

wwPDB EM Validation Summary Report (i)

Oct 28, 2024 - 02:52 PM JST

PDB ID	:	8WGH
EMDB ID	:	EMD-37513
Title	:	Cryo-EM structure of the red-shifted Fittonia albivenis PSI-LHCI
Authors	:	Huang, G.Q.; Li, X.X.; Sui, S.F.; Qin, X.C.
Deposited on	:	2023-09-21
Resolution	:	2.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain						
1	1	246	61%	18% ·	19%				
2	2	265	62%	16% •	21%				
3	3	272	63%	17% •	19%				
4	4	248	61%	18%	21%				
5	А	750	81%		17% •••				
6	В	734	86%		13% •				
7	С	81	89%		9% ••				
8	D	190	61%	12% •	26%				
9	Е	151	34% 7%	58%					

Mol	Chain	Length	Quality o	f cha	ain	
10	F	221	48%	•	31%	
11	G	145	61%	6%•	32%	
12	Н	145	54%	8%		38%
13	Ι	36	64%		17%	19%
14	J	44	66%			25% 9%
15	Κ	132	39% 20%			37%
16	L	217	65%		9% •	25%
17	Ν	173	35% 11% ••	_	51	%
18	Ο	144	43% 16%	, ,	•	38%

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
19	CHL	1	301	Х	-	-	-
19	CHL	1	306	Х	-	-	-
19	CHL	2	301	Х	-	-	-
19	CHL	2	305	Х	-	-	-
19	CHL	2	306	Х	-	-	-
19	CHL	2	307	X	-	-	-
19	CHL	2	314	Х	-	-	-
19	CHL	3	306	X	-	-	-
19	CHL	4	305	X	-	-	-
19	CHL	4	306	X	-	-	-
19	CHL	4	307	X	-	-	-
19	CHL	4	315	Х	-	-	-
20	CLA	1	302	Х	_	-	-
20	CLA	1	303	Х	-	-	-
20	CLA	1	304	Х	_	-	_
20	CLA	1	305	Х	_	-	_
20	CLA	1	307	Х	-	-	_
20	CLA	1	308	Х	_	-	-
20	CLA	1	309	X	-	-	-
20	CLA	1	310	X	_	_	_
20	CLA	1	311	X	-	-	-
20	CLA	1	312	X	_	-	-

Continued from previous page								
Mol	Type	Chain	\mathbf{Res}	Chirality	Geometry	Clashes	Electron density	
20	CLA	1	313	Х	-	-	-	
20	CLA	1	314	Х	-	-	-	
20	CLA	1	321	Х	-	-	-	
20	CLA	2	302	Х	-	-	-	
20	CLA	2	303	Х	-	-	-	
20	CLA	2	304	Х	-	-	-	
20	CLA	2	308	Х	-	-	-	
20	CLA	2	309	Х	-	-	-	
20	CLA	2	310	Х	-	-	-	
20	CLA	2	311	Х	-	-	-	
20	CLA	2	312	Х	-	-	-	
20	CLA	2	313	Х	-	-	-	
20	CLA	3	301	Х	-	-	-	
20	CLA	3	302	Х	-	-	-	
20	CLA	3	303	Х	-	-	-	
20	CLA	3	304	Х	-	-	-	
20	CLA	3	305	Х	-	-	-	
20	CLA	3	307	Х	-	-	-	
20	CLA	3	308	Х	_	-	_	
20	CLA	3	310	Х	_	-	_	
20	CLA	3	311	Х	_	-	_	
20	CLA	3	312	Х	-	-	-	
20	CLA	3	313	Х	-	-	-	
20	CLA	3	314	Х	-	-	-	
20	CLA	4	301	Х	-	-	-	
20	CLA	4	302	Х	-	-	-	
20	CLA	4	303	Х	-	-	-	
20	CLA	4	304	Х	-	-	-	
20	CLA	4	308	Х	-	-	-	
20	CLA	4	309	Х	-	_	-	
20	CLA	4	310	X	_	_	-	
20	CLA	4	311	X	_	_	-	
20	CLA	4	312	X	-	-	-	
20	CLA	4	313	X	_	-	_	
20	CLA	4	314	X	_	-	_	
20	CLA	А	801	X	-	-	_	
20	CLA	А	802	X	_	-	_	
20	CLA	A	803	X	_	_	_	
20	CLA	A	804	X	_	_	_	
20	CLA	A	805	X	_	_	_	
$\frac{-0}{20}$	CLA	A	806	X	_	_	_	
20	CLA	A	807	X	_	_	_	
$\begin{array}{c} 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\$	CLA CLA CLA CLA CLA CLA CLA CLA CLA CLA	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	313 314 301 302 303 304 308 309 310 311 312 313 314 801 802 803 804 805 806 807	X X X X X X X X X X X X X X X X X X X				

 α 1 L.

Continued from previous page									
Mol	Type	Chain	\mathbf{Res}	Chirality	Geometry	Clashes	Electron density		
20	CLA	А	808	Х	_	-	_		
20	CLA	А	809	Х	-	-	-		
20	CLA	А	810	Х	-	-	-		
20	CLA	А	811	Х	-	-	-		
20	CLA	А	812	Х	-	-	-		
20	CLA	А	813	Х	-	-	-		
20	CLA	А	814	Х	-	-	-		
20	CLA	А	815	Х	-	-	-		
20	CLA	А	816	Х	-	-	-		
20	CLA	А	817	Х	-	-	-		
20	CLA	А	818	Х	-	_	-		
20	CLA	А	819	Х	-	-	-		
20	CLA	А	820	Х	-	-	-		
20	CLA	А	821	Х	-	-	-		
20	CLA	А	822	Х	_	-	_		
20	CLA	А	823	Х	_	-	_		
20	CLA	А	824	Х	_	-	_		
20	CLA	А	825	Х	-	-	-		
20	CLA	А	826	Х	-	-	-		
20	CLA	А	827	Х	-	-	-		
20	CLA	А	828	Х	-	_	-		
20	CLA	А	829	Х	-	_	-		
20	CLA	А	830	Х	-	_	-		
20	CLA	А	831	Х	-	-	-		
20	CLA	А	832	Х	-	_	-		
20	CLA	А	833	Х	-	_	-		
20	CLA	А	834	Х	-	_	-		
20	CLA	A	835	X	-	-	-		
20	CLA	A	836	X	-	-	-		
20	CLA	A	837	X	_	-	_		
20	CLA	A	838	X	_	-	_		
20	CLA	A	839	X	_	-	_		
20	CLA	A	840	X	_	_	-		
20	CLA	A	841	X	_	_			
20	CLA	A	851	X	_	-	_		
20	CLA	A	853	X	_	-			
20	CLA	B	801	X	_	_			
$\frac{20}{20}$	CLA	R	802	X	_				
20		R	802	X					
20		B	804	X	-	-			
20		B	805		-	-	-		
20		D	000 000		-	-	-		
	ULA	D	000	Λ	-	-	-		

 $\overline{}$ 1 C

Continued from previous page								
Mol	Type	Chain	\mathbf{Res}	Chirality	Geometry	Clashes	Electron density	
20	CLA	В	807	Х	-	-	-	
20	CLA	В	808	Х	-	-	-	
20	CLA	В	809	Х	-	-	-	
20	CLA	В	810	Х	-	-	-	
20	CLA	В	811	Х	-	-	-	
20	CLA	В	812	Х	-	-	-	
20	CLA	В	813	Х	-	-	-	
20	CLA	В	814	Х	-	-	-	
20	CLA	В	815	Х	-	-	-	
20	CLA	В	816	Х	-	-	-	
20	CLA	В	817	Х	-	_	-	
20	CLA	В	818	Х	-	_	-	
20	CLA	В	819	Х	_	-	_	
20	CLA	В	820	Х	_	-	_	
20	CLA	В	821	Х	_	-	_	
20	CLA	В	822	Х	-	_	-	
20	CLA	В	823	Х	-	-	-	
20	CLA	В	824	Х	_	_	-	
20	CLA	В	825	X	-	-	-	
20	CLA	В	826	X	-	-	-	
20	CLA	В	827	X	_	-	_	
20	CLA	В	828	X	_	-	_	
20	CLA	В	829	X	_	_	_	
20	CLA	В	830	X	_	-	_	
20	CLA	В	831	X	_	_	_	
20	CLA	В	832	X	_	_	_	
20	CLA	B	833	X	_	_	_	
20	CLA	B	834	X	_	_	_	
20	CLA	B	835	X	_	_	_	
20	CLA	B	836	X	_	_	_	
20	CLA	B	837	X	_	_	_	
20	CLA	B	838	X	_	_		
20	CLA	B	839	X				
$\frac{20}{20}$	CLA	F	802	X				
$\frac{20}{20}$		F	804	X		_		
20		F	805	X		_	_	
20		C-	603	X	_			
20		C	604		-	-	-	
20		C G	605		-	-	-	
20		ы П П	000	Λ V	-	-	-	
20	OLA CLA	П	201		-	-	-	
20	ULA CT A	J	101	A V	-	-	-	
20	CLA	յ	103	X	-	-	-	

 α ntin Jf ÷

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
20	CLA	Κ	201	Х	-	-	-
20	CLA	K	202	Х	-	-	-
20	CLA	Κ	203	X	-	-	-
20	CLA	Κ	205	Х	-	-	-
20	CLA	L	302	X	-	-	-
20	CLA	L	303	Х	-	-	-
20	CLA	L	304	Х	-	-	-
20	CLA	L	307	Х	-	-	-
20	CLA	N	202	Х	-	-	-
20	CLA	N	203	X	-	-	-
20	CLA	0	201	Х	-	-	-
20	CLA	0	202	Х	-	-	-
20	CLA	0	203	Х	-	_	-

Continued from previous page...

2 Entry composition (i)

There are 30 unique types of molecules in this entry. The entry contains 38187 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Chlorophyll a-b binding protein 1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	1	199	Total 1559	C 1016	N 261	0 278	$\frac{S}{4}$	0	0

• Molecule 2 is a protein called Chlorophyll a-b binding protein 2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	2	209	Total 1626	C 1068	N 264	O 289	${ m S}{ m 5}$	0	0

• Molecule 3 is a protein called Chlorophyll a-b binding protein 3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
3	3	220	Total 1727	C 1139	N 277	O 305	S 6	0	0

• Molecule 4 is a protein called Chlorophyll a-b binding protein 4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	4	197	Total 1568	C 1027	N 253	0 283	${S \atop 5}$	0	0

• Molecule 5 is a protein called Photosystem I P700 chlorophyll a apoprotein A1.

Mol	Chain	Residues		A	AltConf	Trace			
5	А	742	Total 5831	C 3820	N 989	O 1003	S 19	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	248	SER	VAL	conflict	UNP A0A8A0WPY6

• Molecule 6 is a protein called Photosystem I P700 chlorophyll a apoprotein A2.

Mol	Chain	Residues		A	AltConf	Trace			
6	В	733	Total	С	Ν	0	\mathbf{S}	0	0
	D	100	5854	3843	996	1002	13	0	0

• Molecule 7 is a protein called Photosystem I iron-sulfur center.

Mol	Chain	Residues		A	AltConf	Trace			
7	С	80	Total 615	C 381	N 107	0 116	S 11	0	0

• Molecule 8 is a protein called Photosystem I reaction center subunit II.

Mol	Chain	Residues		At	AltConf	Trace			
8	D	141	Total 1116	C 714	N 193	O 206	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called Photosystem I reaction center subunit IV.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
9	Ε	63	Total 511	C 324	N 92	O 95	0	0

• Molecule 10 is a protein called Photosystem I reaction center subunit III, chloroplastic.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	F	153	Total 1216	C 793	N 208	0 212	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called Photosystem I reaction center subunit VIII.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
11	G	98	Total 768	C 498	N 126	0 144	0	0

• Molecule 12 is a protein called Photosystem I reaction center subunit VI.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
12	Н	90	Total 681	C 444	N 109	O 128	0	0

• Molecule 13 is a protein called Photosystem I reaction center subunit VIII.

