.65	0/837
20	S	0.40	0/1030	0.60	0/1412
21	Т	0.39	0/545	0.64	0/728
22	U	0.28	0/249	0.56	0/345
23	V	0.37	0/460	0.57	0/621
24	W	0.45	0/415	0.69	0/565
25	Ζ	0.49	0/347	0.75	0/461
26	2	0.41	0/351	0.66	0/461
27	3	0.56	0/409	0.84	1/547~(0.2%)
28	4	0.36	0/246	0.62	0/330
All	All	0.54	13/87852~(0.0%)	0.99	201/132878~(0.2%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if

the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
4	В	0	2
11	J	0	1
All	All	0	3

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
1	Х	577	A	N9-C4	-9.63	1.32	1.37
1	Х	1065	A	N9-C4	-7.39	1.33	1.37
1	Х	577	А	N3-C4	-7.27	1.30	1.34
1	Х	1690	А	N9-C4	6.75	1.42	1.37
1	Х	2081	А	N9-C4	-6.54	1.33	1.37

The worst 5 of 13 bond length outliers are listed below:

The worst 5 of 201 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Х	577	A	C2-N3-C4	-12.95	104.13	110.60
1	Х	1065	А	C2-N3-C4	-12.08	104.56	110.60
1	Х	2048	G	N3-C4-C5	10.50	133.85	128.60
1	Х	577	А	N1-C6-N6	10.14	124.68	118.60
2	Y	93	С	N3-C2-O2	-10.03	114.88	121.90

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
4	В	166	GLY	Peptide
4	В	207	GLY	Peptide
11	J	11	ARG	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Х	58034	0	29194	788	1
2	Y	2430	0	1229	50	0
3	А	1608	0	1202	51	0
4	В	1547	0	1526	59	0
5	С	1318	0	1167	47	0
6	D	707	0	349	3	0
7	Ε	934	0	679	13	0
8	G	1083	0	1030	47	0
9	Н	824	0	766	17	0
10	Ι	820	0	678	30	0
11	J	1013	0	993	36	0
12	Κ	886	0	889	31	0
13	L	678	0	547	27	0
14	М	822	0	837	29	0
15	Ν	932	0	997	31	0
16	0	738	0	716	19	0
17	Р	823	0	866	30	0
18	Q	572	0	456	16	0
19	R	607	0	489	24	0
20	S	1020	0	868	20	0
21	Т	539	0	525	15	0
22	U	246	0	147	2	0
23	V	459	0	421	11	0
24	W	413	0	414	11	0
25	Ζ	342	0	345	17	0
26	2	348	0	373	16	0
27	3	405	0	367	8	0
28	4	245	0	215	10	0
29	Х	40	0	52	8	0
30	Х	120	0	210	14	0
31	А	1	0	0	0	0
31	В	2	0	0	0	0
31	С	1	0	0	0	0
31	Ε	1	0	0	0	0
31	G	1	0	0	0	0
31	0	1	0	0	0	0
31	X	100	0	0	0	0
31	Y	4	0	0	0	0
32	A	1	0	0	0	0
32	R	1	0	0	0	0
32	X	306	0	0	0	0
32	Y	3	0	0	0	0
33	Х	60	0	68	10	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
34	С	10	0	19	1	0
34	Х	100	0	190	12	0
35	Κ	3	0	6	0	0
35	W	6	0	12	0	0
35	Х	27	0	54	0	0
35	Υ	3	0	6	0	0
All	All	81184	0	48902	1313	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

The worst 5 of 1313 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:X:2290:C:H41	21:T:24:SER:HB3	1.23	1.02
1:X:79:U:HO2'	1:X:389:A:H8	1.03	0.97
1:X:548:A:H5"	1:X:549:U:H5'	1.51	0.92
5:C:77:THR:HG22	5:C:79:ARG:H	1.36	0.90
9:H:4:GLN:HG2	9:H:5:GLU:HG2	1.54	0.89

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:X:136:A:OP1	1:X:1453:G:N2[12_554]	2.17	0.03

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
3	А	269/277~(97%)	216 (80%)	30 (11%)	23(9%)	1 8

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Pe	rce	entile	s
4	В	213/220~(97%)	181 (85%)	19 (9%)	13~(6%)		1	13	
5	С	197/207~(95%)	168 (85%)	18 (9%)	11 (6%)		2	16	
6	D	133/179~(74%)	112 (84%)	13 (10%)	8 (6%)		1	14	
7	Е	154/178~(86%)	112 (73%)	30 (20%)	12 (8%)		1	9	
8	G	143/145~(99%)	125 (87%)	14 (10%)	4 (3%)		5	31	
9	Н	120/122~(98%)	110 (92%)	7~(6%)	3 (2%)		5	33	
10	Ι	129/146~(88%)	88 (68%)	24 (19%)	17 (13%)		0	3	
11	J	134/144 (93%)	117 (87%)	10 (8%)	7 (5%)		2	17	
12	К	117/122~(96%)	98 (84%)	12 (10%)	7 (6%)		1	14	
13	L	108/119 (91%)	94 (87%)	10 (9%)	4 (4%)		3	25	
14	М	107/116~(92%)	90 (84%)	11 (10%)	6 (6%)		2	16	
15	Ν	114/118~(97%)	111 (97%)	2 (2%)	1 (1%)	1	17	54	
16	Ο	99/102~(97%)	86 (87%)	6 (6%)	7 (7%)		1	10	
17	Р	107/117~(92%)	102 (95%)	5 (5%)	0	10)0	100	i
18	Q	87/91~(96%)	80 (92%)	4(5%)	3 (3%)		3	27	
19	R	98/105~(93%)	75 (76%)	14 (14%)	9 (9%)		1	7	
20	S	153/217~(70%)	121 (79%)	19 (12%)	13 (8%)		1	8	
21	Т	73/94~(78%)	65~(89%)	5 (7%)	3 (4%)		3	23	
22	U	42/62~(68%)	31 (74%)	9 (21%)	2(5%)		2	19	
23	V	63/69~(91%)	61 (97%)	1 (2%)	1 (2%)		9	42	
24	W	55/59~(93%)	51 (93%)	3 (6%)	1 (2%)		8	39	
25	Ζ	42/58~(72%)	36 (86%)	5 (12%)	1 (2%)		6	34	
26	2	42/45~(93%)	39~(93%)	3 (7%)	0	10	00	100	i
27	3	58/66~(88%)	44 (76%)	7 (12%)	7 (12%)		0	4	
28	4	35/37~(95%)	32 (91%)	2~(6%)	1 (3%)		4	30	
All	All	2892/3215~(90%)	2445 (84%)	283 (10%)	164 (6%)		1	15	

5 of 164 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	А	38	PRO
3	А	51	VAL
3	А	156	ARG

 $Continued \ from \ previous \ page...$

Mol	Chain	Res	Type
3	А	270	ILE
4	В	53	PHE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
3	А	96/224~(43%)	85~(88%)	11 (12%)	5	25
4	В	150/177~(85%)	117 (78%)	33 (22%)	1	4
5	С	104/169~(62%)	81 (78%)	23~(22%)	1	4
6	D	9/158~(6%)	7 (78%)	2(22%)	1	4
7	Ε	56/155~(36%)	42 (75%)	14 (25%)	0	3
8	G	104/123~(85%)	86~(83%)	18 (17%)	2	10
9	Η	73/100~(73%)	64 (88%)	9~(12%)	4	22
10	Ι	54/112~(48%)	37~(68%)	17 (32%)	0	2
11	J	95/119~(80%)	78~(82%)	17~(18%)	2	8
12	Κ	85/102~(83%)	68~(80%)	17~(20%)	1	5
13	L	40/95~(42%)	32~(80%)	8 (20%)	1	5
14	М	81/102~(79%)	65~(80%)	16 (20%)	1	5
15	Ν	93/98~(95%)	82~(88%)	11 (12%)	5	23
16	Ο	69/86~(80%)	58 (84%)	11 (16%)	2	13
17	Р	84/94~(89%)	72~(86%)	12 (14%)	3	17
18	Q	39/82~(48%)	33~(85%)	6~(15%)	2	14
19	R	42/90~(47%)	30 (71%)	12~(29%)	0	2
20	S	82/190~(43%)	67~(82%)	15~(18%)	1	7
21	Т	48/75~(64%)	42 (88%)	6 (12%)	4	21
22	U	7/52~(14%)	6 (86%)	1(14%)	3	17
23	V	40/62~(64%)	31 (78%)	9(22%)	1	3
24	W	43/53 (81%)	38 (88%)	5(12%)	5	24

