

Nov 17, 2024 – 12:10 AM JST

PDB ID	:	8WG5
EMDB ID	:	EMD-37503
Title	:	Cryo-EM structure of USP16 bound to H2AK119Ub nucleosome
Authors	:	Ai, H.S.; He, Z.Z.; Deng, Z.H.; Liu, L.
Deposited on	:	2023-09-20
Resolution	:	3.05 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.05 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	(# Entries)	(# Entries)
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Qual	ity of chain
1	М	823	23% 12%	64%
2	А	98	70%	30%
2	Е	98	79%	20% •
3	В	79	73%	27%
3	F	79	65%	35%
4	С	111	73%	27%
4	G	111	76%	23% •
5	D	94	81%	19%
5	Н	94	72%	28%

Mol	Chain	Length	Qual	ity of chain
6	Ι	147	46%	54%
7	J	147	37%	63%
8	U	76	58%	42%

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 14965 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Ubiquitin carboxyl-terminal hydrolase 16.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	М	298	Total 2319	C 1487	N 395	0 424	S 13	0	0

• Molecule 2 is a protein called Histone H3.1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
9	Δ	08	Total	С	Ν	Ο	\mathbf{S}	0	0
	2 A	90	810	511	157	138	4	0	0
9	F	07	Total	С	Ν	0	S	0	0
	Ľ	91	801	505	155	137	4	0	0

• Molecule 3 is a protein called Histone H4.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	В	70	Total	С	Ν	Ο	S	0	0
5	3 B	19	627	396	121	109	1	0	0
2	Б	70	Total	С	Ν	Ο	\mathbf{S}	0	0
0	Ľ	19	627	396	121	109	1	0	

• Molecule 4 is a protein called Histone H2A type 1-B/E.

Mol	Chain	Residues	Atoms	AltConf	Trace
4	С	111	Total C N O S 849 533 167 148 1	0	0
4	G	109	Total C N O 836 526 165 145	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	119	CYS	-	expression tag	UNP P04908
С	120	THR	-	expression tag	UNP P04908
G	119	CYS	-	expression tag	UNP P04908

Chain	Residue	Modelled	Actual	Comment	Reference
G	120	THR	-	expression tag	UNP P04908

• Molecule 5 is a protein called Histone H2B type 1-K.

Mol	Chain	Residues	Atoms				AltConf	Trace	
L.	Л	04	Total	С	Ν	0	S	0	0
0	5 D	94	735	461	134	138	2	0	0
E	и	0.4	Total	С	Ν	0	S	0	0
5 H	п	94	735	461	134	138	2	0	0

• Molecule 6 is a DNA chain called DNA (147-MER).

Mol	Chain	Residues	Atoms			AltConf	Trace		
6	Ι	147	Total 3031	C 1434	N 570	O 880	Р 147	0	0

• Molecule 7 is a DNA chain called DNA (147-MER).

Mol	Chain	Residues	Atoms			AltConf	Trace		
7	J	147	Total 2996	C 1423	N 542	0 884	Р 147	0	0

• Molecule 8 is a protein called Ubiquitin B.

Mol	Chain	Residues	Atoms			AltConf	Trace		
8	U	76	Total	C	N 104	0	S	0	0
			599	370	104	117	2		

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
U	76	CYS	-	expression tag	UNP J3QS39

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Ubiquitin carboxyl-terminal hydrolase 16

• Molecule 2: Histone H3.1

Chain A:	70%	30%
K37 R42 151 151 162 162 R63 R63 R63	F67 R668 R968 R968 K79 K79 K79 R93 R90 M90 M90 C96 C96 C96 C96 C96 C96 C96 C96 C96 C96	R116 M120 P121 P121 D123 D123 D123 D123 D123 D123 D123 D
• Molecule 2: Hi	istone H3.1	
Chain E:	79%	20% •
LYS P38 H39 R40 R40 R49 R52 S57 S57 S57 S57 S57 S57 S57 S56 S56 S56 S56 S56 S56 S56 S56 S56 S56	E73 E73 780 780 780 181 182 182 182 199 1107 1107 1118 1118 1118 1118 1118	
• Molecule 3: Hi	istone H4	
Chain B:	73%	27%
R23 K31 K31 R35 R35 R35 R36 A38 R39 C42 C42 V43	K44 150 150 151 150 154 154 154 154 154 154 153 173 173 173 173 173 173 173 173 173 17	<mark>6101</mark>
• Molecule 3: Hi	istone H4	
Chain F:	65%	35%
R23 D24 N25 K31 F32 F32 R35 R35 R39	C42 C42 V43 K45 R45 R45 R55 R55 R45 R45 R45 R45 R45 R	189 187 188 196 197 197 197 197 197 197 197
• Molecule 4: Hi	istone H2A type $1-B/E$	
Chain C:	73%	27%
A10 R11 A12 A14 A14 A14 A14 A14 A13 S19 S19 R20 R20	P26 R29 N38 Y50 Y50 Y50 V54 L55 E64 L65 L65 L65 R73 K74 K74	HA1 H85 A86 A86 A86 A88 N89 N89 N89 A11 A113 A113 A113
• Molecule 4: Hi	istone H2A type $1-B/E$	
Chain G:	76%	23% •
AIO R11 X15 X15 X16 X19 R20 R20 R20 R22	R29 N38 N38 S40 S40 S40 B41 163 168 L58 L58 L68 L58 K74 K75 K75 K75 K75 K76 K75 K76 K75	1102 1112 1115 1115 1115 1115 1115 1115
• Molecule 5: Hi	istone H2B type 1-K	
Chain D:	81%	19%
R31 832 R33 R34 833 835 836 836 836 836 836 740 740 740 740	D51 154 855 855 856 856 856 856 856 856 856 856	
• Molecule 5: Hi	istone H2B type 1-K	
Chain H:	72%	28%
	WORLD PROTEINDA	