Mol	Chain	Residues	Atoms					AltConf	Trace
13	Ι	29	Total 221	C 151	N 35	0 34	S 1	0	0

• Molecule 14 is a protein called Photosystem I reaction center subunit IX.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
14	J	40	Total 318	C 215	N 49	O 53	S 1	0	0

• Molecule 15 is a protein called Photosystem I reaction center subunit psaK.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	K	83	Total 588	C 378	N 100	0 108	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 16 is a protein called Photosystem I reaction center subunit XI.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	L	162	Total 1225	C 812	N 195	0 217	S 1	0	0

• Molecule 17 is a protein called Photosystem I reaction center subunit N.

Mol	Chain	Residues	Atoms					AltConf	Trace
17	Ν	84	Total 686	C 440	N 111	0 131	$\frac{S}{4}$	0	0

• Molecule 18 is a protein called Photosystem I reaction center subunit O.

Mol	Chain	Residues		At	AltConf	Trace			
18	Ο	89	Total 705	C 475	N 112	0 117	S 1	0	0

• Molecule 19 is CHLOROPHYLL B (three-letter code: CHL) (formula: $C_{55}H_{70}MgN_4O_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		At	oms			AltConf
10	1	1	Total	С	Mg	Ν	0	0
19	1	1	52	41	1	4	6	0
10	1	1	Total	С	Mg	Ν	0	0
19	1	1	48	37	1	4	6	0
10	2	1	Total	С	Mg	Ν	Ο	0
19		1	53	42	1	4	6	0
10	2	1	Total	С	Mg	Ν	Ο	0
19	2	1	43	34	1	4	4	0
10	2	1	Total	С	Mg	Ν	Ο	0
19	2	1	48	37	1	4	6	0
10	2	1	Total	С	Mg	Ν	Ο	0
15	2	1	51	40	1	4	6	0
10	2	1	Total	С	Mg	Ν	Ο	0
15	2	I	43	34	1	4	4	0
19	3	1	Total	\mathbf{C}	Mg	Ν	Ο	0
15	0	Ĩ	47	36	1	4	6	0
19	4	1	Total	\mathbf{C}	Mg	Ν	Ο	0
10	-	Ŧ	53	42	1	4	6	0
19	4	1	Total	С	Mg	Ν	Ο	0
15	Т	1	51	40	1	4	6	0
19	4	1	Total	С	Mg	Ν	Ο	0
15	т	1	51	40	1	4	6	0
19	4	1	Total	\mathbf{C}	Mg	Ν	0	0
1.7	т	1	43	34	1	4	4	U

• Molecule 20 is CHLOROPHYLL A (three-letter code: CLA) (formula: $C_{55}H_{72}MgN_4O_5$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		At	oms			AltConf
20	1	1	Total	С	Mg	Ν	Ο	0
20	1	1	65	55	1	4	5	0
- 20	1	1	Total	С	Mg	Ν	Ο	0
20	1	1	65	55	1	4	5	0
20	1	1	Total	С	Mg	Ν	0	0
20	1	1	52	42	1	4	5	0
20	1	1	Total	С	Mg	Ν	0	0
20	1	1	52	42	1	4	5	0
20	1	1	Total	С	Mg	Ν	Ο	0
20	1	1	61	51	1	4	5	0
20	1	1	Total	С	Mg	Ν	Ο	0
20	1	1	65	55	1	4	5	0
20	1	1	Total	С	Mg	Ν	Ο	0
20	1	1	60	50	1	4	5	0
20	1	1	Total	С	Mg	Ν	Ο	0
20	1	1	41	33	1	4	3	0
20	1	1	Total	С	Mg	Ν	Ο	0
20	1	1	52	42	1	4	5	0
20	1	1	Total	С	Mg	Ν	Ο	0
20	1	1	65	55	1	4	5	0
20	1	1	Total	С	Mg	Ν	Ο	0
20	1	1	55	45	1	4	5	0
20	1	1	Total	С	Mg	Ν	Ο	0
20	1	L	46	36	1	4	5	U
20	1	1	Total	С	Mg	Ν	0	0
20		1	65	55	1	4	5	U
20	<u></u>	1	Total	С	Mg	Ν	0	0
20		T	65	55	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
20	0	1	Total	С	Mg	Ν	Ο	0
20		1	49	39	1	4	5	0
20	0	1	Total	С	Mg	Ν	0	0
20		1	60	50	1	4	5	0
20	0	1	Total	С	Mg	Ν	0	0
20		1	50	40	1	4	5	0
20	0	1	Total	С	Mg	Ν	0	0
20		1	60	50	1	4	5	0
20	0	1	Total	С	Mg	Ν	0	0
20		1	41	33	1	4	3	0
20	0	1	Total	С	Mg	Ν	0	0
20		1	52	42	1	4	5	0
20	0	1	Total	С	Mg	Ν	0	0
20		1	65	55	1	4	5	0
20	0	1	Total	С	Mg	Ν	0	0
20		1	43	35	1	4	3	0
20	2	1	Total	С	Mg	Ν	0	0
20	3	1	60	50	1	4	5	0
20	0	1	Total	С	Mg	Ν	Ο	0
20	3	1	50	40	1	4	5	0
- 20	0	1	Total	С	Mg	Ν	0	0
20	3	1	45	35	1	4	5	0
20	0	1	Total	С	Mg	Ν	0	0
20	3	1	42	34	1	4	3	0
- 20	0	1	Total	С	Mg	Ν	0	0
20	3	1	47	37	1	4	5	0
20	0	1	Total	С	Mg	Ν	0	0
20	3	1	50	40	1	4	5	0
20	2	1	Total	С	Mg	Ν	0	0
20	3	1	50	40	1	4	5	0
20	9	1	Total	С	Mg	Ν	Ο	0
20	3	1	46	36	1	4	5	0
20	9	1	Total	С	Mg	Ν	Ο	0
20	3	1	52	42	1	4	5	0
20	9	1	Total	С	Mg	Ν	Ο	0
20	3	1	55	45	1	4	5	0
20	9	1	Total	С	Mg	Ν	0	0
20	3	1	45	35	1	4	5	U
20	9	1	Total	С	Mg	Ν	Ο	0
20	3	L	45	35	1	4	5	U
20	9	1	Total	С	Mg	Ν	0	0
20	3	1	46	36	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
20	4	1	Total	С	Mg	Ν	0	0
20	4	1	46	36	1	4	5	0
20	4	1	Total	С	Mg	Ν	0	0
20	4	1	60	50	1	4	5	0
20	4	1	Total	С	Mg	Ν	0	0
20	4	1	60	50	1	4	5	0
20	4	1	Total	С	Mg	Ν	Ο	0
20	4	1	50	40	1	4	5	0
20	4	1	Total	С	Mg	Ν	0	0
20	4	1	50	40	1	4	5	0
20	4	1	Total	С	Mg	Ν	Ο	0
20	4	1	60	50	1	4	5	0
20	4	1	Total	С	Mg	Ν	Ο	0
20	4	1	55	45	1	4	5	0
20	4	1	Total	С	Mg	Ν	Ο	0
20	4	1	52	42	1	4	5	0
20	4	1	Total	С	Mg	Ν	Ο	0
20	4	1	65	55	1	4	5	0
20	4	1	Total	С	Mg	Ν	Ο	0
20	4	1	45	35	1	4	5	0
20	4	1	Total	С	Mg	Ν	0	0
20	4	1	50	40	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	Ο	0
20	A	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	0
20	A	1	55	45	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	0
20	Π	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	0
20	Л	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	0
20	Л	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	Ο	0
20	Π	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	Ο
20	л	L	65	55	1	4	5	U
20	Δ	1	Total	С	Mg	Ν	0	0
20	А	1	65	55	1	4	5	U
20	Λ	1	Total	С	Mg	Ν	0	Ο
20	А	1	65	55	1	4	5	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
20	Δ	1	Total	С	Mg	Ν	Ο	0
20	A	1	54	44	1	4	5	0
20		1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20		1	Total	С	Mg	Ν	0	0
20	A	1	45	35	1	4	5	0
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	50	40	1	4	5	0
20	٨	1	Total	С	Mg	Ν	Ο	0
20	A	1	45	35	1	4	5	0
20		1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20		1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20		1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20		1	Total	С	Mg	Ν	0	0
20	A	1	45	35	1	4	5	0
20		1	Total	С	Mg	Ν	Ο	0
20	A	1	65	55	1	4	5	0
- 20		1	Total	С	Mg	Ν	0	0
20	A	1	49	39	1	4	5	0
20		1	Total	С	Mg	Ν	0	0
20	A	1	51	41	1	4	5	0
20		1	Total	С	Mg	Ν	0	0
20	A	1	55	45	1	4	5	0
20	٨	1	Total	С	Mg	Ν	Ο	0
20	A	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	Δ	1	Total	С	Mg	Ν	0	0
20	А	L	65	55	1	4	5	U
20	Δ	1	Total	С	Mg	Ν	0	0
20	A	L	65	55	1	4	5	U
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	50	40	1	4	5	U
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	45	35	1	4	5	0
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	51	41	1	4	5	0
20	٨	1	Total	С	Mg	Ν	Ο	0
20	A	1	65	55	1	4	5	0
20	٨	1	Total	С	Mg	Ν	Ο	0
20	A	1	65	55	1	4	5	0
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	٨	1	Total	С	Mg	Ν	Ο	0
20	А	1	65	55	1	4	5	0
20	٨	1	Total	С	Mg	Ν	0	0
20	А	1	65	55	1	4	5	0
20	٨	1	Total	С	Mg	Ν	0	0
20	A	1	65	55	1	4	5	0
20	р	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
20	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
20	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
20	В	1	Total	С	Mg	Ν	0	0
20	D	1	45	35	1	4	5	0
20	В	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
20	D	1	Total	С	Mg	Ν	Ο	0
20	D	1	65	55	1	4	5	0
20	Р	1	Total	С	Mg	Ν	0	0
20	D	1	55	45	1	4	5	U
20	D	1	Total	С	Mg	Ν	Ο	0
20	D	1	65	55	1	4	5	U
20	р	1	Total	С	Mg	Ν	0	0
20	D	L	65	55	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
20	р	1	Total	С	Mg	Ν	0	0
20	В	1	65	55	1	4	5	0
20	л	1	Total	С	Mg	Ν	0	0
20	В	1	54	44	1	4	5	0
20	л	1	Total	С	Mg	Ν	0	0
20	В	1	55	45	1	4	5	0
20	р	1	Total	С	Mg	Ν	0	0
20	В	1	65	55	1	4	5	0
20	р	1	Total	С	Mg	Ν	0	0
20	В	1	65	55	1	4	5	0
20	р	1	Total	С	Mg	Ν	0	0
20	D	1	60	50	1	4	5	0
20	D	1	Total	С	Mg	Ν	Ο	0
20	D	1	55	45	1	4	5	0
20	D	1	Total	С	Mg	Ν	Ο	0
20	D	1	65	55	1	4	5	0
20	D	1	Total	С	Mg	Ν	Ο	0
20	D	1	60	50	1	4	5	0
20	р	1	Total	С	Mg	Ν	Ο	0
20	В	1	65	55	1	4	5	0
20	р	1	Total	С	Mg	Ν	0	0
20	В	1	50	40	1	4	5	0
20	D	1	Total	С	Mg	Ν	Ο	0
20	D	1	56	46	1	4	5	0
20	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
20	В	1	Total	С	Mg	Ν	0	0
20	D	1	60	50	1	4	5	0
20	В	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
20	В	1	Total	С	Mg	Ν	Ο	0
20	D	I	65	55	1	4	5	0
20	В	1	Total	С	Mg	Ν	0	0
20	D	I	65	55	1	4	5	0
20	В	1	Total	С	Mg	Ν	Ο	0
20		1	65	55	1	4	5	0
20	R	1	Total	С	Mg	Ν	0	Ο
		1	65	55	1	4	5	0
20	R	1	Total	\mathbf{C}	Mg	Ν	0	0
		L	65	55	1	4	5	U
20	R	1	Total	С	Mg	Ν	0	Ο
20	D	T	50	40	1	4	5	U