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
25	Ζ	36/51~(71%)	31 (86%)	5(14%)	3 18
26	2	34/40~(85%)	28 (82%)	6~(18%)	2 9
27	3	32/57~(56%)	28~(88%)	4 (12%)	4 21
28	4	20/35~(57%)	16 (80%)	4 (20%)	1 5
All	All	1616/2701~(60%)	1324 (82%)	292 (18%)	1 8

 $5~{\rm of}~292$ residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
19	R	65	VAL
27	3	40	GLN
20	S	20	GLN
23	V	19	LYS
8	G	101	LEU

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. There are no such side chains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	Х	2686/2923~(91%)	622 (23%)	26~(0%)
2	Y	113/114 (99%)	16 (14%)	0
All	All	2799/3037~(92%)	638 (22%)	26~(0%)

5 of 638 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	Х	2	A
1	Х	9	U
1	Х	15	G
1	Х	33	U
1	Х	34	U

5 of 26 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	Х	1526	G
1	Х	1954	А

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
1	Х	2806	U
1	Х	1952	С
1	Х	2234	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 466 ligands modelled in this entry, 422 are monoatomic - leaving 44 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Tink	Bo	Bond lengths		В	ond ang	gles
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
34	SPD	Х	3431	-	9,9,9	0.11	0	8,8,8	0.09	0
34	SPD	Х	3427	-	9,9,9	0.18	0	8,8,8	0.26	0
35	EOH	W	102	-	2,2,2	0.52	0	1,1,1	0.65	0
34	SPD	Х	3428	-	9,9,9	0.18	0	8,8,8	0.18	0
34	SPD	С	302	-	$9,\!9,\!9$	0.23	0	8,8,8	0.19	0
30	MPD	Х	3010	-	7,7,7	0.33	0	9,10,10	0.12	0
30	MPD	Х	3013	-	$7,\!7,\!7$	0.45	0	$9,\!10,\!10$	0.15	0
34	SPD	Х	3434	-	$9,\!9,\!9$	0.06	0	8,8,8	0.28	0
35	EOH	Х	3439	-	2,2,2	0.50	0	1,1,1	0.81	0
30	MPD	Х	3006	-	$7,\!7,\!7$	0.65	0	$9,\!10,\!10$	0.27	0
35	EOH	Х	3438	-	2,2,2	0.53	0	$1,\!1,\!1$	0.63	0
35	EOH	Х	3437	-	2,2,2	0.50	0	$1,\!1,\!1$	0.72	0
35	EOH	Х	3443	-	2,2,2	0.55	0	$1,\!1,\!1$	0.61	0
33	EPE	X	3421	-	15,15,15	1.23	1 (6%)	18,20,20	0.21	0
34	SPD	Х	3432	-	9,9,9	0.23	0	8,8,8	0.24	0

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
33	EPE	Х	3423	-	$15,\!15,\!15$	1.05	1 (6%)	18,20,20	0.86	1 (5%)
34	SPD	Х	3430	-	9,9,9	0.17	0	8,8,8	0.34	0
35	EOH	Х	3440	-	2,2,2	0.56	0	1,1,1	0.67	0
35	EOH	Х	3441	-	2,2,2	0.51	0	1,1,1	0.73	0
30	MPD	Х	3016	-	7,7,7	0.80	0	9,10,10	0.56	0
30	MPD	Х	3014	-	$7,\!7,\!7$	0.49	0	9,10,10	0.21	0
33	EPE	Х	3424	-	$15,\!15,\!15$	0.91	1 (6%)	18,20,20	0.14	0
30	MPD	Х	3012	-	7,7,7	0.37	0	9,10,10	0.22	0
35	EOH	K	201	-	2,2,2	0.53	0	1,1,1	0.59	0
35	EOH	W	101	-	2,2,2	0.50	0	1,1,1	0.63	0
30	MPD	Х	3009	-	7,7,7	0.61	0	9,10,10	0.18	0
30	MPD	Х	3008	-	7,7,7	0.48	0	9,10,10	0.28	0
30	MPD	Х	3011	-	7,7,7	0.66	0	9,10,10	0.25	0
35	EOH	Х	3435	-	2,2,2	0.56	0	1,1,1	0.61	0
35	EOH	Х	3442	-	2,2,2	0.58	0	$1,\!1,\!1$	0.55	0
34	SPD	Х	3429	-	$9,\!9,\!9$	0.20	0	8,8,8	0.32	0
30	MPD	Х	3015	-	$7,\!7,\!7$	0.32	0	$9,\!10,\!10$	0.18	0
35	EOH	Х	3436	-	2,2,2	0.55	0	$1,\!1,\!1$	0.62	0
30	MPD	Х	3003	-	$7,\!7,\!7$	0.40	0	9,10,10	0.22	0
33	EPE	Х	3422	-	$15,\!15,\!15$	1.02	1 (6%)	18,20,20	0.59	0
30	MPD	Х	3004	-	7,7,7	0.35	0	9,10,10	0.24	0
30	MPD	Х	3007	-	$7,\!7,\!7$	0.53	0	9,10,10	0.19	0
34	SPD	Х	3433	-	$9,\!9,\!9$	0.14	0	8,8,8	0.17	0
34	SPD	Х	3426	-	$9,\!9,\!9$	0.17	0	8,8,8	0.12	0
35	EOH	Y	208	-	2,2,2	0.54	0	1,1,1	0.60	0
30	MPD	X	3005	-	7,7,7	0.46	0	9,10,10	0.27	0
34	SPD	Х	3425	-	$9,\!9,\!9$	0.19	0	8,8,8	0.22	0
30	MPD	Х	3002	-	7,7,7	0.37	0	9,10,10	0.55	0
29	3LK	X	3001	-	40,43,43	1.19	3 (7%)	56,67,67	1.86	8 (14%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
34	SPD	Х	3431	-	-	1/7/7/7	-
34	SPD	Х	3427	-	-	3/7/7/7	-
34	SPD	Х	3428	-	-	4/7/7/7	-
34	SPD	С	302	-	-	0/7/7/7	-
30	MPD	Х	3010	-	-	0/5/5/5	-