• Molecule 6: DNA (147-MER)

Chain I:	46%	54%
<mark> </mark>	4-55 4-55 4-55 4-55 4-55 4-54 4-53 4-44 4-14 4-14 4-14 4-14 4-15 4-14 4-15 4-14 4-15 4-15	6-8 6-7 6-7 6-7 6-7 6-7 7-5 7-7 610 610 610 611 113 113 113 113 113 113 113
115 116 117 117 117 117 117 117 117 117 117	135 135 135 135 135 135 135 135 135 135	e 19
• Molecule 7: DNA	(147-MER)	
Chain J:	37% 63	3%
C-73 -7-72 -7-71 -7-71 -7-73 -7-66 -7-66 -7-66 -7-66 -7-66 -7-66 -7-66 -7-66 -7-66 -7-66 -7-66 -7-71 -7-72 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-73 -7-66 -7-73 -7-66 -7-73 -7-66 -7-73 -7-66 -7-76 -7-77 -7-	C-55 C-57 C-57 C-57 C-57 C-57 C-57 C-57	G C C C C C C C C C C C C C C C C C C C
C7 C10 C10 C10 C10 C11 C10 C10 C10 C10 C10	622 624 1330 1331 1330 1332 1332 1333 1338 1338 1338 1338 1338	457 457 451 461 166 463 465 465 465 467 467
• Molecule 8: Ubiqu	uitin B	
Chain U:	58%	42%

H68 L69 V70 L71 L71 L73 L73 L73 R72 R72 G75 G75 C76

R54 T55 L56

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	144457	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1300	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles	
IVIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	М	0.25	0/2360	0.45	0/3181
2	А	0.27	0/822	0.57	0/1102
2	Е	0.27	0/813	0.59	0/1090
3	В	0.26	0/634	0.57	0/850
3	F	0.29	0/634	0.64	0/850
4	С	0.27	0/859	0.54	0/1160
4	G	0.27	0/846	0.52	0/1142
5	D	0.26	0/746	0.49	0/1003
5	Н	0.29	0/746	0.54	0/1003
6	Ι	0.50	0/3404	0.90	0/5256
7	J	0.49	0/3356	0.89	0/5173
8	U	0.25	0/605	0.57	0/815
All	All	0.38	0/15825	0.72	0/22625

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	М	2319	0	2307	69	0
2	А	810	0	851	26	0
2	Е	801	0	839	15	0
3	В	627	0	662	20	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	F	627	0	662	21	0
4	С	849	0	903	22	0
4	G	836	0	891	23	0
5	D	735	0	756	13	0
5	Н	735	0	756	25	0
6	Ι	3031	0	1649	65	0
7	J	2996	0	1651	63	0
8	U	599	0	620	29	0
All	All	14965	0	12547	333	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

All (333) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:I:-10:DG:N2	7:J:10:DC:O2	2.12	0.81
1:M:288:LYS:NZ	1:M:306:TYR:O	2.14	0.80
6:I:-10:DG:N1	7:J:10:DC:N3	2.28	0.76
1:M:719:ILE:HD11	1:M:741:LEU:HB3	1.69	0.75
5:H:80:LEU:HA	5:H:83:TYR:HD2	1.52	0.74
2:A:125:GLN:NE2	3:B:53:GLU:OE2	2.22	0.72
1:M:742:TYR:HB3	1:M:819:TYR:HB3	1.72	0.71
2:A:74:ILE:HD11	3:B:63:GLU:HG2	1.70	0.71
4:G:29:ARG:NH1	5:H:35:GLU:OE2	2.24	0.71
1:M:752:GLY:HA3	1:M:757:GLY:HA2	1.72	0.71
7:J:-43:DT:H2'	7:J:-42:DT:H71	1.71	0.71
2:A:68:GLN:HG2	2:A:89:VAL:HG21	1.73	0.71
8:U:36:ILE:O	8:U:41:GLN:NE2	2.23	0.70
2:A:108:ASN:ND2	3:B:42:GLY:O	2.25	0.69
1:M:297:GLN:HB3	8:U:74:ARG:HD3	1.73	0.69
1:M:320:SER:OG	1:M:346:GLU:OE1	2.10	0.69
1:M:212:GLN:HG3	1:M:796:ILE:HG21	1.75	0.69
8:U:31:GLN:OE1	8:U:41:GLN:NE2	2.25	0.69
1:M:362:GLU:OE1	1:M:687:SER:OG	2.10	0.68
3:F:87:VAL:HG23	3:F:97:LEU:HB3	1.75	0.68
2:E:108:ASN:ND2	3:F:42:GLY:O	2.27	0.67
5:H:79:ARG:HG2	5:H:83:TYR:CE2	2.30	0.67
8:U:42:ARG:HE	8:U:70:VAL:HG23	1.57	0.67
2:A:79:LYS:HD3	2:A:82:LEU:HD21	1.78	0.66
1:M:690:PRO:O	1:M:742:TYR:OH	2.14	0.66