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf
20	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
20	D	1	Total	С	Mg	Ν	0	0
20	D	1	58	48	1	4	5	0
20	D	1	Total	С	Mg	Ν	0	0
20	D	1	65	55	1	4	5	0
20	D	1	Total	С	Mg	Ν	0	0
20	D	1	45	35	1	4	5	0
20	D	1	Total	С	Mg	Ν	0	0
20	D	1	51	41	1	4	5	0
20	D	1	Total	С	Mg	Ν	Ο	0
20	D	1	65	55	1	4	5	0
20	D	1	Total	С	Mg	Ν	Ο	0
20	В	1	47	37	1	4	5	0
20	р	1	Total	С	Mg	Ν	0	0
20	В	1	65	55	1	4	5	0
20	р	1	Total	С	Mg	Ν	0	0
20	В	1	65	55	1	4	5	0
- 20	F	1	Total	С	Mg	Ν	0	0
20	F	1	65	55	1	4	5	0
- 20	F	1	Total	С	Mg	Ν	0	0
20	F	1	45	35	1	4	5	0
- 20	F	1	Total	С	Mg	Ν	0	0
20	Г	1	46	36	1	4	5	0
20	C	1	Total	С	Mg	Ν	0	0
20	G	1	45	35	1	4	5	0
20	C	1	Total	С	Mg	Ν	0	0
20	G	1	50	40	1	4	5	0
20	С	1	Total	С	Mg	Ν	0	0
20	G	1	46	36	1	4	5	0
20	ц	1	Total	С	Mg	Ν	0	0
20	11	1	56	46	1	4	5	0
20	т	1	Total	С	Mg	Ν	0	0
20	1	1	65	55	1	4	5	0
20	т	1	Total	С	Mg	Ν	0	0
20	1	1	42	34	1	4	3	0
20	K	1	Total	С	Mg	Ν	0	0
20	17	1	46	36	1	4	5	U
20	V	1	Total	С	Mg	Ν	0	0
20	ľλ	1	60	50	1	4	5	U
20	V	1	Total	С	Mg	Ν	Ο	0
20	IX.	L	46	36	1	4	5	U

Mol	Chain	Residues		At	oms			AltConf
20	K	1	Total	С	Mg	Ν	0	0
20	20 IX	1	45	35	1	4	5	0
20	т	1	Total	С	Mg	Ν	Ο	0
20		1	46	36	1	4	5	0
20	т	1	Total	С	Mg	Ν	Ο	0
20		1	65	55	1	4	5	0
20	т	1	Total	С	Mg	Ν	Ο	0
20		1	50	40	1	4	5	0
20	T	1	Total	С	Mg	Ν	Ο	0
20		T	45	35	1	4	5	0
20	N	1	Total	С	Mg	Ν	Ο	0
20	11	1	45	35	1	4	5	0
20	N	1	Total	С	Mg	Ν	Ο	0
20	11	1	50	40	1	4	5	0
20	0	1	Total	С	Mg	Ν	Ο	0
20	U	1	52	42	1	4	5	0
20	0	1	Total	\mathbf{C}	Mg	Ν	Ο	0
20		1	45	35	1	4	5	U
20	0	1	Total	\mathbf{C}	Mg	Ν	Ο	0
20			60	50	1	4	5	0

Continued from previous page...

• Molecule 21 is (3R,3'R,6S)-4,5-DIDEHYDRO-5,6-DIHYDRO-BETA,BETA-CAROTENE-3,3'-DIOL (three-letter code: LUT) (formula: $C_{40}H_{56}O_2$).

Mol	Chain	Residues	Atom	S	AltConf
21	1	1	TotalC4240	0 2	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
21	1	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 42 & 40 & 2 \end{array}$	0
21	2	1	Total C O 42 40 2	0
21	3	1	Total C O 42 40 2	0
21	4	1	Total C O 42 40 2	0
21	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 42 & 40 & 2 \end{array}$	0
21	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 42 & 40 & 2 \end{array}$	0

• Molecule 22 is (3S,5R,6S,3'S,5'R,6'S)-5,6,5',6'-DIEPOXY-5,6,5',6'-TETRAHYDRO-BETA, BETA-CAROTENE-3,3'-DIOL (three-letter code: XAT) (formula: C₄₀H₅₆O₄).

Mol	Chain	Residues	Atoms	AltConf
22	1	1	Total C O	0
	T	T	44 40 4	0
22	2	1	Total C O	0
	2	T	44 40 4	0
22	3	1	Total C O	0
	5	T	44 40 4	0
22	4	1	Total C O	0
	4	I	44 40 4	

• Molecule 23 is BETA-CAROTENE (three-letter code: BCR) (formula: $C_{40}H_{56}$).

Mol	Chain	Residues	Atoms	AltConf
23	1	1	Total C 40 40	0
23	2	1	Total C 40 40	0
23	3	1	Total C 40 40	0
23	4	1	Total C 40 40	0
23	А	1	Total C 40 40	0
23	А	1	Total C 40 40	0
23	А	1	Total C 40 40	0
23	А	1	Total C 40 40	0
23	А	1	Total C 40 40	0
23	А	1	Total C 40 40	0
23	В	1	Total C 40 40	0
23	В	1	Total C 40 40	0
23	В	1	Total C 40 40	0
23	В	1	Total C 40 40	0

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mol	Chain	Residues	Atoms	AltConf
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	В	1	Total C	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				40 40 Total C	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	В	1	40 40	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	F	1	Total C	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	Total C	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	F	1	40 40	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	G	1	Total C 40 40	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Т	1	Total C	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	40 40	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	J	1	$\begin{array}{c} 1 \text{ otal } C \\ 40 & 40 \end{array}$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	J	1	Total C	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				40 40 Total C	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	Κ	1	40 40	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	L	1	Total C	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Total C	
23 L 1 Total C 0	23	L	1	40 40	0
	23	L	1	Total \overline{C}	0

Continued from previous page...

• Molecule 24 is 1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE (three-letter code: LHG) (formula: C₃₈H₇₅O₁₀P) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf	
24	1	1	Total C O P	0	
24	1	1	49 38 10 1	0	
24	2	1	Total C O P	Ο	
24	2	T	37 26 10 1	0	
24	Δ	Λ 1	1	Total C O P	0
24	Л	I	49 38 10 1	0	
24	Λ	1	Total C O P	0	
24	Л	I	27 16 10 1	0	
24	В	1	Total C O P	0	
24	D		23 12 10 1		

• Molecule 25 is 1,2-DISTEAROYL-MONOGALACTOSYL-DIGLYCERIDE (three-letter code: LMG) (formula: $C_{45}H_{86}O_{10}$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
25	1	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 49 & 39 & 10 \end{array}$	0
25	1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
25	4	1	Total C O 44 34 10	0

• Molecule 26 is heptyl 1-thio-beta-D-glucopyranoside (three-letter code: HTG) (formula: $C_{13}H_{26}O_5S$).

Mol	Chain	Residues	Atoms	AltConf
26	1	1	Total C O S	0
20	1	L	19 13 5 1	0
26	4	1	Total C O S	0
20	4	L	19 13 5 1	0
26	Λ	1	Total C O S	0
20	Л	T	19 13 5 1	0
26	В	1	Total C O S	0
20	D	T	19 13 5 1	0
26	В	1	Total C O S	0
20	D	1	19 13 5 1	0
26	F	1	Total C O S	0
20	Ľ	T	19 13 5 1	0
26	F	1	Total C O S	0
20	Ľ	T	19 13 5 1	0
26	C	1	Total C O S	0
20	G	T	19 13 5 1	0
26	T	1	Total C O S	0
20	J	L	19 13 5 1	0
26	N	1	Total C O S	0
20	1N	1	19 13 5 1	

• Molecule 27 is PHYLLOQUINONE (three-letter code: PQN) (formula: $C_{31}H_{46}O_2$).

Mol	Chain	Residues	Atoms	AltConf
27	А	1	Total C O	0
		-	33 31 2	
97	D	1	Total C O	0
21	D	1	33 31 2	0

• Molecule 28 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
28	А	1	TotalFeS844	0
28	С	1	TotalFeS844	0

Continued from previous page...

Mol	Chain	Residues	Atoms			AltConf
28	С	1	Total 1 8	Fe 4	$\frac{S}{4}$	0

• Molecule 29 is DODECYL-BETA-D-MALTOSIDE (three-letter code: LMT) (formula: $\rm C_{24}H_{46}O_{11}).$

Mol	Chain	Residues	Atoms	AltConf
29	В	1	Total C O 35 24 11	0
29	G	1	Total C O 35 24 11	0

• Molecule 30 is DIGALACTOSYL DIACYL GLYCEROL (DGDG) (three-letter code: DGD) (formula: $C_{51}H_{96}O_{15}$).

Mol	Chain	Residues	Atoms	AltConf
30	В	1	Total C O 66 51 15	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Chlorophyll a-b binding protein 1

- Molecule 4: Chlorophyll a-b binding protein 4 Chain 4: 61% 18% 21% ARG GLY TYR • Molecule 5: Photosystem I P700 chlorophyll a apoprotein A1 Chain A: 81% 17% •• MET ILE ILE ARG SER PRO GLU GLU • Molecule 6: Photosystem I P700 chlorophyll a apoprotein A2 Chain B: 86% 13%
- Molecule 7: Photosystem I iron-sulfur center

Chain C:	89	%	9% ••
MET 82 84 84 84 106 86 86 86 86 86 86 86 86 86 86 86 87 80 80 80 80 80 80 80 80 80 80 80 80 80	121 121		
• Molecule 8: Phot	cosystem I reaction of	center subunit II	
Chain D:	61%	12%	• 26%
MET ALA SER SER LEU LEU THR LEU SER SER FRO CLN SER CLN	LEU ALA PRO PRO CLN PHE THR ALA ALA ALA ALA ALA ALA ASN PRO LIZY PRO LIZU	ARG ARG ALA ALA ALA MET ARG ALA ALA ALA CLU CLU	SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
E89 E94 M94 E104 E104 E104 F106 F106 F110 K110	L118 L118 T122 R123 S126 S126 S126 S126 V137 V137	D150 N176 N177 1178 K181 V187 V187 L190	
• Molecule 9: Phot	cosystem I reaction of	center subunit IV	
Chain E:	34% 7%	58%	
MET ALA THR THR THR GIY MET ALA ALA CYS CYS ALA ALA ALA	VAL ALA ARA ARA ARA ALA ALA ALA THR THR THR THR THR THR THR PRO	ALTA VAL PHE PHE PHE CYS PRO PRO ARG ARG ARG	PHE MET MET ARA ARA ARA ALA ALA ALA ALA ALA PRO PRO PRO PRO
GLU PRO GLU GLU VAL VAL SER SER SER ALA ALA ALA ALA ALA	THR THR THR THR ALA ALA ALA PRO THR THR THR THR THR THR THR THR THR THR	P31 894 896 996 996 8111 8111 7113 7114	M140 M142 V142 V150 M150 ALA
• Molecule 10: Pho	otosystem I reaction	center subunit III,	chloroplastic
Chain F:	48%	19% •	31%
MET SER LEU THR THR THR PRO ALA ASN VAL LEU VAL LEU ASN PRO	SER ASN LYS SER LEU THEU THEU CALN SER VAL PYS SER SER ALA	PHE VAL CYS SER ASP ASP LYS SER SER SER SER SER SER SER	SELM MET LYS MET LYS ALA ALA ALA ALA ALA ALA ALA ALA ILEU ILEU ILEU ILEU SER TLEU SER SER
ALA PRO MET MET PRO PRO ALA ALA ALA ALA ALA ALA CA C7 C7 C7 K76	K83 R84 E85 E85 E85 E85 E85 E85 E102 F119 F1120 F1120	L128 L128 S132 H137 M141 W147 F157	V167 V167 S170 S170 S170 L172 L192 S194 R193 S194 R195 I197 I197
C200 C200 F201 1202 W203 W203 W203 W203 A206 A206 R206 R206 R206 R206 R210 F211	N213 1217 1217 A218 A219 X219 VAL		
• Molecule 11: Pho	otosystem I reaction	center subunit VII	Ι
Chain G:	61%	6% ·	32%
MET ALLA SER SER SER SER SER LEU PHE PHE PHE CUV	ARG PRO LEU LISU ASN LISS ARS ASN ASP PRO ARG SER SER SER SER PRO	CYS ARG PRU PRU VAL SER VAL SER ARG ARG ARG ARG ARG ARG	AAL AAA VAL VAL LIS AIA 852 852 852 7101 1105 1105 1126 1124
8136 8137 8137 0138 1140 F146 F145			