4WFB

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
30	MPD	Х	3013	-	-	1/5/5/5	-
34	SPD	Х	3434	-	-	2/7/7/7	-
30	MPD	Х	3006	-	-	2/5/5/5	-
33	EPE	Х	3421	-	-	4/9/19/19	0/1/1/1
34	SPD	Х	3432	-	-	3/7/7/7	-
33	EPE	Х	3423	-	-	3/9/19/19	0/1/1/1
34	SPD	Х	3430	-	-	3/7/7/7	-
30	MPD	Х	3016	-	-	1/5/5/5	-
30	MPD	X	3014	-	-	2/5/5/5	-
33	EPE	Х	3424	-	-	0/9/19/19	0/1/1/1
30	MPD	Х	3012	-	-	2/5/5/5	-
30	MPD	Х	3009	-	-	0/5/5/5	-
30	MPD	Х	3008	-	-	2/5/5/5	-
30	MPD	Х	3011	-	-	3/5/5/5	-
34	SPD	Х	3429	-	-	3/7/7/7	-
30	MPD	Х	3015	-	-	4/5/5/5	-
30	MPD	Х	3003	-	-	2/5/5/5	-
33	EPE	Х	3422	-	-	1/9/19/19	0/1/1/1
30	MPD	Х	3004	-	-	4/5/5/5	-
30	MPD	Х	3007	-	-	1/5/5/5	-
34	SPD	Х	3433	-	-	2/7/7/7	-
34	SPD	Х	3426	-	-	3/7/7/7	-
30	MPD	Х	3005	-	-	2/5/5/5	-
34	SPD	X	3425	-	-	2/7/7/7	-
30	MPD	X	3002	-	-	2/5/5/5	-
29	3LK	Х	3001	-	-	3/22/95/95	0/4/4/4

The worst 5 of 7 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
29	Х	3001	3LK	C20-C19	-5.69	1.27	1.51
33	Х	3421	EPE	C10-S	-4.75	1.70	1.77
33	Х	3423	EPE	C10-S	-3.98	1.71	1.77
33	Х	3422	EPE	C10-S	-3.79	1.72	1.77
33	Х	3424	EPE	C10-S	-3.52	1.72	1.77

The worst 5 of 9 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$\mathbf{Ideal}(^{o})$
29	Х	3001	3LK	C20-C19-C12	6.43	126.10	116.21
29	Х	3001	3LK	C15-C5-C14	-6.30	102.74	108.95
29	Х	3001	3LK	C13-C14-C5	-5.43	110.73	116.31
29	Х	3001	3LK	O3-C14-C5	4.46	112.98	106.18
29	Х	3001	3LK	C23-C27-N1	-3.44	105.03	109.58

There are no chirality outliers.

5 of 65 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
29	Х	3001	3LK	C13-C12-C19-C20
29	Х	3001	3LK	C27-C23-S-C22
30	Х	3002	MPD	C1-C2-C3-C4
30	Х	3004	MPD	C2-C3-C4-O4
30	Х	3006	MPD	C2-C3-C4-C5

There are no ring outliers.

19 monomers are involved in 45 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
34	Х	3431	SPD	1	0
34	Х	3428	SPD	1	0
34	С	302	SPD	1	0
34	Х	3434	SPD	6	0
33	Х	3421	EPE	4	0
34	Х	3432	SPD	1	0
33	Х	3423	EPE	2	0
30	Х	3016	MPD	4	0
30	Х	3014	MPD	1	0
33	Х	3424	EPE	3	0
30	Х	3008	MPD	1	0
34	Х	3429	SPD	1	0
30	Х	3015	MPD	3	0
33	Х	3422	EPE	1	0
30	Х	3004	MPD	2	0
34	Х	3426	SPD	2	0
30	Х	3005	MPD	4	0
30	Х	3002	MPD	1	0
29	Х	3001	3LK	8	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will

also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and similar rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	Х	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Х	2123:A	O3'	2124:U	Р	4.01

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	$\# RSRZ {>}2$	$OWAB(m A^2)$	Q < 0.9
1	Х	2707/2923~(92%)	-0.26	54 (1%) 65 63	26, 70, 166, 275	0
2	Y	114/114~(100%)	-0.34	2 (1%) 68 66	51, 84, 141, 183	0
3	А	271/277~(97%)	0.58	44 (16%) 1 2	54, 100, 155, 195	0
4	В	215/220~(97%)	-0.08	12 (5%) 24 25	34, 49, 101, 134	0
5	С	199/207~(96%)	-0.00	9 (4%) 33 32	37, 60, 111, 160	0
6	D	139/179~(77%)	1.16	45 (32%) 0 0	92, 142, 196, 234	0
7	Е	156/178~(87%)	0.07	21 (13%) 3 5	58, 109, 176, 210	0
8	G	145/145~(100%)	0.81	27 (18%) 1 2	37, 49, 76, 133	0
9	Н	122/122~(100%)	0.76	27 (22%) 0 1	58, 69, 108, 134	0
10	Ι	131/146~(89%)	0.02	9 (6%) 16 19	19, 73, 143, 206	0
11	J	136/144 (94%)	0.69	25 (18%) 1 2	41, 65, 127, 172	0
12	K	119/122~(97%)	-0.33	0 100 100	34, 57, 127, 151	0
13	L	110/119~(92%)	0.16	10 (9%) 9 11	56, 87, 131, 174	0
14	М	109/116~(93%)	-0.23	2 (1%) 68 66	47, 64, 135, 177	0
15	Ν	116/118~(98%)	-0.27	1 (0%) 84 81	24, 39, 87, 129	0
16	Ο	101/102~(99%)	0.26	7 (6%) 16 19	23, 56, 101, 154	0
17	Р	109/117~(93%)	0.71	19 (17%) 1 2	37, 49, 97, 134	0
18	Q	89/91~(97%)	0.81	22 (24%) 0 0	37, 88, 133, 162	0
19	R	100/105~(95%)	0.47	18 (18%) 1 2	35, 90, 171, 210	0
20	S	157/217~(72%)	0.22	16 (10%) 6 9	46, 78, 157, 244	0
21	Т	75/94~(79%)	1.05	20 (26%) 0 0	33, 58, 109, 130	0
22	U	44/62~(70%)	2.66	25~(56%) 0 0	78, 120, 166, 218	0
23	V	65/69~(94%)	0.38	4 (6%) 20 22	79, 108, 170, 237	0
24	W	$5\overline{7/59}~(96\%)$	1.29	18 (31%) 0 0	35, 45, 87, 95	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
25	Z	44/58~(75%)	-0.19	1 (2%) 60 58	28, 51, 130, 153	0
26	2	44/45~(97%)	0.76	4 (9%) 9 11	54,63,85,112	0
27	3	60/66~(90%)	0.26	3 (5%) 28 29	31, 53, 78, 94	0
28	4	37/37~(100%)	2.88	24 (64%) 0 0	56, 78, 106, 118	0
All	All	5771/6252~(92%)	0.08	469 (8%) 12 15	19, 71, 158, 275	0

The worst 5 of 469 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
20	S	109	VAL	8.4
1	Х	2629	А	7.6
22	U	13	SER	7.4
28	4	29	ASN	6.9
28	4	11	CYS	6.5

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
31	MG	Х	3101	1/1	0.12	1.10	80,80,80,80	0
31	MG	Х	3119	1/1	0.43	0.53	87,87,87,87	0
32	MN	Х	3228	1/1	0.52	0.93	190,190,190,190	0
31	MG	Х	3173	1/1	0.55	1.26	34,34,34,34	1
31	MG	Х	3185	1/1	0.57	0.41	74,74,74,74	0
31	MG	Х	3046	1/1	0.59	0.53	67,67,67,67	0
32	MN	Х	3040	1/1	0.60	0.70	157,157,157,157	0