	lous page	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:M:256:PRO:HA	1:M:259:LEU:HB2	1.79	0.64
1:M:795:HIS:N	1:M:802:GLN:O	2.30	0.64
1:M:297:GLN:NE2	8:U:75:GLY:O	2.31	0.63
4:C:65:LEU:HB3	4:C:86:ALA:HB1	1.81	0.63
1:M:797:SER:HB3	1:M:800:HIS:HB3	1.81	0.63
4:C:85:LEU:O	4:C:89:ASN:ND2	2.31	0.62
2:A:62:ILE:HB	2:A:93:GLN:HE22	1.65	0.62
1:M:754:MET:HA	8:U:73:LEU:HG	1.80	0.62
2:E:79:LYS:HB3	2:E:82:LEU:HD11	1.82	0.61
8:U:39:ASP:O	8:U:72:ARG:NH2	2.33	0.61
1:M:196:LYS:HG2	1:M:274:GLY:HA2	1.82	0.61
8:U:11:LYS:HG3	8:U:13:ILE:HD11	1.83	0.61
8:U:44:ILE:HB	8:U:68:HIS:HB2	1.81	0.61
1:M:207:PHE:HD1	1:M:303:LEU:HD21	1.66	0.61
6:I:14:DT:H2"	6:I:15:DT:H5'	1.82	0.60
3:F:75:HIS:O	5:H:92:ARG:NH2	2.33	0.60
2:A:116:ARG:NH2	2:A:123:ASP:OD1	2.31	0.60
1:M:223:LEU:HD12	1:M:358:ILE:HD11	1.83	0.60
1:M:388:PRO:HA	1:M:698:LYS:HD2	1.84	0.59
6:I:3:DC:H2"	6:I:4:DG:C8	2.37	0.59
7:J:-36:DT:H2"	7:J:-35:DA:C8	2.37	0.59
6:I:5:DT:H2"	6:I:6:DA:N7	2.17	0.59
8:U:54:ARG:HG3	8:U:55:THR:H	1.66	0.59
1:M:367:ILE:HB	1:M:376:SER:HB2	1.85	0.58
4:G:57:TYR:HE2	5:H:106:LEU:HD12	1.68	0.58
6:I:5:DT:H2"	6:I:6:DA:C8	2.38	0.58
8:U:9:THR:HG22	8:U:11:LYS:HZ2	1.67	0.58
8:U:72:ARG:HB3	8:U:74:ARG:HH12	1.68	0.58
3:B:31:LYS:O	3:B:35:ARG:HG3	2.03	0.58
5:H:39:VAL:O	5:H:43:LYS:HG3	2.04	0.58
1:M:713:HIS:NE2	1:M:812:SER:O	2.36	0.58
4:G:15:LYS:HE2	4:G:20:ARG:HE	1.69	0.58
1:M:284:GLN:OE1	1:M:287:LYS:NZ	2.32	0.57
4:C:50:TYR:O	4:C:54:VAL:HG23	2.05	0.57
4:C:29:ARG:NH1	5:D:36:SER:O	2.37	0.57
7:J:-8:DC:H2"	7:J:-7:DG:C8	2.40	0.57
3:F:35:ARG:NH2	6:I:8:DG:OP2	2.35	0.57
6:I:-57:DT:H2"	6:I:-56:DG:C8	2.40	0.57
1:M:356:ASP:HA	1:M:360:GLY:HA3	1.88	0.56
4:G:29:ARG:NH1	5:H:40:TYR:OH	2.38	0.56
7:J:15:DT:H2"	7:J:16:DA:C8	2.41	0.56