• Molecule 12: Photosystem I reaction center subunit VI

Chain H:	54%	8%	38%	
MET ALA SER SER LEU LEU THR PHE ALA ALA ALA ALA ALA ALA	LYS LYS GLY GLY LEU ALA ALA GLY SER SER SER SER THR THR	LYS LEU LEU LEU HIS TILE ARG SER ARG ARG CLY VAL CLY VAL LYS SER	SER ASN TYR ARG ALA GLY VAL VAL ALA	LYS TYR GLY GLU LYS S56 Y58 Y58 Y58 GTO
M71 D72 V73 V73 S76 B77 D77 198 L102 K102	L115 R142 1145			
• Molecule 13: Pho	tosystem I react	ion center subunit	VIII	
Chain I:	64%		17% 19	%
MET THR ALLA PHLA NG S S S S C S S C S S C S C S S C C S S C S	L26 V30 N33 LYS ILFS VAL			
• Molecule 14: Pho	tosystem I react	tion center subunit	IX	
Chain J:	66%		25%	9%
M1 K6 K14 K10 K10 K11 R12 S15 T16 T16 L25	129 N30 F31 F38 F39 PHE PHE PHE F16 F16 F16 F16 F16 F16 F16 F16 F16 F16			
• Molecule 15: Pho	tosystem I react	tion center subunit	psaK	
Chain K:	39%	20% ·	37%	
MET ALA ALA ALA ALA THR THR THR SER LEU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	LEU LYS PRO GLN SER ALA SER SER SER SER SER SER	SER LYS SER LEU VAL ALA ARG PRO LEU LEU ARG ARG ARG CLY GLY	GLN GLY ALA LEU GLY ALA ARG CYS CYS YSO	T55 N56 L57 L57 M59 W60 V60 T61
L65 MET L66 ALA AT8 ALA AT8 ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	Les Les Qae Ploo Ploo CLN Ploo CLN CLN Plo CLN Plo CLN Plo CLN Plo Plo CLN Plo Plo Plo Plo Plo Plo Plo Plo	V114 SER G115 L2V G116 SER H16 SER H16 SER V120 VAL V123 VAL V124 LEU S128 ARC S129 ARC V131 GLY	1132 GLN GLY ALY ALY ALY ALS CS ARG ASP ASP ASP	155 N56 N56 N59 M59 M59 N50 161 161
• Molecule 16: Pho	tosystem I react	tion center subunit	I132 GLY AL7 AL6 AL7 AL6 AL7 AL6 AL7 AL6 AL7 AL6 AL7 AL6 AL7 AL6 AL7 AL6 AL7 AL6 AL7 AL6 AL7 AL7 AL7 AL7 AL7 AL7 AL7 AL7 AL7 AL7	155 N56 N56 N59 M59 M59 N50 161
 Molecule 16: Pho Chain L: 	tosystem I react	VII4 VII4 VII2 VII2 VII2 VII2 VII2 VII2	XI XI XI 25%	155 N56 N56 N59 M59 M59 M59 M51 161
Solution Solution <td< td=""><td>NT N N N N N N N N N N N N N N N N N N</td><td>HIR REAL CLY CLY CLY CLY CLY CLY CLY CL</td><td>And Control of the second seco</td><td>VAL PRO GUU IVS PRO BSC TSS PSC PSC MS9 MS9 MS9 MS9 MS9 MS4 T61 T64</td></td<>	NT N N N N N N N N N N N N N N N N N N	HIR REAL CLY CLY CLY CLY CLY CLY CLY CL	And Control of the second seco	VAL PRO GUU IVS PRO BSC TSS PSC PSC MS9 MS9 MS9 MS9 MS9 MS4 T61 T64
1000 1000	1113 11120 11120 1113 11120 11120 1114 11123 11120 1114 11123 11120 1114 11123 11120 1114 1113 11120 1114 1113 1114 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100 1100 1114 1100	1169 111 1169 113 1187 113 1188 113 1189 114 1189 114 1189 114 1189 114 1189 114 1189 114 1189 114 1189 115 1189 115 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 116 1189 112 1129 112 1129 112 1129 112 1129 112 1129 112 1129 112 1129 112 1129 112 1129 112 1129 112 1129 112 120 112 <	VIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIIII VIIII VIIII VIIII VIIIIII VIIII VIIII VIIIIIII VIIII	VAL T55 PAD T56 GLV B56 L17S L57 PAO M56 T58 M50 T61 M50 T63 T64
Image: Section of the section of th	No No <td< td=""><td>AR & &</td><td>NH</td><td>VAL PRO GLU GLU T55 GLU T64 V60 V60 V60 V61 V61 V61 V61 V61 V61 V61 V61</td></td<>	AR & & & & & & & & & & & & & & & & & & &	NH	VAL PRO GLU GLU T55 GLU T64 V60 V60 V60 V61 V61 V61 V61 V61 V61 V61 V61
	No No <td< td=""><td>11 <td< td=""><td>N 51%</td><td>VAL VAL PRO GLD T55 CL57 PRO T56 PSO T56 PSO T56 T58 T56 T56 T56 T56 T51 T51 T61 T61 T61</td></td<></td></td<>	11 11 <td< td=""><td>N 51%</td><td>VAL VAL PRO GLD T55 CL57 PRO T56 PSO T56 PSO T56 T58 T56 T56 T56 T56 T51 T51 T61 T61 T61</td></td<>	N 51%	VAL VAL PRO GLD T55 CL57 PRO T56 PSO T56 PSO T56 T58 T56 T56 T56 T56 T51 T51 T61 T61 T61

• Molecule 18: Photosystem I reaction center subunit O

			_	
Chain O∙	43%	16%		38%
chain 0.	4570	1070	•	5070

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	157342	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	1500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BCR, LMT, LMG, LUT, DGD, XAT, CLA, PQN, LHG, HTG, CHL, SF4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.26	0/1610	0.45	0/2195	
2	2	0.34	0/1687	0.52	1/2313~(0.0%)	
3	3	0.31	0/1791	0.47	1/2435~(0.0%)	
4	4	0.27	0/1621	0.43	0/2215	
5	А	0.26	0/6029	0.44	0/8223	
6	В	0.26	0/6066	0.45	0/8285	
7	С	0.25	0/628	0.50	0/852	
8	D	0.27	0/1143	0.52	0/1546	
9	Е	0.27	0/522	0.51	0/710	
10	F	0.27	0/1246	0.49	0/1681	
11	G	0.52	0/788	0.49	0/1070	
12	Н	0.26	0/701	0.45	0/955	
13	Ι	0.27	0/227	0.44	0/310	
14	J	0.26	0/327	0.51	0/446	
15	Κ	0.27	0/596	0.54	0/809	
16	L	0.27	0/1263	0.45	0/1731	
17	Ν	0.38	0/701	0.48	0/942	
18	0	0.29	0/733	0.50	0/1001	
All	All	0.28	0/27679	0.47	2/37719~(0.0%)	

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	3	226	LYS	CD-CE-NZ	-5.68	98.64	111.70
2	2	74	ASP	CB-CG-OD2	5.14	122.92	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1	1559	0	1536	38	0
2	2	1626	0	1570	37	0
3	3	1727	0	1651	36	0
4	4	1568	0	1517	36	0
5	А	5831	0	5683	94	0
6	В	5854	0	5635	69	0
7	С	615	0	600	3	0
8	D	1116	0	1122	13	0
9	Е	511	0	510	6	0
10	F	1216	0	1245	37	0
11	G	768	0	740	7	0
12	Н	681	0	671	7	0
13	Ι	221	0	237	3	0
14	J	318	0	331	9	0
15	Κ	588	0	619	21	0
16	L	1225	0	1240	15	0
17	N	686	0	664	18	0
18	0	705	0	686	19	0
19	1	100	0	72	6	0
19	2	238	0	169	23	0
19	3	47	0	30	3	0
19	4	198	0	143	12	0
20	1	744	0	720	32	0
20	2	485	0	445	21	0
20	3	633	0	499	24	0
20	4	593	0	524	35	0
20	А	2610	0	2708	132	0
20	В	2361	0	2424	96	0
20	F	156	0	138	7	0
20	G	141	0	105	0	0
20	Н	56	0	51	3	0
20	J	107	0	103	2	0
20	K	197	0	158	8	0
20	L	206	0	177	8	0
20	N	95	0	69	2	0
20	0	157	0	135	16	0
21	1	84	0	112	8	0

Conti	Continuea from previous page								
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes			
21	2	42	0	56	2	0			
21	3	42	0	56	4	0			
21	4	42	0	56	5	0			
21	0	84	0	112	8	0			
22	1	44	0	56	2	0			
22	2	44	0	56	2	0			
22	3	44	0	56	6	0			
22	4	44	0	56	8	0			
23	1	40	0	56	4	0			
23	2	40	0	56	6	0			
23	3	40	0	56	4	0			
23	4	40	0	56	5	0			
23	А	240	0	336	18	0			
23	В	240	0	336	22	0			
23	F	80	0	112	7	0			
23	G	40	0	56	3	0			
23	Ι	40	0	56	6	0			
23	J	80	0	112	10	0			
23	K	40	0	56	4	0			
23	L	120	0	168	9	0			
24	1	49	0	74	7	0			
24	2	37	0	44	1	0			
24	А	76	0	98	3	0			
24	В	23	0	16	2	0			
25	1	93	0	132	6	0			
25	4	44	0	61	4	0			
26	1	19	0	26	2	0			
26	4	19	0	26	0	0			
26	А	19	0	26	0	0			
26	В	38	0	52	1	0			
26	F	38	0	52	1	0			
26	G	19	0	26	0	0			
26	J	19	0	26	0	0			
26	Ν	19	0	26	1	0			
27	А	33	0	46	3	0			
27	В	33	0	46	1	0			
28	А	8	0	0	0	0			
28	С	16	0	0	0	0			
29	В	35	0	46	0	0			
29	G	35	0	46	0	0			
30	В	66	0	96	2	0			
All	All	38187	0	37964	787	0			

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

The worst 5 of 787 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)		
10:F:217:ILE:HG13	20:F:802:CLA:O1A	1.45	1.16		
20:1:309:CLA:HAB	21:1:315:LUT:H32	1.42	0.98		
19:2:306:CHL:HMB1	19:2:306:CHL:HBB1	1.49	0.93		
20:3:309:CLA:HBC2	20:3:309:CLA:HHD	1.50	0.93		
19:2:307:CHL:HBB1	19:2:307:CHL:HMB1	1.51	0.93		