4W	ΥFB
----	-----

	Type	Chain	\mathbf{B}	Atoms	BSCC	BSB	B factors (λ^2)	0 < 0.0
20	Type MN	V	nes				D-lactors(A)	Q<0.9
32	MIN	A V	3301		0.01	0.42	148,148,148,148	0
32	MIN	A V	3201	1/1	0.62	0.10	139,139,139,139	0
31	MG	X	3412	1/1	0.62	0.79	73,73,73,73	0
32	MN	<u>X</u>	3231	1/1	0.67	1.12	166,166,166,166	0
31	MG	<u>X</u>	3123	1/1	0.67	0.38	77,77,77,77	0
32	MN	X	3283	1/1	0.67	0.20	121,121,121,121	0
31	MG	X	3089	1/1	0.67	2.39	91,91,91,91	0
32	MN	Х	3198	1/1	0.69	0.58	154,154,154,154	0
31	MG	Х	3186	1/1	0.69	0.68	$15,\!15,\!15,\!15$	1
32	MN	Х	3157	1/1	0.70	0.16	103,103,103,103	0
31	MG	Х	3411	1/1	0.70	1.09	78, 78, 78, 78	0
32	MN	Х	3356	1/1	0.70	0.68	$95,\!95,\!95,\!95$	0
32	MN	Х	3249	1/1	0.70	0.50	149,149,149,149	0
32	MN	Х	3143	1/1	0.71	0.32	157,157,157,157	0
32	MN	Х	3184	1/1	0.71	0.61	139,139,139,139	0
34	SPD	Х	3425	10/10	0.73	0.50	101,101,101,101	0
32	MN	Х	3316	1/1	0.74	1.29	131,131,131,131	0
31	MG	Х	3111	1/1	0.74	0.30	25,25,25,25	0
32	MN	Х	3021	1/1	0.74	0.39	118,118,118,118	0
32	MN	R	201	1/1	0.74	0.24	118,118,118,118	0
32	MN	Х	3311	1/1	0.74	0.29	140,140,140,140	0
32	MN	Х	3394	1/1	0.75	0.68	105,105,105,105	0
31	MG	Х	3102	1/1	0.75	0.24	33,33,33,33	0
33	EPE	Х	3424	15/15	0.75	0.38	137,137,137,137	0
32	MN	Х	3152	1/1	0.75	0.33	136,136,136,136	0
32	MN	Х	3404	1/1	0.76	0.20	116,116,116,116	0
32	MN	Х	3159	1/1	0.76	0.16	137,137,137,137	0
35	EOH	W	102	3/3	0.76	0.48	66,66,66,66	0
31	MG	Х	3168	1/1	0.77	0.38	57,57,57,57	0
31	MG	Х	3070	1/1	0.77	0.09	91,91,91,91	0
32	MN	Х	3142	1/1	0.77	0.60	166,166,166,166	0
31	MG	0	201	1/1	0.77	0.34	30,30,30,30	0
32	MN	Х	3066	1/1	0.78	0.36	146,146,146,146	0
32	MN	Х	3253	1/1	0.78	0.27	134,134,134,134	0
31	MG	Х	3171	1/1	0.78	0.30	75,75,75,75	0
32	MN	Х	3320	1/1	0.78	0.45	91,91,91,91	0
30	MPD	Х	3011	8/8	0.79	0.33	106,106,106,106	0
31	MG	Х	3052	1/1	0.79	0.32	26,26,26,26	0
31	MG	Х	3409	1/1	0.79	0.49	35,35,35,35	1
32	MN	Х	3085	1/1	0.79	0.80	185,185,185,185	0
32	MN	Х	3197	1/1	0.80	0.73	111,111,111,111	0
32	MN	Х	3383	1/1	0.80	0.19	$156,\!156,\!156,\!156$	0

		Chain	is puye.	 Atoms	BSCC	RSR	B -factors $(Å^2)$	0<0.9
30	MPD	V V	3014	8/8	0.80	0.30	$105\ 105\ 105\ 105$	Q <0.5
34	SPD	X	3433	10/10	0.80	0.30	07 07 07 07 07	0
35	EOH	X	3437	3/3	0.80	0.61	108 108 108 108	0
32	MN	X	3260	1/1	0.80	0.00	150,100,100	0
32	MN	X	3218	1/1	0.81	0.40	$\frac{101,101,101,101}{170,170,170}$	0
32	MN	X	3354	1/1	0.81	0.29	114,114,114,114	0
33	EPE	X	3422	$\frac{1}{15/15}$	0.81	0.50	155,155,155,155,155	0
31	MG	X	3121	1/1	0.81	0.70	81.81.81.81	0
31	MG	X	3108	1/1	0.81	0.28	74,74,74,74	0
34	SPD	X	3428	10/10	0.81	0.43	55,55,55,55	0
31	MG	Х	3126	1/1	0.81	0.39	51,51,51,51	0
35	EOH	Х	3436	3/3	0.81	0.80	69,69,69,69	0
32	MN	Х	3385	1/1	0.81	0.21	108,108,108,108	0
32	MN	Х	3216	1/1	0.81	0.60	128,128,128,128	0
31	MG	Х	3112	1/1	0.82	0.20	23,23,23,23	1
32	MN	Х	3230	1/1	0.82	0.32	118,118,118,118	0
32	MN	Х	3291	1/1	0.82	0.24	90,90,90,90	0
32	MN	Х	3399	1/1	0.82	0.54	130,130,130,130	0
31	MG	Х	3107	1/1	0.82	0.35	58,58,58,58	0
32	MN	Х	3445	1/1	0.82	0.38	108,108,108,108	0
32	MN	А	301	1/1	0.82	0.31	119,119,119,119	0
32	MN	Х	3315	1/1	0.82	0.47	143,143,143,143	0
32	MN	Y	205	1/1	0.83	0.14	$103,\!103,\!103,\!103$	0
32	MN	Х	3033	1/1	0.83	0.32	136, 136, 136, 136, 136	0
31	MG	Х	3060	1/1	0.83	0.56	42,42,42,42	0
30	MPD	Х	3013	8/8	0.83	0.34	$95,\!95,\!95,\!95$	0
33	EPE	Х	3423	15/15	0.83	0.31	145,145,145,145	0
32	MN	X	3362	1/1	0.83	0.28	99,99,99,99	0
31	MG	X	3028	1/1	0.83	1.47	66,66,66,66	0
32	MN	X	3304	1/1	0.83	0.18	81,81,81,81	0
31	MG	X	3092	1/1	0.83	0.87	66,66,66,66	0
32	MN	X	3233	1/1	0.83	0.23	97,97,97,97	0
31	MG	X	3093	1/1	0.83	0.61	77,77,77,77	0
35	EOH	<u>X</u>	3441	3/3	0.83	0.29	82,82,82,82	0
32	MN	<u>X</u>	3199	1/1	0.83	0.30	130,130,130,130	0
31	MG	X	3103	1/1	0.84	0.33	78,78,78,78	0
31	MG	Y	204	1/1	0.84	0.19	57,57,57	0
30	MPD	X	3008	8/8	0.84	0.22	98,98,98,98	0
31	MG	X	3176	1/1	0.84	0.42	39,39,39,39	0
31	MG	X	3095	1/1	0.84	0.62	46,46,46,46	0
31	MG	X	3125	1/1	0.84	0.42	46,46,46	0
31	MG	Х	3026	1/1	0.84	0.73	$50,\!50,\!50,\!50$	0