	lous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:C:16:THR:HG23	4:C:19:SER:H	1.71	0.56
3:F:91:LYS:HG3	3:F:96:THR:HG22	1.88	0.56
7:J:-44:DA:H2'	7:J:-43:DT:H71	1.88	0.56
5:H:79:ARG:HG2	5:H:83:TYR:HE2	1.69	0.55
8:U:26:VAL:HG21	8:U:56:LEU:HD21	1.88	0.55
6:I:37:DC:H2"	6:I:38:DG:N7	2.22	0.55
1:M:201:LEU:HD13	4:C:113:ALA:HB2	1.87	0.55
2:E:116:ARG:NH1	2:E:118:THR:O	2.39	0.55
4:C:39:TYR:O	4:G:38:ASN:ND2	2.40	0.55
1:M:349:LYS:NZ	1:M:351:MET:SD	2.79	0.55
1:M:740:VAL:HG13	1:M:821:ARG:HH12	1.71	0.55
8:U:42:ARG:NH2	8:U:71:LEU:O	2.40	0.54
3:B:73:THR:HG21	3:B:81:VAL:HG22	1.90	0.54
1:M:204:THR:HB	1:M:207:PHE:HB3	1.90	0.54
1:M:299:ASP:OD1	1:M:301:GLN:HG2	2.07	0.54
2:A:120:MET:HB3	2:A:121:PRO:HD2	1.90	0.54
4:C:40:SER:HA	4:G:38:ASN:HD21	1.72	0.54
2:A:61:LEU:O	3:B:36:ARG:NH1	2.40	0.54
6:I:-54:DC:H2"	6:I:-53:DA:N7	2.23	0.54
1:M:198:LEU:HD23	1:M:208:ASN:HA	1.90	0.54
2:A:42:ARG:N	6:I:70:DC:OP1	2.39	0.54
2:A:126:LEU:HD22	2:E:113:HIS:CG	2.44	0.53
5:D:79:ARG:HG2	5:D:83:TYR:CE1	2.43	0.53
4:G:78:ILE:HB	5:H:54:ILE:HD12	1.91	0.53
7:J:-46:DC:H2"	7:J:-45:DA:C8	2.43	0.53
4:C:13:LYS:HE2	4:C:13:LYS:HA	1.90	0.53
4:G:58:LEU:O	4:G:62:ILE:HG12	2.08	0.53
6:I:35:DT:H2"	6:I:36:DA:N7	2.23	0.53
3:B:36:ARG:NH2	6:I:-13:DA:OP1	2.42	0.53
2:A:95:ALA:HB2	3:B:90:LEU:HD11	1.89	0.52
1:M:288:LYS:NZ	1:M:310:GLY:HA3	2.24	0.52
7:J:-2:DC:H2"	7:J:-1:DG:H8	1.75	0.52
4:G:24:GLN:N	4:G:56:GLU:OE2	2.38	0.52
3:B:84:MET:HG3	3:B:88:TYR:CE2	2.45	0.52
7:J:42:DC:H2'	7:J:43:DT:H71	1.91	0.51
4:C:25:PHE:N	4:C:56:GLU:OE1	2.40	0.51
6:I:-58:DC:H5"	6:I:-58:DC:H6	1.75	0.51
8:U:1:MET:N	8:U:17:VAL:O	2.32	0.51
7:J:26:DG:H2"	7:J:27:DG:C8	2.45	0.51
1:M:748:VAL:HB	1:M:816:LEU:HB2	1.91	0.51
1:M:263:GLN:HA	1:M:266:ASN:OD1	2.11	0.51

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:M:701:GLN:NE2	1:M:702:GLN:O	2.43	0.51	
6:I:-10:DG:O6	7:J:10:DC:N4	2.35	0.51	
7:J:62:DT:H2"	7:J:63:DA:C8	2.45	0.51	
8:U:17:VAL:HG12	8:U:29:LYS:HE3	1.93	0.51	
4:G:16:THR:HG23	4:G:19:SER:H	1.76	0.51	
5:H:98:VAL:HG13	5:H:102:LEU:HD12	1.93	0.51	
1:M:236:ILE:O	1:M:247:LEU:N	2.44	0.51	
7:J:34:DT:H2"	7:J:35:DC:C6	2.46	0.51	
7:J:-62:DC:H2"	7:J:-61:DG:H8	1.76	0.50	
1:M:216:GLN:HB3	1:M:766:ARG:HH12	1.76	0.50	
1:M:312:ARG:O	1:M:316:HIS:N	2.37	0.50	
6:I:-38:DA:H2"	6:I:-37:DG:C8	2.46	0.50	
3:F:88:TYR:CD2	5:H:83:TYR:HE1	2.30	0.50	
7:J:-59:DT:H2"	7:J:-58:DG:C8	2.45	0.50	
7:J:-68:DG:H2"	7:J:-67:DA:C8	2.46	0.50	
1:M:213:ASN:OD1	1:M:214:LEU:N	2.44	0.50	
8:U:27:LYS:HD3	8:U:38:PRO:HB3	1.93	0.50	
1:M:385:LEU:HB2	1:M:695:LEU:HD23	1.94	0.50	
6:I:-35:DG:H2"	6:I:-34:DA:C8	2.46	0.50	
7:J:30:DT:H2"	7:J:31:DT:C6	2.46	0.50	
1:M:216:GLN:HG3	1:M:763:ALA:HB1	1.94	0.49	
7:J:49:DC:H2"	7:J:50:DA:C8	2.47	0.49	
3:F:73:THR:HG21	3:F:81:VAL:HG22	1.93	0.49	
5:H:80:LEU:HA	5:H:83:TYR:CD2	2.40	0.49	
7:J:35:DC:H4'	7:J:36:DC:H5'	1.94	0.49	
1:M:707:LEU:HB3	1:M:754:MET:SD	2.52	0.49	
2:A:86:SER:O	2:A:90:MET:HG2	2.13	0.49	
7:J:38:DT:H2"	7:J:39:DA:C8	2.48	0.49	
1:M:301:GLN:HG3	1:M:305:ARG:HH12	1.77	0.49	
3:B:39:ARG:NH1	3:B:44:LYS:O	2.34	0.49	
2:E:73:GLU:OE2	3:F:25:ASN:HB2	2.12	0.49	
4:G:79:ILE:HG12	4:G:82:HIS:ND1	2.27	0.49	
5:H:90:THR:N	5:H:93:GLU:OE2	2.31	0.49	
1:M:206:PHE:CZ	1:M:298:GLN:HB2	2.48	0.49	
2:E:104:PHE:HA	2:E:107:THR:HG22	1.93	0.49	
3:F:58:LEU:O	3:F:62:LEU:HD23	2.12	0.49	
1:M:764:LYS:HG3	1:M:766:ARG:HD2	1.94	0.49	
7:J:-70:DG:H2"	7:J:-69:DA:C8	2.47	0.49	
1:M:233:ILE:HA	1:M:250:ASN:HA	1.94	0.49	
3:B:44:LYS:HB2	4:G:115:LEU:HD22	1.93	0.49	
4:G:29:ARG:HH22	6:I:48:DG:H4'	1.78	0.48	