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1	197/246~(80%)	194 (98%)	3(2%)	0	100	100
2	2	207/265~(78%)	203~(98%)	3 (1%)	1 (0%)	25	38
3	3	218/272~(80%)	206 (94%)	12 (6%)	0	100	100
4	4	195/248~(79%)	189 (97%)	6 (3%)	0	100	100
5	А	740/750~(99%)	722 (98%)	18 (2%)	0	100	100
6	В	731/734~(100%)	716 (98%)	14 (2%)	1 (0%)	48	65
7	С	78/81~(96%)	75~(96%)	3 (4%)	0	100	100
8	D	139/190~(73%)	135 (97%)	4 (3%)	0	100	100
9	Е	61/151~(40%)	59 (97%)	2 (3%)	0	100	100
10	F	151/221~(68%)	150 (99%)	1 (1%)	0	100	100
11	G	96/145~(66%)	95~(99%)	1 (1%)	0	100	100
12	Н	88/145 (61%)	87~(99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured Allowe		Outliers	Percentiles		
13	Ι	27/36~(75%)	27~(100%)	0	0	100 100		
14	J	38/44~(86%)	38 (100%)	0	0	100 100		
15	Κ	81/132~(61%)	75~(93%)	5~(6%)	1 (1%)	11 16		
16	L	160/217~(74%)	157~(98%)	3~(2%)	0	100 100		
17	Ν	82/173~(47%)	76~(93%)	5~(6%)	1 (1%)	11 16		
18	Ο	87/144 (60%)	85~(98%)	2(2%)	0	100 100		
All	All	3376/4194 (80%)	3289~(97%)	83 (2%)	4 (0%)	50 65		

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	2	172	CYS
6	В	362	ALA
17	Ν	167	TRP
15	Κ	96	GLN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	1	162/198~(82%)	153~(94%)	9~(6%)	17	30	
2	2	168/208~(81%)	164 (98%)	4 (2%)	44	64	
3	3	175/217~(81%)	164 (94%)	11 (6%)	15	25	
4	4	168/207~(81%)	163~(97%)	5(3%)	36	57	
5	А	600/608~(99%)	579~(96%)	21~(4%)	31	51	
6	В	598/599~(100%)	577~(96%)	21 (4%)	31	51	
7	\mathbf{C}	70/71~(99%)	65~(93%)	5(7%)	12	20	
8	D	121/159~(76%)	110 (91%)	11 (9%)	7	12	
9	Ε	57/124~(46%)	56 (98%)	1 (2%)	54	73	
10	F	126/185~(68%)	112 (89%)	14 (11%)	5	7	

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
11	G	84/125~(67%)	82 (98%)	2(2%)	44 64		
12	Н	72/110~(66%)	69~(96%)	3~(4%)	25 43		
13	Ι	25/31~(81%)	23~(92%)	2(8%)	10 16		
14	J	34/38~(90%)	33~(97%)	1 (3%)	37 58		
15	Κ	61/99~(62%)	57~(93%)	4 (7%)	14 23		
16	L	129/176~(73%)	125~(97%)	4 (3%)	35 56		
17	Ν	74/139~(53%)	65~(88%)	9(12%)	4 5		
18	Ο	73/114~(64%)	65 (89%)	8 (11%)	5 7		
All	All	2797/3408~(82%)	2662 (95%)	135 (5%)	24 37		

 $5~{\rm of}~135$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
16	L	67	PRO
17	N	138	LYS
18	0	65	LEU
5	А	663	SER
5	А	623	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 42 such sidechains are listed below:

Mol	Chain	Res	Type
6	В	704	GLN
11	G	50	ASN
7	С	38	GLN
8	D	167	ASN
12	Н	83	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

225 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	B	ond leng	gths	Bo	ond angl	es
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
20	CLA	В	809	6	65,73,73	1.46	5 (7%)	76,113,113	1.41	8 (10%)
23	BCR	В	843	-	41,41,41	0.70	0	56,56,56	2.06	14 (25%)
20	CLA	3	305	3	47,55,73	1.74	5 (10%)	54,91,113	1.52	7 (12%)
23	BCR	F	806	-	41,41,41	0.71	0	56,56,56	2.03	17 (30%)
23	BCR	Ι	101	-	41,41,41	0.76	0	56,56,56	2.08	17 (30%)
19	CHL	2	301	2	53,61,74	2.50	25 (47%)	57,98,114	<mark>3.86</mark>	30 (52%)
20	CLA	А	827	-	65,73,73	1.46	6 (9%)	76,113,113	1.40	8 (10%)
20	CLA	3	312	-	45,53,73	1.78	5 (11%)	52,89,113	1.58	7 (13%)
20	CLA	А	820	-	65,73,73	1.48	5 (7%)	76,113,113	1.37	8 (10%)
20	CLA	В	822	-	65,73,73	1.49	6 (9%)	76,113,113	1.42	8 (10%)
21	LUT	0	205	-	42,43,43	0.85	1 (2%)	51,60,60	2.00	14 (27%)
27	PQN	В	840	-	34,34,34	1.60	2 (5%)	42,45,45	1.12	3 (7%)
20	CLA	А	812	-	65,73,73	1.47	5 (7%)	76,113,113	1.38	6 (7%)
20	CLA	В	815	-	60,68,73	1.51	5 (8%)	70,107,113	1.45	7 (10%)
20	CLA	В	835	-	51,59,73	1.64	6 (11%)	59,96,113	1.53	7 (11%)
20	CLA	В	803	-	65,73,73	1.47	7 (10%)	76,113,113	1.40	8 (10%)
20	CLA	А	834	-	65,73,73	1.50	5 (7%)	76,113,113	1.36	7 (9%)
20	CLA	3	309	-	46,54,73	2.15	11 (23%)	53,90,113	2.36	16 (30%)
20	CLA	3	307	3	$50,\!58,\!73$	1.65	6 (12%)	58,95,113	1.57	8 (13%)
20	CLA	В	838	-	65,73,73	1.48	6 (9%)	76,113,113	1.36	8 (10%)
26	HTG	А	852	-	19,19,19	1.27	2 (10%)	23,24,24	1.49	4 (17%)
28	SF4	С	101	-	0,12,12	-	-	-		

EMD-37513, 8WGH

Mol	Type	Chain	Bos	Link	B	ond leng	gths	Bo	ond angl	es
	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
22	XAT	2	316	-	39,47,47	0.88	0	54,74,74	2.64	20 (37%)
26	HTG	F	807	-	$19,\!19,\!19$	1.06	2 (10%)	23,24,24	0.52	0
23	BCR	G	606	-	41,41,41	0.68	0	56, 56, 56	1.95	16 (28%)
20	CLA	А	831	-	65,73,73	1.47	6 (9%)	76,113,113	1.36	8 (10%)
20	CLA	В	818	-	60,68,73	1.53	6 (10%)	70,107,113	1.42	7 (10%)
20	CLA	В	807	-	55,63,73	1.59	6 (10%)	64,101,113	1.47	9 (14%)
20	CLA	А	837	-	65,73,73	1.45	6 (9%)	76,113,113	1.43	8 (10%)
20	CLA	1	310	24	41,49,73	1.81	6 (14%)	47,84,113	1.69	8 (17%)
20	CLA	В	813	-	65,73,73	1.48	6 (9%)	76,113,113	1.37	7 (9%)
21	LUT	4	316	-	42,43,43	0.76	0	51,60,60	1.61	13 (25%)
20	CLA	А	826	-	65,73,73	1.49	6 (9%)	76,113,113	1.37	7(9%)
19	CHL	2	314	2	43,51,74	2.25	12 (27%)	45,86,114	2.96	18 (40%)
19	CHL	4	305	-	53,61,74	2.23	16 (30%)	57,98,114	<mark>3.06</mark>	26 (45%)
20	CLA	В	828	-	65,73,73	1.50	5 (7%)	76,113,113	1.33	9 (11%)
20	CLA	K	203	-	46,54,73	1.72	7 (15%)	53,90,113	1.61	6 (11%)
24	LHG	2	318	20	36,36,48	1.07	2 (5%)	39,42,54	1.13	3 (7%)
20	CLA	Ν	202	17	44,53,73	1.77	6 (13%)	50,89,113	1.58	7 (14%)
20	CLA	В	820	-	50,58,73	1.68	5 (10%)	58,95,113	1.56	7 (12%)
20	CLA	L	303	-	65,73,73	1.48	5 (7%)	76,113,113	1.39	9 (11%)
23	BCR	А	849	-	41,41,41	0.72	0	56,56,56	1.97	15 (26%)
20	CLA	2	312	2	65,73,73	1.49	5 (7%)	76,113,113	1.36	<mark>9 (11%)</mark>
20	CLA	1	312	1	65,73,73	1.50	5 (7%)	76,113,113	1.34	7(9%)
20	CLA	3	313	-	45,53,73	1.80	5 (11%)	52,89,113	1.54	<mark>6 (11%)</mark>
20	CLA	В	830	-	50,58,73	1.67	6 (12%)	58,95,113	1.53	8 (13%)
20	CLA	А	822	-	51,59,73	1.67	6 (11%)	59,96,113	1.46	8 (13%)
20	CLA	F	802	-	65,73,73	1.47	6 (9%)	76,113,113	1.38	8 (10%)
20	CLA	А	839	-	65,73,73	1.47	5 (7%)	76,113,113	1.39	8 (10%)
23	BCR	L	305	-	41,41,41	0.70	0	56,56,56	2.09	13 (23%)
26	HTG	В	851	-	19,19,19	1.08	2 (10%)	23,24,24	0.51	0
29	LMT	В	847	-	36,36,36	0.40	0	47,47,47	0.68	1 (2%)
20	CLA	2	311	2	52,60,73	1.63	6 (11%)	60,97,113	1.56	7 (11%)
24	LHG	В	849	-	22,22,48	1.19	2 (9%)	25,28,54	1.01	1 (4%)
20	CLA	4	301	4	46,54,73	1.76	5 (10%)	53,90,113	1.53	6 (11%)
21	LUT	1	315	-	42,43,43	0.76	0	51,60,60	1.64	14 (27%)
20	CLA	В	810	-	65,73,73	1.47	6 (9%)	76,113,113	1.41	8 (10%)