4	W	F	Β
---	---	---	---

Mal	Tuno	Chain	D oc	Atoma	DSCC	DCD	B factors (λ^2)	$\Omega < 0.0$
1VI01	Type	V	nes		nscc	<u>nsn</u>	D-Iactors(A)	Q<0.9
33	EPE		3421	15/15	0.84	0.42	11(,11(,11(,11(,11(,11(,11(,11(,11(,11(4
35	EOH	VV	101	3/3	0.84	0.54		0
31	MG	<u> </u>	3069		0.84	0.30	12,12,12,12	1
31	MG	A	302		0.85	0.60	38,38,38,38	0
31	MG	X	3188	1/1	0.85	0.28	41,41,41,41	0
32	MN	<u>X</u>	3145	1/1	0.85	0.83	136,136,136,136	0
30	MPD	X	3003	8/8	0.85	0.50	82,82,82,82	0
31	MG	Х	3167	1/1	0.85	0.46	108,108,108,108	0
32	MN	Х	3036	1/1	0.85	0.31	177,177,177,177	0
32	MN	Х	3244	1/1	0.85	0.31	$138,\!138,\!138,\!138$	0
32	MN	Х	3160	1/1	0.85	0.33	126, 126, 126, 126	0
32	MN	Х	3367	1/1	0.85	0.69	128,128,128,128	0
34	SPD	Х	3430	10/10	0.85	0.43	$65,\!65,\!65,\!65$	0
32	MN	Х	3179	1/1	0.85	0.13	140,140,140,140	0
30	MPD	Х	3012	8/8	0.85	0.29	87,87,87,87	0
31	MG	Y	203	1/1	0.85	0.71	103,103,103,103	0
32	MN	Х	3077	1/1	0.85	0.14	111,111,111,111	0
31	MG	Х	3054	1/1	0.85	0.26	64,64,64,64	0
32	MN	Х	3210	1/1	0.85	0.41	140,140,140,140	0
32	MN	Х	3147	1/1	0.86	0.26	127,127,127,127	0
34	SPD	Х	3429	10/10	0.86	0.31	61,61,61,61	0
32	MN	Х	3258	1/1	0.86	0.54	132,132,132,132	0
31	MG	Х	3226	1/1	0.86	0.84	57,57,57,57	0
32	MN	Х	3202	1/1	0.86	0.44	151,151,151,151	0
32	MN	Х	3346	1/1	0.86	0.27	83,83,83,83	0
31	MG	Х	3182	1/1	0.86	0.33	66,66,66,66	0
32	MN	Х	3190	1/1	0.86	0.38	$151,\!151,\!151,\!151$	0
31	MG	Х	3129	1/1	0.86	1.23	54,54,54,54	0
32	MN	Х	3255	1/1	0.87	1.22	217,217,217,217	0
32	MN	Х	3209	1/1	0.87	0.50	$157,\!157,\!157,\!157$	0
32	MN	Х	3139	1/1	0.87	0.07	132,132,132,132	0
32	MN	Х	3025	1/1	0.87	0.47	130,130,130,130	0
32	MN	Х	3374	1/1	0.87	0.29	69,69,69,69	0
34	SPD	Х	3426	10/10	0.87	0.43	71,71,71,71	0
32	MN	Х	3180	1/1	0.87	0.44	139,139,139,139	0
32	MN	Х	3223	1/1	0.87	0.44	131,131,131,131	0
30	MPD	Х	3010	8/8	0.87	0.31	129,129,129,129	0
31	MG	Х	3055	1/1	0.87	0.28	50,50,50,50	0
31	MG	Х	3115	1/1	0.87	0.17	58,58,58,58	0
31	MG	Х	3124	1/1	0.87	0.32	50,50,50,50	0
35	EOH	Х	3438	3/3	0.87	0.32	77,77,77,77	0
32	MN	Х	3020	1/1	0.87	0.88	120,120,120,120	0

Mol	Type	Chain	$\frac{13 \text{ page.}}{\text{Res}}$	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
35	EOH	Y	208	3/3	0.87	0.73	89.89.89.89	0
31	MG	X	3118	1/1	0.87	0.23	59.59.59.59	0
32	MN	X	3205	1/1	0.87	0.25	101,101,101,101	0
32	MN	Х	3194	1/1	0.88	1.18	177,177,177,177	0
31	MG	Х	3416	1/1	0.88	0.48	16,16,16,16	0
32	MN	Х	3132	1/1	0.88	0.23	112,112,112,112	0
32	MN	Х	3134	1/1	0.88	0.34	122,122,122,122	0
31	MG	Х	3058	1/1	0.88	0.50	95,95,95,95	0
32	MN	Х	3397	1/1	0.88	0.16	106,106,106,106	0
31	MG	Х	3109	1/1	0.88	0.20	46,46,46,46	0
32	MN	Х	3403	1/1	0.88	0.27	98,98,98,98	0
34	SPD	С	302	10/10	0.88	0.26	0,0,0,0	10
31	MG	Х	3414	1/1	0.88	0.57	64,64,64,64	0
32	MN	Х	3333	1/1	0.88	0.39	117,117,117,117	0
32	MN	Х	3183	1/1	0.88	0.35	145,145,145,145	0
32	MN	Х	3032	1/1	0.88	0.18	170,170,170,170	0
32	MN	Х	3079	1/1	0.88	0.66	145,145,145,145	0
32	MN	Х	3219	1/1	0.88	0.14	119,119,119,119	0
32	MN	Х	3222	1/1	0.88	0.81	150,150,150,150	0
32	MN	Х	3378	1/1	0.89	0.89	141,141,141,141	0
32	MN	Х	3191	1/1	0.89	0.21	75,75,75,75	0
32	MN	Х	3349	1/1	0.89	0.24	99,99,99,99	0
30	MPD	Х	3006	8/8	0.89	0.33	110,110,110,110	0
32	MN	Х	3181	1/1	0.89	0.12	$91,\!91,\!91,\!91$	0
32	MN	Х	3360	1/1	0.89	0.38	122,122,122,122	0
35	EOH	Х	3439	3/3	0.89	0.25	64,64,64,64	0
32	MN	Х	3215	1/1	0.89	0.15	101,101,101,101	0
35	EOH	Х	3442	3/3	0.89	1.00	68,68,68,68	0
32	MN	Х	3019	1/1	0.89	0.52	148,148,148,148	0
32	MN	Х	3162	1/1	0.89	0.33	130,130,130,130	0
32	MN	Х	3076	1/1	0.89	0.21	144,144,144,144	0
32	MN	Х	3254	1/1	0.90	0.29	106,106,106,106	0
32	MN	Х	3357	1/1	0.90	0.81	134,134,134,134	0
31	MG	Х	3413	1/1	0.90	0.19	52,52,52,52	0
31	MG	Х	3130	1/1	0.90	0.23	65,65,65,65	0
32	MN	Х	3086	1/1	0.90	0.10	122,122,122,122	0
32	MN	X	3192	1/1	0.90	0.34	125,125,125,125	0
34	SPD	X	3427	10/10	0.90	0.46	72,72,72,72	0
32	MN	X	3273	1/1	0.90	0.21	35,35,35,35	0
32	MN	Х	3220	1/1	0.90	0.35	133,133,133,133	0
32	MN	X	3090	1/1	0.90	0.19	114,114,114,114	0
32	MN	Х	3301	1/1	0.90	0.22	98,98,98,98	0