Atom-1	Atom-2	Interatomic	Clash	
	1100111-2	distance (Å)	overlap (Å)	
3:B:31:LYS:HD2	3:B:51:TYR:CE2	2.48	0.48	
4:C:38:ASN:HD21	4:G:40:SER:HA	1.76	0.48	
7:J:8:DC:H2"	7:J:9:DG:C8	2.48	0.48	
6:I:-69:DG:H2"	6:I:-68:DA:C8	2.49	0.48	
1:M:757:GLY:O	8:U:76:CYS:N	2.47	0.48	
2:A:74:ILE:HD13	3:B:62:LEU:HB2	1.95	0.48	
5:H:51:ASP:OD1	5:H:51:ASP:N	2.47	0.48	
6:I:65:DA:H1'	6:I:66:DT:H5'	1.96	0.48	
7:J:-66:DA:H2'	7:J:-65:DT:H71	1.96	0.48	
7:J:-34:DG:H2"	7:J:-33:DA:H8	1.79	0.48	
4:C:88:ARG:CB	4:C:108:LEU:HD11	2.44	0.48	
8:U:31:GLN:NE2	8:U:36:ILE:O	2.43	0.48	
2:A:61:LEU:HD12	3:B:37:LEU:HD23	1.95	0.47	
2:E:99:TYR:OH	2:E:133:GLU:OE1	2.27	0.47	
5:H:102:LEU:O	5:H:107:ALA:HB2	2.14	0.47	
6:I:45:DT:H2"	6:I:46:DG:N7	2.28	0.47	
5:D:39:VAL:O	5:D:43:LYS:HG3	2.13	0.47	
5:H:76:GLU:HG3	5:H:101:LEU:HD21	1.96	0.47	
6:I:-67:DT:H2"	6:I:-66:DG:C8	2.49	0.47	
6:I:-56:DG:H2"	6:I:-55:DA:N7	2.30	0.47	
6:I:37:DC:H2"	6:I:38:DG:C8	2.49	0.47	
7:J:51:DC:H2"	7:J:52:DG:C8	2.49	0.47	
1:M:197:GLY:N	1:M:274:GLY:O	2.41	0.47	
1:M:750:HIS:CE1	1:M:757:GLY:HA3	2.50	0.47	
6:I:55:DC:H2"	6:I:56:DG:C8	2.50	0.47	
7:J:46:DA:H2"	7:J:47:DG:C8	2.49	0.47	
1:M:286:CYS:HB3	1:M:293:LYS:NZ	2.30	0.47	
4:G:79:ILE:HG12	4:G:82:HIS:CE1	2.50	0.47	
1:M:271:THR:CG2	1:M:273:LYS:HD2	2.45	0.47	
6:I:-8:DG:H2"	6:I:-7:DG:C8	2.49	0.47	
4:C:29:ARG:NE	5:D:35:GLU:OE1	2.48	0.46	
3:F:72:TYR:HE1	5:H:100:LEU:HD11	1.79	0.46	
6:I:19:DC:H2"	6:I:20:DG:C8	2.50	0.46	
2:A:69:ARG:HH22	7:J:17:DA:P	2.38	0.46	
6:I:-9:DC:H2"	6:I:-8:DG:C8	2.50	0.46	
7:J:-48:DC:H2"	7:J:-47:DT:C5	2.50	0.46	
7:J:66:DC:H2"	7:J:67:DA:C8	2.50	0.46	
3:B:59:LYS:O	3:B:63:GLU:HG3	2.15	0.46	
6:I:-63:DT:H2"	6:I:-62:DA:C8	2.51	0.46	
3:F:87:VAL:HG13	3:F:88:TYR:CD1	2.50	0.46	
1:M:259:LEU:O	1:M:262:SER:N	2.48	0.46	