Mol	Type	Chain	Bos	Link	B	ond leng	gths	Bo	ond ang	les
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
20	CLA	А	841	-	65,73,73	1.49	6 (9%)	76,113,113	1.35	9 (11%)
29	LMT	G	601	-	36,36,36	0.41	0	47,47,47	0.64	1 (2%)
19	CHL	2	307	-	51,59,74	2.33	21 (41%)	55,96,114	<mark>3.45</mark>	28 (50%)
20	CLA	В	832	-	58,66,73	1.56	6 (10%)	67,104,113	1.49	10 (14%)
20	CLA	В	837	-	47,55,73	1.73	6 (12%)	54,91,113	1.56	7 (12%)
24	LHG	А	844	20	26,26,48	1.25	2 (7%)	29,32,54	1.34	3 (10%)
19	CHL	2	306	-	48,56,74	2.32	16 (33%)	51,92,114	3.24	23 (45%)
19	CHL	4	306	-	51,59,74	2.42	23 (45%)	55,96,114	3.03	26 (47%)
20	CLA	0	203	-	60,68,73	1.53	6 (10%)	70,107,113	1.43	8 (11%)
20	CLA	L	304	-	50,58,73	1.67	6 (12%)	58,95,113	1.54	9 (15%)
20	CLA	2	304	-	60,68,73	1.55	6 (10%)	70,107,113	1.40	7 (10%)
20	CLA	1	313	-	55,63,73	1.61	5 (9%)	64,101,113	1.47	7 (10%)
20	CLA	В	819	-	65,73,73	1.48	7 (10%)	76,113,113	1.35	8 (10%)
20	CLA	В	821	-	56,64,73	1.61	<mark>6 (10%)</mark>	65,102,113	1.45	8 (12%)
20	CLA	3	314	-	46,54,73	1.78	5 (10%)	53,90,113	1.51	6 (11%)
20	CLA	0	202	-	45,53,73	2.01	8 (17%)	52,89,113	1.94	7 (13%)
20	CLA	В	808	-	65,73,73	1.46	6 (9%)	76,113,113	1.42	9 (11%)
23	BCR	В	842	-	41,41,41	0.71	0	56,56,56	2.03	19 (33%)
23	BCR	В	846	-	41,41,41	0.71	0	56,56,56	1.76	14 (25%)
23	BCR	2	317	-	41,41,41	0.74	0	56,56,56	2.13	17 (30%)
25	LMG	1	323	-	44,44,55	0.99	2 (4%)	52,52,63	1.04	3 (5%)
20	CLA	1	321	-	65,73,73	1.49	6 (9%)	76,113,113	1.36	9 (11%)
20	CLA	4	314	-	50,58,73	1.69	5 (10%)	58,95,113	1.51	9 (15%)
20	CLA	В	802	-	65,73,73	1.48	6 (9%)	76,113,113	1.31	7(9%)
20	CLA	L	302	16	45,53,73	1.76	6 (13%)	52,89,113	1.66	7 (13%)
26	HTG	G	602	-	19,19,19	1.08	2 (10%)	23,24,24	0.56	0
20	CLA	В	833	-	65,73,73	1.48	6 (9%)	76,113,113	1.36	9 (11%)
20	CLA	А	824	-	65,73,73	1.48	6 (9%)	76,113,113	1.40	7 (9%)
20	CLA	В	834	-	45,53,73	1.75	5 (11%)	52,89,113	1.62	7 (13%)
20	CLA	3	303	-	45,53,73	1.77	5 (11%)	52,89,113	1.60	8 (15%)
20	CLA	В	801	-	65,73,73	1.49	5 (7%)	76,113,113	1.40	7 (9%)
20	CLA	А	805	-	65,73,73	1.47	6 (9%)	76,113,113	1.40	7 (9%)
20	CLA	J	101	-	65,73,73	1.47	6 (9%)	76,113,113	1.42	9 (11%)
20	CLA	4	308	4	50,58,73	1.67	6 (12%)	58,95,113	1.52	9 (15%)
26	HTG	4	320	-	19,19,19	1.12	2 (10%)	23,24,24	0.57	0

Mal	Tune	Chain	Dec	Tink	В	ond leng	gths	Bo	ond ang	les
	туре	Chan	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
27	PQN	А	842	-	34,34,34	1.62	2 (5%)	42,45,45	1.05	3 (7%)
30	DGD	В	848	-	67,67,67	0.84	2 (2%)	81,81,81	0.94	4 (4%)
20	CLA	А	818	-	65,73,73	1.48	6 (9%)	76,113,113	1.40	9 (11%)
25	LMG	4	319	-	44,44,55	0.98	2 (4%)	52,52,63	1.01	3 (5%)
20	CLA	А	813	-	45,53,73	1.77	5 (11%)	52,89,113	1.60	8 (15%)
20	CLA	А	810	20	65,73,73	1.48	6 (9%)	76,113,113	1.35	7 (9%)
20	CLA	В	812	-	55,63,73	1.61	5 (9%)	64,101,113	1.45	8 (12%)
20	CLA	А	817	-	65,73,73	1.49	7 (10%)	76,113,113	1.35	9 (11%)
20	CLA	А	821	-	49,57,73	1.67	6 (12%)	55,93,113	1.58	7 (12%)
23	BCR	В	841	-	41,41,41	0.71	0	56,56,56	1.89	16 (28%)
28	SF4	С	102	-	0,12,12	-	-	-		
20	CLA	2	303	-	49,57,73	1.70	6 (12%)	55,93,113	1.55	7 (12%)
23	BCR	J	104	-	41,41,41	0.67	0	56, 56, 56	1.98	15 (26%)
20	CLA	А	829	-	65,73,73	1.46	6 (9%)	76,113,113	1.45	7 (9%)
20	CLA	А	838	-	65,73,73	1.50	6 (9%)	76,113,113	1.39	7 (9%)
21	LUT	Ο	204	-	42,43,43	0.76	0	51,60,60	1.73	12 (23%)
20	CLA	В	814	-	65,73,73	1.47	6 (9%)	76,113,113	1.38	7 (9%)
26	HTG	N	201	-	19,19,19	1.08	2 (10%)	23,24,24	0.61	0
20	CLA	В	836	-	65,73,73	1.47	5 (7%)	76,113,113	1.40	8 (10%)
20	CLA	А	851	-	65,73,73	1.47	6 (9%)	76,113,113	1.36	8 (10%)
22	XAT	3	316	-	39,47,47	0.88	0	54,74,74	2.72	21 (38%)
20	CLA	А	825	-	65,73,73	1.47	6 (9%)	76,113,113	1.44	10 (13%)
23	BCR	А	854	-	41,41,41	0.69	0	56,56,56	1.94	12 (21%)
20	CLA	А	808	5	65,73,73	1.49	6 (9%)	76,113,113	1.36	8 (10%)
20	CLA	3	304	-	42,50,73	1.80	5 (11%)	48,85,113	1.67	6 (12%)
23	BCR	А	846	-	41,41,41	0.73	0	56,56,56	1.97	15 (26%)
26	HTG	В	850	-	19,19,19	1.06	2 (10%)	23,24,24	0.84	0
26	HTG	F	803	-	19,19,19	1.09	2 (10%)	23,24,24	0.55	0
20	CLA	А	840	-	65,73,73	1.49	6 (9%)	76,113,113	1.35	8 (10%)
24	LHG	А	843	_	48,48,48	0.92	2 (4%)	51,54,54	1.00	3 (5%)
20	CLA	1	311	1	52,60,73	1.64	6 (11%)	60,97,113	1.57	7 (11%)
20	CLA	А	809	-	65,73,73	1.47	6 (9%)	76,113,113	1.38	8 (10%)
20	CLA	F	804	-	45,53,73	1.79	6 (13%)	52,89,113	1.55	7 (13%)
25	LMG	1	320	-	49,49,55	0.94	2 (4%)	57,57,63	1.02	3 (5%)
20	CLA	1	304	-	52,60,73	1.65	6 (11%)	60,97,113	1.52	8 (13%)

Mol	Type	Chain	Dog	Link	Bond lengths		Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
20	CLA	1	303	-	65,73,73	1.51	6 (9%)	76,113,113	1.37	8 (10%)
20	CLA	А	801	-	65,73,73	1.48	5 (7%)	76,113,113	1.49	10 (13%)
20	CLA	3	308	3	50,58,73	1.66	6 (12%)	$58,\!95,\!113$	1.54	8 (13%)
20	CLA	В	824	-	65,73,73	1.47	6 (9%)	76,113,113	1.44	8 (10%)
20	CLA	А	828	-	65,73,73	1.46	6 (9%)	76,113,113	1.40	7 (9%)
20	CLA	1	305	-	52,60,73	1.66	6 (11%)	60,97,113	1.48	7 (11%)
22	XAT	4	317	-	39,47,47	0.88	0	54,74,74	2.65	19 (35%)
20	CLA	Ν	203	-	50,58,73	1.70	5 (10%)	58,95,113	1.54	9 (15%)
20	CLA	2	313	-	43,51,73	1.78	6 (13%)	49,86,113	1.63	7 (14%)
20	CLA	В	806	6	65,73,73	1.45	5 (7%)	76,113,113	1.38	8 (10%)
23	BCR	3	317	-	41,41,41	0.66	0	56,56,56	1.99	16 (28%)
19	CHL	4	315	-	43,51,74	2.35	18 (41%)	45,86,114	<mark>3.22</mark>	21 (46%)
20	CLA	K	205	15	45,53,73	1.78	6 (13%)	52,89,113	1.56	6 (11%)
20	CLA	В	811	-	54,62,73	1.67	7 (12%)	67,100,113	1.51	9 (13%)
20	CLA	Н	201	-	56,64,73	1.60	6 (10%)	65,102,113	1.45	7 (10%)
23	BCR	J	102	-	41,41,41	0.68	0	56,56,56	1.97	17 (30%)
20	CLA	3	301	3	60,68,73	1.54	7 (11%)	70,107,113	1.42	7 (10%)
20	CLA	2	309	2	60,68,73	1.53	6 (10%)	70,107,113	1.40	8 (11%)
20	CLA	В	805	-	65,73,73	1.47	5 (7%)	76,113,113	1.40	8 (10%)
20	CLA	А	807	5	65,73,73	1.45	5 (7%)	76,113,113	1.42	9 (11%)
20	CLA	L	307	-	45,53,73	1.80	6 (13%)	52,89,113	1.59	7 (13%)
19	CHL	2	305	-	43,51,74	2.42	19 (44%)	45,86,114	<mark>3.72</mark>	24 (53%)
23	BCR	А	845	-	41,41,41	0.72	0	56,56,56	1.94	16 (28%)
23	BCR	В	844	-	41,41,41	0.71	0	56,56,56	1.85	15 (26%)
20	CLA	В	829	-	65,73,73	1.47	6 (9%)	76,113,113	1.41	6 (7%)
23	BCR	L	301	-	41,41,41	0.72	0	56,56,56	1.96	13 (23%)
20	CLA	А	804	-	65,73,73	1.47	7 (10%)	76,113,113	1.42	6 (7%)
20	CLA	В	823	-	60,68,73	1.54	7 (11%)	70,107,113	1.47	10 (14%)
23	BCR	А	847	-	41,41,41	0.68	0	56,56,56	2.00	16 (28%)
20	CLA	А	814	-	50,58,73	1.67	5 (10%)	58,95,113	1.59	9 (15%)
20	CLA	В	825	-	65,73,73	1.47	6 (9%)	76,113,113	1.43	9 (11%)
20	CLA	А	836	-	51,59,73	1.64	5 (9%)	59,96,113	1.57	9 (15%)
23	BCR	L	306	-	41,41,41	0.72	0	56,56,56	2.09	13 (23%)
20	CLA	А	833	-	65,73,73	1.47	6 (9%)	76,113,113	1.38	8 (10%)
20	CLA	2	310	24	41,49,73	1.81	5 (12%)	47,84,113	1.68	8 (17%)