Mol	Type	Chain	Res	 Atoms	RSCC	BSB	B-factors ($Å^2$)	Q<0.9
34	SPD	X	3434	10/10	0.90	0.25	91 91 91 91	0
32	MN	X	3195	1/1	0.90	0.43	129 129 129 129	0
32	MN	X	3395	1/1	0.90	0.44	117.117.117.117	0
32	MN	X	3224	1/1	0.90	0.13	104.104.104.104	0
31	MG	X	3117	1/1	0.90	0.47	34.34.34.34	0
32	MN	X	3133	1/1	0.90	0.46	139,139,139,139	0
32	MN	X	3041	1/1	0.90	0.24	185,185,185,185	0
32	MN	Х	3023	1/1	0.90	0.69	193,193,193,193	0
32	MN	Х	3141	1/1	0.90	0.28	127,127,127,127	0
31	MG	В	302	1/1	0.90	0.25	34,34,34,34	0
31	MG	Х	3418	1/1	0.90	0.49	51,51,51,51	0
32	MN	Х	3088	1/1	0.91	0.41	149,149,149,149	0
32	MN	Х	3313	1/1	0.91	0.34	88,88,88,88	0
32	MN	Х	3381	1/1	0.91	0.24	102,102,102,102	0
32	MN	Х	3382	1/1	0.91	0.28	140,140,140,140	0
31	MG	Х	3048	1/1	0.91	0.15	49,49,49,49	0
32	MN	Х	3098	1/1	0.91	0.19	143,143,143,143	0
32	MN	Х	3389	1/1	0.91	0.09	$105,\!105,\!105,\!105$	0
31	MG	G	201	1/1	0.91	0.20	49,49,49,49	0
32	MN	Х	3203	1/1	0.91	0.21	96,96,96,96	0
31	MG	Х	3071	1/1	0.91	0.45	100,100,100,100	0
32	MN	Х	3269	1/1	0.91	0.23	71,71,71,71	0
32	MN	Х	3352	1/1	0.91	0.18	142,142,142,142	0
31	MG	Х	3050	1/1	0.91	0.64	83,83,83,83	0
32	MN	Х	3034	1/1	0.91	0.45	182,182,182,182	0
32	MN	Y	202	1/1	0.91	0.14	124,124,124,124	0
30	MPD	Х	3005	8/8	0.91	0.22	99,99,99,99	0
32	MN	Х	3300	1/1	0.91	0.32	107,107,107,107	0
30	MPD	Х	3009	8/8	0.91	0.20	91,91,91,91	0
32	MN	Х	3196	1/1	0.91	0.25	88,88,88,88	0
32	MN	Х	3308	1/1	0.91	0.54	103,103,103,103	0
31	MG	X	3105	1/1	0.92	0.16	56,56,56,56	0
31	MG	X	3177	1/1	0.92	0.72	64,64,64,64	0
32	MN	X	3018	1/1	0.92	0.55	116,116,116,116	0
30	MPD	X	3002	8/8	0.92	0.20	56,56,56,56	0
32	MN	X	3212	1/1	0.92	0.32	106,106,106,106	0
32	MN	X	3075	1/1	0.92	0.48	136,136,136,136	0
32	MN	X	3327	1/1	0.92	0.24	99,99,99,99	0
30	MPD	X	3007	8/8	0.92	0.43	87,87,87,87	0
31	MG	X	3051	1/1	0.92	0.41	64,64,64,64	0
31	MG	X	3110	1/1	0.92	0.18	51,51,51,51	0
32	MN	X	3264	1/1	0.92	0.49	64,64,64,64	0

Mol	Type	Chain	Bos	 Atoms	BSCC	BSB	B -factors (λ^2)	
20	MN	V	2002		0.02	0.20	$\frac{\mathbf{D}-\operatorname{Iactors}(\mathbf{A})}{40,40,40,40}$	
32 21	MC		3082		0.92	0.29	40,40,40,40	0
31	MG		$\frac{3122}{207}$	1/1	0.92	0.23	92,92,92,92	1
21	MC	I V	207	1/1	0.92	0.89	68 68 68 68	1
31 31	MC		3104	1/1	0.92	0.34		0
30	MN		3161	1/1	0.92	0.20	42,42,42,42	0
$\frac{32}{35}$	FOH		3443	1/1 2/2	0.92	0.20	50 50 50 50	0
30	MN		3035	1/1	0.92	0.40 0.21	110 110 110 110	0
$\frac{32}{32}$	MN		3368	1/1	0.92	$\begin{array}{c} 0.21 \\ 0.32 \end{array}$	10,110,110,110	0
$\frac{32}{32}$	MN	X	3360	1/1	0.92	0.32	85 85 85 85	0
31	MG	X	3057	1/1	0.92	0.07	62 62 62 62	0
32	MN	X	3373	1/1	0.93	0.00	130 130 130 130 130	0
31	MG	E E	201	1/1	0.00	0.02	15 15 15 15	0
32	MN		3310	1/1	0.93	$\begin{array}{c} 0.20 \\ 0.28 \end{array}$	101 101 101 101	0
31	MG	X	3127	1/1	0.93	0.20	46 46 46 46	0
32	MN	X	3323	1/1	0.93	0.11	71 71 71 71	0
32	MN	X	3225	1/1	0.00	0.00	103 103 103 103	0
31	MG	X	3120	1/1	0.93	0.40	66 66 66 66	0
32	MN	X	3388	1/1	0.93	0.02	121 121 121 121	0
$\frac{32}{34}$	SPD	X	3431	10/10	0.93	0.13 0.37	56 56 56 56	10
34	SPD	X	3432	$\frac{10}{10}$	0.93	0.01	63 63 63 63	0
32	MN	X	3148	1/1	0.93	0.20	$124\ 124\ 124\ 124\ 124$	0
30	MPD	X	3004	8/8	0.93	0.10	101 101 101 101	0
32	MN	X	3350	1/1	0.93	0.10	139 139 139 139 139	0
31	MG	X	3053	1/1	0.93	0.24	53 53 53 53	0
32	MN	X	3292	1/1	0.93	0.22	90,90,90,90	0
32	MN	X	3241	1/1	0.93	0.40	85.85.85.85	0
31	MG	X	3187	1/1	0.93	0.58	52.52.52.52	0
31	MG	X	3031	1/1	0.93	0.39	64.64.64.64	0
31	MG	X	3211	1/1	0.93	0.27	44,44,44,44	0
31	MG	Х	3042	1/1	0.93	0.19	75,75,75,75	0
32	MN	Х	3364	1/1	0.93	0.22	78,78,78,78	0
32	MN	Х	3312	1/1	0.93	0.16	50,50,50,50	0
31	MG	Х	3044	1/1	0.93	0.20	27,27,27,27	0
32	MN	Х	3444	1/1	0.94	0.32	70,70,70,70	0
32	MN	Х	3286	1/1	0.94	0.31	50,50,50,50	0
32	MN	Х	3236	1/1	0.94	0.41	85,85,85,85	0
32	MN	Х	3138	1/1	0.94	0.17	93,93,93,93	0
31	MG	Х	3408	1/1	0.94	0.53	62,62,62,62	0
32	MN	Х	3084	1/1	0.94	0.49	148,148,148,148	0
32	MN	Х	3165	1/1	0.94	0.18	104,104,104,104	0
31	MG	Х	3114	1/1	0.94	0.15	37,37,37,37	0

4W	FΒ
----	----

MolTypeChainResAtomsRSCCRSRB-factors(A ⁻)Q<0	peCNNONON
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N N N G N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N N G N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N N G N
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N G N
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	G N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N
31 MG X 3017 1/1 0.94 0.30 53,53,53,53 0 32 MN X 3208 1/1 0.94 0.28 104,104,104,104 0	N
32 MN X 3208 1/1 0.94 0.28 104,104,104 0	G
	N
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	G
32 MN X 3321 $1/1$ 0.94 0.47 116,116,116,116 0	N
31 MG X 3113 1/1 0.94 0.23 34,34,34,34 0	G
32 MN X 3276 1/1 0.94 0.24 75,75,75,75 0	N
32 MN X 3392 1/1 0.94 0.34 137,137,137,137 0	N
35 EOH X 3440 3/3 0.94 0.40 53,53,53,53 0)H
32 MN X 3332 1/1 0.94 0.54 109,109,109,109 0	N
32 MN X 3282 1/1 0.94 0.47 105,105,105,105 0	N
32 MN X 3335 1/1 0.94 0.56 67,67,67,67 0	N
31 MG X 3407 1/1 0.94 0.15 31,31,31,31 0	G
35 EOH K 201 3/3 0.94 0.16 17,17,17,17 0)H
32 MN X 3284 1/1 0.94 0.26 58,58,58,58 0	N
32 MN X 3285 1/1 0.94 0.40 99,99,99,99 0	N
31 MG X 3169 1/1 0.95 0.38 32,32,32,32 0	G
31 MG X 3027 1/1 0.95 0.22 38,38,38,38 0	G
32 MN X 3150 1/1 0.95 0.35 128,128,128,128 0	N
32 MN Y 206 1/1 0.95 0.37 87,87,87,87 0	N
31 MG X 3415 1/1 0.95 0.16 38,38,38,38 0	G
32 MN X 3037 1/1 0.95 0.17 135,135,135,135 0	N
32 MN X 3302 1/1 0.95 0.20 87,87,87,87 0	N
32 MN X 3200 1/1 0.95 0.10 77,77,77,77 0	N
32 MN X 3243 1/1 0.95 0.16 73,73,73,73 0	N
32 MN X 3038 1/1 0.95 0.40 127,127,127,127 0	N
30 MPD X 3015 8/8 0.95 0.16 72,72,72,72 0	PD
32 MN X 3096 1/1 0.95 0.18 144,144,144 0	N
32 MN X 3206 1/1 0.95 0.34 111,111,111,111 0	N
32 MN X 3372 1/1 0.95 0.33 101,101,101 0	N
31 MG X 3091 1/1 0.95 0.79 69.69.69.69 0	G
32 MN X 3256 1/1 0.95 0.31 133.133.133.133 0	N
32 MN X 3163 1/1 0.95 0.15 143,143,143,143 0	N