	ti a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:A:96:CYS:SG	3:B:62:LEU:HD21	2.55	0.46	
6:I:16:DA:H1'	6:I:17:DA:C8	2.50	0.46	
1:M:223:LEU:HD13	1:M:354:PHE:HD1	1.81	0.46	
8:U:23:ILE:HB	8:U:52:ASP:O	2.16	0.46	
1:M:635:HIS:O	1:M:639:GLN:HG2	2.16	0.46	
2:A:104:PHE:HA	2:A:107:THR:HG22	1.98	0.46	
4:G:112:GLN:HB2	4:G:115:LEU:HD12	1.98	0.46	
1:M:228:LYS:HA	1:M:254:PRO:HG3	1.98	0.46	
2:A:63:ARG:HB2	2:A:66:PRO:CG	2.46	0.46	
4:C:73:ASN:O	4:C:74:LYS:HG2	2.15	0.46	
3:F:30:THR:HB	3:F:32:PRO:HD2	1.97	0.46	
5:H:86:ARG:HD3	7:J:-34:DG:OP1	2.16	0.46	
4:C:79:ILE:HG12	4:C:82:HIS:CE1	2.51	0.45	
5:D:102:LEU:O	5:D:107:ALA:HB2	2.16	0.45	
7:J:27:DG:C2	7:J:28:DG:C6	3.04	0.45	
6:I:-66:DG:H2'	6:I:-65:DT:H71	1.97	0.45	
7:J:-71:DG:H2"	7:J:-70:DG:C8	2.51	0.45	
2:A:62:ILE:HB	2:A:93:GLN:NE2	2.31	0.45	
7:J:-2:DC:H2"	7:J:-1:DG:C8	2.52	0.45	
1:M:200:ASN:ND2	1:M:798:ASP:OD2	2.46	0.45	
7:J:-4:DC:H2"	7:J:-3:DG:C8	2.52	0.45	
1:M:791:GLY:HA2	1:M:792:GLN:HA	1.61	0.45	
7:J:-28:DT:H2"	7:J:-27:DC:C6	2.51	0.45	
7:J:32:DA:H1'	7:J:33:DC:H5'	1.98	0.45	
7:J:-38:DC:H2"	7:J:-37:DG:C8	2.51	0.45	
7:J:17:DA:H1'	7:J:18:DC:H5'	1.99	0.45	
1:M:299:ASP:HB2	8:U:73:LEU:O	2.17	0.45	
2:A:130:ILE:HD12	2:E:106:ASP:HB3	1.99	0.45	
7:J:47:DG:H2"	7:J:48:DG:C8	2.52	0.45	
1:M:231:GLY:HA2	1:M:251:LEU:HB3	1.99	0.44	
6:I:53:DC:H2'	6:I:54:DT:H71	1.99	0.44	
7:J:19:DC:H2"	7:J:20:DG:H8	1.82	0.44	
3:F:88:TYR:CD2	5:H:83:TYR:CE1	3.06	0.44	
6:I:27:DG:H2"	6:I:28:DA:N7	2.33	0.44	
3:B:82:THR:HG23	3:B:85:ASP:H	1.81	0.44	
6:I:-59:DT:H4'	6:I:-58:DC:OP1	2.16	0.44	
8:U:9:THR:CG2	8:U:11:LYS:HZ2	2.30	0.44	
1:M:302:GLU:HB2	8:U:42:ARG:HH12	1.82	0.44	
7:J:-12:DC:H2"	7:J:-11:DG:C8	2.52	0.44	
7:J:3:DT:H2"	7:J:4:DC:C6	2.52	0.44	
7:J:56:DC:H2"	7:J:57:DA:N7	2.33	0.44	