Mol	Type	Chain	Bos	Link	В	ond leng	gths	Bo	ond angl	es
	туре	Chan	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
20	CLA	4	304	-	50,58,73	2.02	13 (26%)	58,95,113	<mark>3.47</mark>	22 (37%)
20	CLA	4	310	-	55,63,73	1.63	5 (9%)	64,101,113	1.41	8 (12%)
21	LUT	3	315	-	42,43,43	0.75	0	51,60,60	1.59	12 (23%)
20	CLA	1	314	1	46,54,73	1.73	6 (13%)	53,90,113	1.56	6 (11%)
20	CLA	В	826	-	65,73,73	1.47	5 (7%)	76,113,113	1.42	8 (10%)
23	BCR	F	801	-	41,41,41	0.68	0	56, 56, 56	1.79	14 (25%)
24	LHG	1	318	20	48,48,48	0.93	2 (4%)	51,54,54	1.04	3 (5%)
26	HTG	1	322	-	19,19,19	1.06	2 (10%)	23,24,24	1.05	3 (13%)
20	CLA	А	815	-	45,53,73	1.78	6 (13%)	52,89,113	1.56	6 (11%)
21	LUT	2	315	-	42,43,43	0.75	0	51,60,60	1.69	15 (29%)
20	CLA	F	805	-	46,54,73	1.76	6 (13%)	53,90,113	1.55	6 (11%)
20	CLA	А	819	-	45,53,73	1.77	6 (13%)	52,89,113	1.59	7 (13%)
20	CLA	3	311	3	55,63,73	1.63	6 (10%)	64,101,113	1.45	8 (12%)
20	CLA	2	302	2	65,73,73	1.45	6 (9%)	76,113,113	1.39	8 (10%)
20	CLA	В	816	-	55,63,73	1.59	6 (10%)	64,101,113	1.45	8 (12%)
20	CLA	В	839	-	65,73,73	1.48	6 (9%)	76,113,113	1.36	8 (10%)
20	CLA	0	201	24	52,60,73	1.66	6 (11%)	60,97,113	1.45	7 (11%)
20	CLA	G	603	-	45,53,73	1.79	5 (11%)	52,89,113	1.58	7 (13%)
20	CLA	А	816	-	65,73,73	1.48	6 (9%)	76,113,113	1.33	8 (10%)
20	CLA	В	827	-	65,73,73	1.53	6 (9%)	76,113,113	1.33	9 (11%)
20	CLA	1	308	1	65,73,73	1.49	5 (7%)	76,113,113	1.36	7(9%)
20	CLA	4	312	-	65,73,73	1.48	6 (9%)	76,113,113	1.39	6 (7%)
20	CLA	А	835	5	45,53,73	1.80	5 (11%)	52,89,113	1.56	7 (13%)
20	CLA	4	309	4	60,68,73	1.51	6 (10%)	70,107,113	1.42	9 (12%)
20	CLA	K	201	15	46,54,73	1.76	6 (13%)	53,90,113	1.53	6 (11%)
20	CLA	1	307	-	61,69,73	1.53	5 (8%)	71,108,113	1.40	8 (11%)
20	CLA	А	806	-	65,73,73	1.45	5 (7%)	76,113,113	1.42	8 (10%)
20	CLA	В	804	-	45,53,73	1.76	5 (11%)	52,89,113	1.60	8 (15%)
20	CLA	В	817	-	65,73,73	1.49	6 (9%)	76,113,113	1.39	7(9%)
23	BCR	В	845	-	41,41,41	0.69	0	56,56,56	1.99	17 (30%)
20	CLA	G	604	-	50,58,73	1.69	5 (10%)	58,95,113	1.53	8 (13%)
23	BCR	K	204	-	41,41,41	0.68	0	56,56,56	2.02	18 (32%)
20	CLA	А	811	-	54,62,73	1.65	6 (11%)	62,99,113	1.44	8 (12%)
19	CHL	1	301	1	52,60,74	2.23	16 (30%)	56,97,114	2.70	23 (41%)
20	CLA	В	831	-	65,73,73	1.47	5 (7%)	76,113,113	1.34	7 (9%)

Mol	Type	Chain	Bos	Link	B	ond leng	gths	Bo	ond ang	\mathbf{es}
	турс	Chain	Itts		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
21	LUT	1	319	-	42,43,43	0.71	0	51,60,60	1.73	12 (23%)
20	CLA	Κ	202	-	60,68,73	1.55	6 (10%)	70,107,113	1.45	11 (15%)
19	CHL	3	306	-	47,55,74	2.40	21 (44%)	50,91,114	3.55	26 (52%)
19	CHL	4	307	-	51,59,74	2.31	24 (47%)	55,96,114	3.13	24 (43%)
20	CLA	2	308	2	50,58,73	1.65	6 (12%)	58,95,113	1.55	8 (13%)
20	CLA	4	303	-	60,68,73	1.53	7 (11%)	70,107,113	1.46	7 (10%)
20	CLA	А	823	-	55,63,73	1.61	5 (9%)	64,101,113	1.43	9 (14%)
20	CLA	А	832	-	65,73,73	1.49	5 (7%)	76,113,113	1.34	7 (9%)
20	CLA	1	302	1	65,73,73	1.48	7 (10%)	76,113,113	1.38	7 (9%)
19	CHL	1	306	1	48,56,74	2.33	19 (39%)	51,92,114	3.21	26 (50%)
20	CLA	3	310	-	52,60,73	1.67	6 (11%)	60,97,113	1.49	8 (13%)
22	XAT	1	316	-	39,47,47	0.88	0	54,74,74	2.58	18 (33%)
20	CLA	G	605	11	46,54,73	1.76	5 (10%)	53,90,113	1.51	6 (11%)
20	CLA	4	313	-	45,53,73	1.79	5 (11%)	52,89,113	1.59	8 (15%)
20	CLA	J	103	14	42,50,73	1.83	6 (14%)	48,85,113	1.59	7 (14%)
20	CLA	А	802	-	65,73,73	1.46	5 (7%)	76,113,113	1.39	7 (9%)
26	HTG	J	105	-	19,19,19	1.11	2 (10%)	23,24,24	0.56	0
20	CLA	А	803	20	55,63,73	1.62	6 (10%)	64,101,113	1.49	9 (14%)
20	CLA	4	302	4	60,68,73	1.51	6 (10%)	70,107,113	1.46	7 (10%)
23	BCR	А	848	-	41,41,41	0.75	1 (2%)	56,56,56	1.88	15 (26%)
28	SF4	А	850	-	0,12,12	-	-	-		
23	BCR	4	318	-	41,41,41	0.67	0	$56,\!56,\!56$	<mark>3.33</mark>	22 (39%)
20	CLA	4	311	4	52,60,73	1.64	6 (11%)	60,97,113	1.53	6 (10%)
20	CLA	А	830	-	50,58,73	1.66	6 (12%)	58,95,113	1.58	7 (12%)
23	BCR	1	317	-	41,41,41	0.68	0	56,56,56	1.91	18 (32%)
20	CLA	1	309	1	60,68,73	1.50	5 (8%)	70,107,113	1.43	8 (11%)
20	CLA	А	853	-	65,73,73	1.49	6 (9%)	76,113,113	1.34	8 (10%)
20	CLA	3	302	-	50,58,73	1.72	5 (10%)	58,95,113	1.50	8 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
20	CLA	В	809	6	1/1/15/20	4/37/115/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
23	BCR	В	843	-	-	4/29/63/63	0/2/2/2
20	CLA	3	305	3	1/1/11/20	7/16/94/115	-
23	BCR	F	806	-	-	2/29/63/63	0/2/2/2
23	BCR	Ι	101	-	-	8/29/63/63	0/2/2/2
19	CHL	2	301	2	3/3/17/26	8/24/122/137	_
20	CLA	А	827	-	1/1/15/20	16/37/115/115	-
20	CLA	3	312	-	1/1/11/20	3/13/91/115	-
20	CLA	А	820	-	1/1/15/20	8/37/115/115	-
20	CLA	В	822	-	1/1/15/20	12/37/115/115	-
21	LUT	0	205	-	-	6/29/67/67	0/2/2/2
27	PQN	В	840	-	-	1/23/43/43	0/2/2/2
20	CLA	А	812	-	1/1/15/20	15/37/115/115	-
20	CLA	В	815	-	1/1/14/20	9/31/109/115	-
20	CLA	В	835	-	1/1/12/20	3/21/99/115	-
20	CLA	В	803	-	1/1/15/20	10/37/115/115	-
20	CLA	А	834	-	1/1/15/20	11/37/115/115	_
20	CLA	3	309	-	-	4/15/93/115	_
20	CLA	3	307	3	1/1/12/20	6/19/97/115	-
20	CLA	В	838	-	1/1/15/20	5/37/115/115	_
26	HTG	А	852	-	-	2/10/30/30	0/1/1/1
28	SF4	С	101	-	_	-	0/6/5/5
22	XAT	2	316	-	-	0/31/93/93	0/4/4/4
26	HTG	F	807	-	-	2/10/30/30	0/1/1/1
23	BCR	G	606	-	-	0/29/63/63	0/2/2/2
20	CLA	А	831	-	1/1/15/20	15/37/115/115	-
20	CLA	В	818	-	1/1/14/20	11/31/109/115	-
20	CLA	В	807	-	1/1/13/20	8/25/103/115	-
20	CLA	А	837	-	1/1/15/20	12/37/115/115	-
20	CLA	1	310	24	1/1/10/20	2/8/86/115	-
20	CLA	В	813	-	1/1/15/20	14/37/115/115	-
21	LUT	4	316	-	-	2/29/67/67	0/2/2/2
20	CLA	А	826	-	1/1/15/20	5/37/115/115	-
19	CHL	2	314	2	3/3/15/26	2/12/110/137	-
19	CHL	4	305	-	3/3/17/26	5/24/122/137	_
20	CLA	В	828	-	1/1/15/20	15/37/115/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
20	CLA	K	203	-	1/1/11/20	6/15/93/115	-
24	LHG	2	318	20	-	12/41/41/53	-
20	CLA	N	202	17	1/1/11/20	4/13/91/115	-
20	CLA	В	820	-	1/1/12/20	1/19/97/115	-
20	CLA	L	303	-	1/1/15/20	12/37/115/115	-
23	BCR	А	849	-	-	4/29/63/63	0/2/2/2
20	CLA	2	312	2	1/1/15/20	9/37/115/115	-
20	CLA	1	312	1	1/1/15/20	15/37/115/115	-
20	CLA	3	313	-	1/1/11/20	3/13/91/115	-
20	CLA	В	830	-	1/1/12/20	5/19/97/115	-
20	CLA	А	822	-	1/1/12/20	7/21/99/115	-
20	CLA	F	802	-	1/1/15/20	9/37/115/115	-
20	CLA	А	839	-	1/1/15/20	16/37/115/115	-
23	BCR	L	305	-	-	4/29/63/63	0/2/2/2
26	HTG	В	851	-	-	2/10/30/30	0/1/1/1
29	LMT	В	847	-	-	6/21/61/61	0/2/2/2
20	CLA	2	311	2	1/1/12/20	8/22/100/115	_
24	LHG	В	849	-	-	7/26/26/53	_
20	CLA	4	301	4	1/1/11/20	7/15/93/115	_
21	LUT	1	315	-	-	2/29/67/67	0/2/2/2
20	CLA	В	810	-	1/1/15/20	11/37/115/115	-
20	CLA	А	841	-	1/1/15/20	23/37/115/115	-
29	LMT	G	601	-	-	4/21/61/61	0/2/2/2
19	CHL	2	307	-	3/3/17/26	9/21/119/137	_
20	CLA	В	832	-	1/1/13/20	2/29/107/115	-
20	CLA	В	837	-	1/1/11/20	2/16/94/115	_
24	LHG	А	844	20	-	12/31/31/53	_
19	CHL	2	306	-	3/3/16/26	10/18/116/137	_
19	CHL	4	306	-	3/3/17/26	10/21/119/137	_
20	CLA	0	203	-	1/1/14/20	7/31/109/115	_
20	CLA	L	304	-	1/1/12/20	2/19/97/115	_
20	CLA	2	304	-	1/1/14/20	10/31/109/115	-
20	CLA	1	313	-	1/1/13/20	11/25/103/115	_
20	CLA	В	819	-	1/1/15/20	7/37/115/115	_