 α J fa mtima

Mol	Type	Chain	Bes	 Atoms	BSCC	RSR	B-factors ($Å^2$)	Q<0.9
31	MG	X	3419	1/1	0.95	0.98	57 57 57 57	0
31	MG	X	3128	1/1	0.95	0.21	61 61 61 61	0
32	MN	X	3022	1/1	0.95	0.28	133.133.133.133	0
32	MN	X	3073	1/1	0.95	0.17	140.140.140.140	0
32	MN	X	3074	1/1	0.95	0.16	95.95.95.95	0
32	MN	X	3324	1/1	0.95	0.12	47.47.47.47	0
32	MN	X	3140	1/1	0.95	0.20	82.82.82.82	0
32	MN	X	3390	1/1	0.95	0.30	97.97.97.97	0
32	MN	X	3275	1/1	0.95	0.21	77.77.77.77	0
31	MG	X	3045	1/1	0.95	0.27	65.65.65.65	0
32	MN	X	3281	1/1	0.95	0.26	61.61.61.61	0
32	MN	X	3339	1/1	0.95	0.26	67.67.67.67	0
31	MG	X	3029	1/1	0.95	0.21	55,55,55,55	0
31	MG	X	3030	1/1	0.95	0.71	59,59,59,59	0
32	MN	X	3193	1/1	0.95	0.27	107,107,107,107	0
30	MPD	Х	3016	8/8	0.95	0.39	32,32,32,32	0
32	MN	Х	3351	1/1	0.96	0.33	117,117,117,117	0
32	MN	Х	3402	1/1	0.96	0.31	67,67,67,67	0
32	MN	Х	3166	1/1	0.96	0.43	115,115,115,115	0
32	MN	Х	3257	1/1	0.96	0.27	110,110,110,110	0
32	MN	Х	3405	1/1	0.96	0.35	84,84,84,84	0
32	MN	Х	3406	1/1	0.96	0.29	87,87,87,87	0
32	MN	Х	3355	1/1	0.96	0.20	115,115,115,115	0
32	MN	Х	3306	1/1	0.96	0.32	69,69,69,69	0
31	MG	Х	3116	1/1	0.96	0.09	95,95,95,95	0
32	MN	Х	3359	1/1	0.96	0.43	125,125,125,125	0
31	MG	Х	3059	1/1	0.96	0.23	34,34,34,34	0
32	MN	Х	3149	1/1	0.96	0.36	117,117,117,117	0
32	MN	Х	3135	1/1	0.96	0.21	114,114,114,114	0
32	MN	Х	3263	1/1	0.96	0.32	71,71,71,71	0
32	MN	Х	3229	1/1	0.96	0.18	76,76,76,76	0
32	MN	Х	3267	1/1	0.96	0.27	74,74,74,74	0
32	MN	Х	3151	1/1	0.96	0.17	69,69,69,69	0
32	MN	Х	3062	1/1	0.96	0.31	61,61,61,61	0
32	MN	Х	3317	1/1	0.96	0.66	112,112,112,112	0
32	MN	Х	3371	1/1	0.96	0.32	109,109,109,109	0
32	MN	Х	3156	1/1	0.96	0.19	127,127,127,127	0
32	MN	X	3234	1/1	0.96	0.28	70,70,70,70	0
32	MN	X	3064	1/1	0.96	0.05	96,96,96,96	0
32	MN	X	3375	1/1	0.96	0.48	129,129,129,129	0
32	MN	X	3322	1/1	0.96	$0.2\overline{2}$	52,52,52,52	0
31	MG	C	301	1/1	0.96	$0.\overline{69}$	28,28,28,28	0

Mol	Type	Chain	$\frac{15 \text{ paye.}}{\text{Res}}$	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
32	MN	X	3214	1/1	0.96	0.31	74,74,74,74	0
32	MN	X	3078	1/1	0.96	0.54	130,130,130,130	0
35	EOH	Х	3435	3/3	0.96	0.12	62,62,62,62	0
32	MN	Х	3246	1/1	0.96	0.33	86,86,86,86	0
32	MN	Х	3384	1/1	0.96	0.17	75,75,75,75	0
31	MG	Х	3047	1/1	0.96	0.29	75,75,75,75	0
32	MN	Х	3252	1/1	0.96	0.19	127,127,127,127	0
32	MN	Х	3131	1/1	0.96	0.44	134,134,134,134	0
32	MN	Х	3341	1/1	0.96	0.27	33,33,33,33	0
32	MN	Х	3391	1/1	0.96	0.44	132,132,132,132	0
32	MN	Х	3343	1/1	0.96	0.33	69,69,69,69	0
32	MN	Х	3298	1/1	0.96	0.26	66,66,66,66	0
32	MN	Х	3144	1/1	0.96	0.20	116,116,116,116	0
32	MN	Х	3396	1/1	0.96	0.09	109,109,109,109	0
31	MG	Х	3043	1/1	0.96	0.66	75,75,75,75	0
32	MN	Х	3303	1/1	0.97	0.62	118,118,118,118	0
32	MN	Х	3353	1/1	0.97	0.53	92,92,92,92	0
32	MN	Х	3158	1/1	0.97	0.07	82,82,82,82	0
32	MN	Х	3039	1/1	0.97	0.09	153,153,153,153	0
31	MG	Х	3094	1/1	0.97	0.29	58,58,58,58	0
32	MN	Х	3235	1/1	0.97	0.19	95,95,95,95	0
32	MN	Х	3358	1/1	0.97	0.45	122,122,122,122	0
29	3LK	Х	3001	40/40	0.97	0.34	31,31,31,31	0
32	MN	Х	3238	1/1	0.97	0.29	70,70,70,70	0
32	MN	Х	3271	1/1	0.97	0.36	60,60,60,60	0
32	MN	Х	3061	1/1	0.97	0.41	$68,\!68,\!68,\!68$	0
32	MN	Х	3242	1/1	0.97	0.16	100,100,100,100	0
32	MN	Х	3146	1/1	0.97	0.40	88,88,88,88	0
32	MN	Х	3365	1/1	0.97	0.19	69,69,69,69	0
32	MN	Х	3279	1/1	0.97	0.34	78,78,78,78	0
32	MN	Х	3280	1/1	0.97	0.16	50,50,50,50	0
31	MG	Х	3175	1/1	0.97	0.22	17,17,17,17	0
32	MN	Х	3245	1/1	0.97	0.32	86,86,86,86	0
32	MN	Х	3063	1/1	0.97	0.37	78,78,78,78	0
32	MN	Х	3080	1/1	0.97	0.16	111,111,111,111	0
32	MN	X	3221	1/1	0.97	0.38	73,73,73,73	0
31	MG	X	3099	1/1	0.97	0.07	59,59,59,59	0
32	MN	X	3325	1/1	0.97	0.15	62,62,62,62	0
32	MN	X	3326	1/1	0.97	0.18	42,42,42,42	0
32	MN	X	3288	1/1	0.97	0.48	87,87,87,87	0
32	MN	X	3329	1/1	0.97	0.31	53,53,53,53	0
32	MN	Х	3289	1/1	0.97	0.20	69,69,69,69	0