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:A:42:ARG:HH22	6:I:-5:DG:P	2.41	0.44
2:E:40:ARG:NH2	6:I:9:DT:O2	2.51	0.44
1:M:216:GLN:HB3	1:M:766:ARG:NH1	2.33	0.44
3:F:78:ARG:HG2	3:F:80:THR:H	1.82	0.44
7:J:1:DT:H2"	7:J:2:DG:C8	2.53	0.44
3:B:50:ILE:O	3:B:54:THR:HG23	2.18	0.44
6:I:-54:DC:H2"	6:I:-53:DA:C8	2.53	0.44
6:I:63:DG:H2"	6:I:64:DG:C8	2.53	0.44
7:J:-34:DG:H2"	7:J:-33:DA:C8	2.52	0.44
3:F:72:TYR:CE1	5:H:100:LEU:HD11	2.53	0.43
6:I:-36:DG:H2"	6:I:-35:DG:N7	2.33	0.43
7:J:60:DT:H2"	7:J:61:DA:H8	1.83	0.43
6:I:-2:DC:H2"	6:I:-1:DA:C8	2.53	0.43
1:M:748:VAL:O	1:M:815:TYR:N	2.38	0.43
2:A:60:LEU:HD11	2:A:94:GLU:OE1	2.18	0.43
2:E:59:GLU:H	2:E:59:GLU:CD	2.21	0.43
6:I:-14:DA:H2"	6:I:-13:DA:C8	2.52	0.43
6:I:15:DT:H2"	6:I:16:DA:OP2	2.18	0.43
8:U:37:PRO:HG2	8:U:40:GLN:HE22	1.84	0.43
1:M:288:LYS:HZ2	1:M:310:GLY:HA3	1.84	0.43
1:M:638:TYR:HB3	1:M:642:ARG:HH12	1.83	0.43
5:D:51:ASP:OD1	5:D:51:ASP:N	2.51	0.43
3:F:59:LYS:O	3:F:63:GLU:OE1	2.36	0.43
7:J:14:DT:H2"	7:J:15:DT:C6	2.54	0.43
1:M:264:PHE:HB2	1:M:281:LEU:HD11	1.99	0.43
2:E:49:ARG:HA	2:E:52:ARG:HG2	2.00	0.43
3:F:51:TYR:O	3:F:55:ARG:NH1	2.52	0.43
6:I:-37:DG:H2"	6:I:-36:DG:C8	2.53	0.43
8:U:42:ARG:NH1	8:U:72:ARG:HG2	2.33	0.43
2:E:57:SER:HB2	2:E:59:GLU:OE2	2.19	0.43
4:C:64:GLU:O	4:C:68:ASN:ND2	2.51	0.43
6:I:-39:DT:H2"	6:I:-38:DA:C8	2.54	0.43
6:I:22:DT:H2'	6:I:23:DG:C8	2.54	0.43
7:J:-62:DC:H2"	7:J:-61:DG:C8	2.53	0.43
2:E:121:PRO:O	2:E:125:GLN:OE1	2.37	0.42
3:F:68:ASP:HA	3:F:71:THR:HG22	2.00	0.42
5:H:105:GLU:OE1	5:H:109:HIS:NE2	2.51	0.42
2:A:42:ARG:NH2	6:I:-5:DG:OP1	2.52	0.42
6:I:11:DC:H2"	6:I:12:DG:C8	2.54	0.42
6:I:15:DT:H6	6:I:15:DT:H2'	1.72	0.42
6:I:52:DC:H2"	6:I:53:DC:O5'	2.19	0.42

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
7:J:-35:DA:H2"	7:J:-34:DG:C8	2.54	0.42	
4:G:102:ILE:HG23	5:H:61:ILE:HD13	2.01	0.42	
1:M:719:ILE:HD12	1:M:742:TYR:O	2.19	0.42	
2:A:82:LEU:HD23	2:A:82:LEU:HA	1.88	0.42	
5:D:56:SER:N	6:I:-54:DC:OP1	2.52	0.42	
7:J:-57:DC:H2"	7:J:-56:DC:C6	2.55	0.42	
1:M:743:SER:HB3	1:M:822:ILE:HG13	2.00	0.42	
4:C:79:ILE:HB	4:C:80:PRO:HD2	2.02	0.42	
2:A:51:ILE:HG13	3:B:39:ARG:HD3	2.00	0.42	
3:B:88:TYR:CG	5:D:83:TYR:CE2	3.07	0.42	
4:C:38:ASN:ND2	4:G:40:SER:HA	2.35	0.42	
4:G:49:VAL:HG21	5:H:121:TYR:CD2	2.54	0.42	
7:J:-42:DT:C2	7:J:-41:DG:N7	2.88	0.42	
6:I:49:DC:H2"	6:I:50:DG:C8	2.55	0.42	
7:J:6:DC:H2"	7:J:7:DC:C6	2.54	0.42	
8:U:42:ARG:NE	8:U:70:VAL:HG23	2.32	0.42	
6:I:-48:DC:H2"	6:I:-47:DC:C6	2.55	0.42	
6:I:24:DC:H2"	6:I:25:DT:C6	2.55	0.42	
4:C:15:LYS:HB2	4:C:20:ARG:HE	1.85	0.42	
6:I:-6:DG:H2"	6:I:-5:DG:C8	2.55	0.42	
2:E:118:THR:OG1	3:F:45:ARG:NE	2.53	0.41	
8:U:23:ILE:HG22	8:U:27:LYS:NZ	2.34	0.41	
1:M:815:TYR:CD2	1:M:816:LEU:HG	2.55	0.41	
4:C:26:PRO:HD3	5:D:40:TYR:CG	2.55	0.41	
4:C:54:VAL:HG13	5:D:110:ALA:HB1	2.01	0.41	
7:J:-28:DT:H2"	7:J:-27:DC:C5	2.55	0.41	
7:J:51:DC:H2"	7:J:52:DG:H8	1.84	0.41	
4:G:73:ASN:HB3	4:G:75:LYS:NZ	2.35	0.41	
6:I:47:DA:H2"	6:I:48:DG:C8	2.55	0.41	
1:M:794:PHE:HD1	1:M:803:ALA:HA	1.85	0.41	
4:C:92:GLU:OE2	4:C:92:GLU:HA	2.20	0.41	
7:J:-56:DC:H2"	7:J:-55:DG:N7	2.34	0.41	
6:I:45:DT:H2"	6:I:46:DG:C8	2.55	0.41	
5:D:54:ILE:HD13	5:D:59:MET:HE2	2.01	0.41	
3:F:39:ARG:NH1	3:F:43:VAL:O	2.54	0.41	
4:G:25:PHE:HD1	4:G:56:GLU:HG3	1.85	0.41	
6:I:6:DA:H2"	6:I:7:DC:C5	2.56	0.41	
6:I:15:DT:H2"	6:I:16:DA:C8	2.55	0.41	
8:U:22:THR:OG1	8:U:24:GLU:OE1	2.26	0.41	
7:J:-20:DC:H2"	7:J:-19:DG:C8	2.55	0.41	
2:E:80:THR:O	2:E:82:LEU:HD12	2.21	0.41	