Mol	Tvpe	Chain	$\frac{15 \text{ paye.}}{\text{Res}}$	Atoms	RSCC	RSR	B-factors ($Å^2$)	Q<0.9
31	MG	B	301	1/1	0.97	0.17	23.23.23.23	0
31	MG	X	3417	1/1	0.97	0.14	45.45.45.45	0
32	MN	X	3337	1/1	0.97	0.28	70,70,70,70	0
32	MN	Х	3338	1/1	0.97	0.30	67,67,67,67	0
32	MN	Х	3294	1/1	0.97	0.16	47,47,47,47	0
32	MN	Х	3340	1/1	0.97	0.32	23,23,23,23	0
32	MN	Х	3295	1/1	0.97	0.17	55,55,55,55	0
32	MN	Х	3296	1/1	0.97	0.32	78,78,78,78	0
31	MG	Х	3100	1/1	0.97	0.22	95,95,95,95	0
32	MN	Х	3347	1/1	0.97	0.18	106,106,106,106	0
32	MN	Х	3189	1/1	0.97	0.19	138,138,138,138	0
32	MN	Х	3207	1/1	0.97	0.14	94,94,94,94	0
31	MG	Х	3170	1/1	0.97	0.15	60,60,60,60	0
31	MG	Х	3106	1/1	0.98	0.49	28,28,28,28	1
32	MN	Х	3398	1/1	0.98	0.22	88,88,88,88	0
32	MN	Х	3274	1/1	0.98	0.26	37,37,37,37	0
32	MN	Х	3400	1/1	0.98	0.06	106,106,106,106	0
32	MN	Х	3401	1/1	0.98	0.31	67,67,67,67	0
32	MN	Х	3164	1/1	0.98	0.22	104,104,104,104	0
32	MN	Х	3083	1/1	0.98	0.45	44,44,44,44	0
32	MN	Х	3278	1/1	0.98	0.21	$55,\!55,\!55,\!55$	0
32	MN	Х	3247	1/1	0.98	0.35	48,48,48,48	0
32	MN	Х	3248	1/1	0.98	0.51	71,71,71,71	0
32	MN	Х	3155	1/1	0.98	0.21	89,89,89,89	0
32	MN	Х	3251	1/1	0.98	0.19	131,131,131,131	0
32	MN	Х	3178	1/1	0.98	0.21	88,88,88,88	0
31	MG	Х	3172	1/1	0.98	0.43	36,36,36,36	0
32	MN	Х	3136	1/1	0.98	0.21	84,84,84,84	0
32	MN	Х	3213	1/1	0.98	0.18	72,72,72,72	0
32	MN	Х	3137	1/1	0.98	0.43	110,110,110,110	0
32	MN	Х	3366	1/1	0.98	0.17	71,71,71,71	0
32	MN	Х	3097	1/1	0.98	0.25	108,108,108,108	0
32	MN	Х	3024	1/1	0.98	0.12	150,150,150,150	0
32	MN	Х	3217	1/1	0.98	0.41	92,92,92,92	0
32	MN	Х	3293	1/1	0.98	0.21	29,29,29,29	0
32	MN	Х	3328	1/1	0.98	0.17	48,48,48,48	0
32	MN	Х	3237	1/1	0.98	0.22	66,66,66,66	0
32	MN	X	3331	1/1	0.98	0.27	94,94,94,94	0
32	MN	X	3201	1/1	0.98	0.11	85,85,85,85	0
32	MN	Х	3239	1/1	0.98	0.20	55,55,55,55	0
32	MN	Х	3376	1/1	0.98	0.26	57,57,57,57	0
32	MN	Х	3334	1/1	0.98	0.23	48,48,48,48	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
32	MN	X	3379	1/1	0.98	0.34	98,98,98,98	0
32	MN	X	3297	1/1	0.98	0.27	52,52,52,52	0
32	MN	Х	3336	1/1	0.98	0.42	48,48,48,48	0
32	MN	Х	3240	1/1	0.98	0.19	73,73,73,73	0
32	MN	Х	3299	1/1	0.98	0.17	69,69,69,69	0
32	MN	Х	3266	1/1	0.98	0.52	83,83,83,83	0
32	MN	Х	3068	1/1	0.98	0.28	34,34,34,34	0
32	MN	Х	3268	1/1	0.98	0.34	73,73,73,73	0
32	MN	Х	3087	1/1	0.98	0.24	120,120,120,120	0
32	MN	Х	3345	1/1	0.98	0.35	54,54,54,54	0
32	MN	Х	3270	1/1	0.98	0.37	60,60,60,60	0
32	MN	Х	3305	1/1	0.98	0.32	80,80,80,80	0
32	MN	Х	3393	1/1	0.98	0.39	80,80,80,80	0
32	MN	Х	3204	1/1	0.98	0.19	78,78,78,78	0
32	MN	Х	3307	1/1	0.98	0.26	78,78,78,78	0
32	MN	Х	3272	1/1	0.98	0.38	43,43,43,43	0
32	MN	Х	3342	1/1	0.99	0.49	49,49,49,49	0
32	MN	Х	3287	1/1	0.99	0.27	$57,\!57,\!57,\!57$	0
32	MN	Х	3344	1/1	0.99	0.32	46,46,46,46	0
32	MN	Х	3153	1/1	0.99	0.10	66,66,66,66	0
32	MN	Х	3265	1/1	0.99	0.33	60,60,60,60	0
32	MN	Х	3330	1/1	0.99	0.20	$55,\!55,\!55,\!55$	0
32	MN	Х	3348	1/1	0.99	0.20	32,32,32,32	0
32	MN	Х	3386	1/1	0.99	0.31	$65,\!65,\!65,\!65$	0
32	MN	Х	3387	1/1	0.99	0.12	59, 59, 59, 59	0
32	MN	Х	3290	1/1	0.99	0.27	$66,\!66,\!66,\!66$	0
31	MG	Х	3174	1/1	0.99	0.51	$55,\!55,\!55,\!55$	0
32	MN	Х	3318	1/1	0.99	0.20	57,57,57,57	0
31	MG	Х	3420	1/1	0.99	0.64	30,30,30,30	0
32	MN	Х	3232	1/1	0.99	0.19	84,84,84,84	0
32	MN	Х	3081	1/1	0.99	0.32	32,32,32,32	0
32	MN	Х	3250	1/1	0.99	0.06	66,66,66,66	0
31	MG	Y	201	1/1	0.99	0.18	83,83,83,83	0
32	MN	Х	3072	1/1	0.99	0.23	38,38,38,38	0
32	MN	Х	3262	1/1	0.99	0.30	59, 59, 59, 59, 59	0
32	MN	Х	3377	1/1	0.99	0.26	$55,\!55,\!55,\!55$	0
31	MG	X	3227	1/1	0.99	0.19	35,35,35,35	0
32	MN	Х	3154	1/1	1.00	0.18	75,75,75,75	0
32	MN	Х	3277	1/1	1.00	0.21	$35,\!35,\!35,\!35$	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different

orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