Continued from previous page				
Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
6:I:-44:DG:H2"	6:I:-43:DA:H8	1.86	0.41	
6:I:20:DG:H4'	6:I:21:DG:OP1	2.20	0.41	
7:J:-6:DT:H2"	7:J:-5:DA:C8	2.56	0.41	
1:M:386:SER:O	1:M:698:LYS:NZ	2.45	0.40	
6:I:19:DC:H2"	6:I:20:DG:H8	1.86	0.40	
7:J:55:DT:H2"	7:J:56:DC:C6	2.56	0.40	
6:I:-16:DT:H2"	6:I:-15:DA:N7	2.36	0.40	
1:M:717:PRO:O	1:M:819:TYR:OH	2.37	0.40	
5:D:94:ILE:O	5:D:98:VAL:HG23	2.21	0.40	
4:G:92:GLU:OE1	5:H:103:PRO:HG2	2.21	0.40	
6:I:-70:DG:H2"	6:I:-69:DG:C8	2.56	0.40	
6:I:26:DA:H2"	6:I:27:DG:C8	2.56	0.40	
7:J:-40:DG:H2'	7:J:-39:DT:H71	2.03	0.40	
7:J:-12:DC:H2"	7:J:-11:DG:H8	1.86	0.40	
5:D:33:ARG:NH1	7:J:50:DA:H5'	2.35	0.40	
3:F:31:LYS:HE2	3:F:51:TYR:CE2	2.56	0.40	
4:G:41:GLU:OE2	5:H:87:SER:HB2	2.21	0.40	
6:I:-69:DG:H2"	6:I:-68:DA:H8	1.86	0.40	
1:M:198:LEU:HD12	1:M:198:LEU:HA	1.92	0.40	
7:J:64:DT:H2'	7:J:65:DA:C8	2.56	0.40	
8:U:23:ILE:H	8:U:23:ILE:HD12	1.86	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	М	282/823~(34%)	273~(97%)	9 (3%)	0	100	100
2	А	96/98~(98%)	92 (96%)	4 (4%)	0	100	100
2	Е	95/98~(97%)	93~(98%)	2 (2%)	0	100	100
3	В	77/79~(98%)	77 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
3	F	77/79~(98%)	74 (96%)	3~(4%)	0	100 100
4	С	109/111 (98%)	107~(98%)	2(2%)	0	100 100
4	G	107/111~(96%)	105~(98%)	2(2%)	0	100 100
5	D	92/94~(98%)	91~(99%)	1 (1%)	0	100 100
5	Н	92/94~(98%)	88 (96%)	4 (4%)	0	100 100
8	U	74/76~(97%)	72 (97%)	2(3%)	0	100 100
All	All	1101/1663~(66%)	1072 (97%)	29(3%)	0	100 100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	М	253/749~(34%)	249~(98%)	4(2%)	58	76
2	А	86/86~(100%)	86 (100%)	0	100	100
2	Ε	85/86~(99%)	85 (100%)	0	100	100
3	В	64/65~(98%)	64 (100%)	0	100	100
3	F	64/65~(98%)	64 (100%)	0	100	100
4	С	86/87~(99%)	85~(99%)	1 (1%)	67	82
4	G	84/87~(97%)	83~(99%)	1 (1%)	67	82
5	D	80/80~(100%)	79~(99%)	1 (1%)	65	80
5	Η	80/80~(100%)	80 (100%)	0	100	100
8	U	68/69~(99%)	68 (100%)	0	100	100
All	All	950/1454~(65%)	943~(99%)	7(1%)	80	89

All (7) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	М	201	LEU
Continued on out on a			

Continued from previous page...

Mol	Chain	Res	Type
1	М	273	LYS
1	М	708	ARG
1	М	766	ARG
4	С	11	ARG
5	D	108	LYS
4	G	11	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such side chains are listed below:

Mol	Chain	Res	Type
2	А	93	GLN
4	G	38	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