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
20	CLA	В	821	-	1/1/13/20	9/27/105/115	-
20	CLA	3	314	-	1/1/11/20	4/15/93/115	-
20	CLA	0	202	-	1/1/11/20	7/13/91/115	-
20	CLA	В	808	-	1/1/15/20	5/37/115/115	-
23	BCR	В	842	-	-	6/29/63/63	0/2/2/2
23	BCR	В	846	-	-	2/29/63/63	0/2/2/2
23	BCR	2	317	-	-	2/29/63/63	0/2/2/2
25	LMG	1	323	-	-	10/39/59/70	0/1/1/1
20	CLA	1	321	-	1/1/15/20	7/37/115/115	-
20	CLA	4	314	-	1/1/12/20	7/19/97/115	-
20	CLA	В	802	-	1/1/15/20	8/37/115/115	-
20	CLA	L	302	16	1/1/11/20	6/13/91/115	-
26	HTG	G	602	-	-	0/10/30/30	0/1/1/1
20	CLA	В	833	-	1/1/15/20	11/37/115/115	-
20	CLA	А	824	-	1/1/15/20	11/37/115/115	-
20	CLA	В	834	-	1/1/11/20	1/13/91/115	-
20	CLA	3	303	-	1/1/11/20	4/13/91/115	-
20	CLA	В	801	-	1/1/15/20	5/37/115/115	-
20	CLA	А	805	-	1/1/15/20	17/37/115/115	-
20	CLA	J	101	-	1/1/15/20	5/37/115/115	-
20	CLA	4	308	4	1/1/12/20	4/19/97/115	-
26	HTG	4	320	-	-	3/10/30/30	0/1/1/1
27	PQN	А	842	-	-	7/23/43/43	0/2/2/2
30	DGD	В	848	-	-	10/55/95/95	0/2/2/2
20	CLA	А	818	-	1/1/15/20	9/37/115/115	-
25	LMG	4	319	-	-	6/39/59/70	0/1/1/1
20	CLA	А	813	-	1/1/11/20	2/13/91/115	-
20	CLA	А	810	20	1/1/15/20	16/37/115/115	-
20	CLA	В	812	-	1/1/13/20	6/25/103/115	-
20	CLA	А	817	-	1/1/15/20	14/37/115/115	-
20	CLA	A	821	-	1/1/11/20	9/18/96/115	-
23	BCR	В	841	-	-	3/29/63/63	0/2/2/2
28	SF4	С	102	-	-	-	0/6/5/5
20	CLA	2	303	-	1/1/11/20	8/18/96/115	-
23	BCR	J	104	-	-	2/29/63/63	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
20	CLA	А	829	-	1/1/15/20	9/37/115/115	-
20	CLA	А	838	-	1/1/15/20	12/37/115/115	-
21	LUT	0	204	-	-	1/29/67/67	0/2/2/2
20	CLA	В	814	-	1/1/15/20	7/37/115/115	-
26	HTG	Ν	201	-	-	2/10/30/30	0/1/1/1
20	CLA	В	836	-	1/1/15/20	6/37/115/115	-
20	CLA	А	851	-	1/1/15/20	15/37/115/115	-
22	XAT	3	316	-	-	0/31/93/93	0/4/4/4
20	CLA	А	825	-	1/1/15/20	3/37/115/115	-
23	BCR	А	854	-	-	0/29/63/63	0/2/2/2
20	CLA	А	808	5	1/1/15/20	16/37/115/115	-
20	CLA	3	304	-	1/1/10/20	0/10/88/115	-
23	BCR	A	846	-	-	0/29/63/63	0/2/2/2
26	HTG	В	850	-	-	8/10/30/30	0/1/1/1
26	HTG	F	803	-	-	2/10/30/30	0/1/1/1
20	CLA	А	840	-	1/1/15/20	6/37/115/115	-
24	LHG	А	843	-	-	9/53/53/53	-
20	CLA	1	311	1	1/1/12/20	7/22/100/115	-
20	CLA	А	809	-	1/1/15/20	14/37/115/115	-
20	CLA	F	804	-	1/1/11/20	3/13/91/115	-
25	LMG	1	320	-	_	9/44/64/70	0/1/1/1
20	CLA	1	304	-	1/1/12/20	5/22/100/115	-
20	CLA	1	303	-	1/1/15/20	10/37/115/115	-
20	CLA	А	801	-	1/1/15/20	11/37/115/115	-
20	CLA	3	308	3	1/1/12/20	1/19/97/115	-
20	CLA	В	824	-	1/1/15/20	14/37/115/115	-
20	CLA	А	828	-	1/1/15/20	11/37/115/115	-
20	CLA	1	305	-	1/1/12/20	3/22/100/115	-
22	XAT	4	317	-	-	0/31/93/93	0/4/4/4
20	CLA	Ν	203	-	1/1/12/20	8/19/97/115	-
20	CLA	2	313	-	1/1/10/20	4/11/89/115	-
20	CLA	В	806	6	1/1/15/20	13/37/115/115	-
23	BCR	3	317	-	-	4/29/63/63	0/2/2/2
19	CHL	4	315	-	3/3/15/26	4/12/110/137	-
20	CLA	K	205	15	1/1/11/20	0/13/91/115	-
20	CLA	В	811	-	1/1/13/20	8/25/101/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
20	CLA	Н	201	-	1/1/13/20	11/27/105/115	-
23	BCR	J	102	-	-	7/29/63/63	0/2/2/2
20	CLA	3	301	3	1/1/14/20	6/31/109/115	-
20	CLA	2	309	2	1/1/14/20	6/31/109/115	-
20	CLA	В	805	-	1/1/15/20	15/37/115/115	-
20	CLA	А	807	5	1/1/15/20	10/37/115/115	-
20	CLA	L	307	-	1/1/11/20	7/13/91/115	-
19	CHL	2	305	-	3/3/15/26	3/12/110/137	-
23	BCR	А	845	-	-	6/29/63/63	0/2/2/2
23	BCR	В	844	-	-	2/29/63/63	0/2/2/2
20	CLA	В	829	-	1/1/15/20	6/37/115/115	-
23	BCR	L	301	-	-	4/29/63/63	0/2/2/2
20	CLA	А	804	-	1/1/15/20	10/37/115/115	-
20	CLA	В	823	-	1/1/14/20	12/31/109/115	-
23	BCR	А	847	-	-	2/29/63/63	0/2/2/2
20	CLA	А	814	-	1/1/12/20	7/19/97/115	-
20	CLA	В	825	-	1/1/15/20	15/37/115/115	_
20	CLA	А	836	-	1/1/12/20	6/21/99/115	_
23	BCR	L	306	-	-	0/29/63/63	0/2/2/2
20	CLA	А	833	-	1/1/15/20	10/37/115/115	-
20	CLA	2	310	24	1/1/10/20	4/8/86/115	-
20	CLA	4	304	-	1/1/12/20	8/19/97/115	-
20	CLA	4	310	-	1/1/13/20	7/25/103/115	-
21	LUT	3	315	-	-	2/29/67/67	0/2/2/2
20	CLA	1	314	1	1/1/11/20	3/15/93/115	-
20	CLA	В	826	-	1/1/15/20	2/37/115/115	-
23	BCR	F	801	-	-	3/29/63/63	0/2/2/2
24	LHG	1	318	20	-	13/53/53/53	-
26	HTG	1	322	-	-	0/10/30/30	0/1/1/1
20	CLA	А	815	-	1/1/11/20	0/13/91/115	-
21	LUT	2	315	-	-	2/29/67/67	0/2/2/2
20	CLA	F	805	-	1/1/11/20	6/15/93/115	-
20	CLA	А	819	-	1/1/11/20	2/13/91/115	-
20	CLA	3	311	3	1/1/13/20	1/25/103/115	-
20	CLA	2	302	2	1/1/15/20	7/37/115/115	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
20	CLA	В	816	-	1/1/13/20	6/25/103/115	-
20	CLA	В	839	-	1/1/15/20	6/37/115/115	-
20	CLA	0	201	24	1/1/12/20	9/22/100/115	-
20	CLA	G	603	-	1/1/11/20	2/13/91/115	-
20	CLA	А	816	-	1/1/15/20	10/37/115/115	-
20	CLA	В	827	-	1/1/15/20	14/37/115/115	-
20	CLA	1	308	1	1/1/15/20	12/37/115/115	-
20	CLA	4	312	-	1/1/15/20	12/37/115/115	-
20	CLA	А	835	5	1/1/11/20	9/13/91/115	-
20	CLA	4	309	4	1/1/14/20	6/31/109/115	-
20	CLA	K	201	15	1/1/11/20	2/15/93/115	-
20	CLA	1	307	-	1/1/14/20	12/33/111/115	-
20	CLA	А	806	-	1/1/15/20	10/37/115/115	-
20	CLA	В	804	-	1/1/11/20	5/13/91/115	-
20	CLA	В	817	-	1/1/15/20	13/37/115/115	-
23	BCR	В	845	-	-	2/29/63/63	0/2/2/2
20	CLA	G	604	-	1/1/12/20	4/19/97/115	-
23	BCR	К	204	-	-	6/29/63/63	0/2/2/2
20	CLA	А	811	-	1/1/12/20	5/24/102/115	-
19	CHL	1	301	1	3/3/17/26	10/23/121/137	-
20	CLA	В	831	-	1/1/15/20	12/37/115/115	-
21	LUT	1	319	-	-	2/29/67/67	0/2/2/2
20	CLA	K	202	-	1/1/14/20	7/31/109/115	-
19	CHL	3	306	-	3/3/16/26	5/17/115/137	-
19	CHL	4	307	-	3/3/17/26	3/21/119/137	-
20	CLA	2	308	2	1/1/12/20	5/19/97/115	-
20	CLA	4	303	-	1/1/14/20	9/31/109/115	-
20	CLA	А	823	-	1/1/13/20	4/25/103/115	-
20	CLA	А	832	-	1/1/15/20	8/37/115/115	-
20	CLA	1	302	1	1/1/15/20	10/37/115/115	-
19	CHL	1	306	1	3/3/16/26	11/18/116/137	-
20	CLA	3	310	-	1/1/12/20	0/22/100/115	-
22	XAT	1	316	-	-	1/31/93/93	0/4/4/4
20	CLA	G	605	11	1/1/11/20	6/15/93/115	-
20	CLA	4	313	-	1/1/11/20	1/13/91/115	

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
20	CLA	J	103	14	1/1/10/20	4/10/88/115	-
20	CLA	А	802	-	1/1/15/20	15/37/115/115	-
26	HTG	J	105	-	-	1/10/30/30	0/1/1/1
20	CLA	А	803	20	1/1/13/20	6/25/103/115	-
20	CLA	4	302	4	1/1/14/20	8/31/109/115	-
23	BCR	А	848	-	-	0/29/63/63	0/2/2/2
28	SF4	А	850	-	-	-	0/6/5/5
23	BCR	4	318	-	-	6/29/63/63	0/2/2/2
20	CLA	4	311	4	1/1/12/20	5/22/100/115	-
20	CLA	А	830	-	1/1/12/20	3/19/97/115	-
23	BCR	1	317	-	-	2/29/63/63	0/2/2/2
20	CLA	1	309	1	1/1/14/20	4/31/109/115	-
20	CLA	А	853	-	1/1/15/20	14/37/115/115	-
20	CLA	3	302	-	1/1/12/20	4/19/97/115	-

The worst 5 of 1148 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
20	В	827	CLA	C4B-NB	8.01	1.42	1.35
20	1	303	CLA	C4B-NB	7.81	1.42	1.35
20	3	314	CLA	C4B-NB	7.77	1.42	1.35
20	3	309	CLA	C4B-NB	7.74	1.42	1.35
27	А	842	PQN	C3-C2	7.73	1.49	1.35

The worst 5 of 2091 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$\operatorname{Ideal}(^{o})$
23	4	318	BCR	C32-C1-C6	-15.04	85.90	110.30
20	4	304	CLA	O2D-CGD-CBD	14.88	137.72	111.27
19	2	301	CHL	O2D-CGD-CBD	14.22	136.54	111.27
19	2	305	CHL	O2D-CGD-CBD	12.66	133.77	111.27
20	4	304	CLA	O2D-CGD-O1D	-9.88	104.53	123.84

5 of 185 chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
19	1	301	CHL	ND
19	1	301	CHL	NC
19	1	301	CHL	NA

Continued from previous page...

Mol	Chain	Res	Type	Atom
19	1	306	CHL	ND
19	1	306	CHL	NC

5 of 1463 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
19	1	301	CHL	C2-C3-C5-C6
19	1	301	CHL	C4-C3-C5-C6
19	1	306	CHL	C1A-C2A-CAA-CBA
19	1	306	CHL	C3A-C2A-CAA-CBA
19	1	306	CHL	C3C-C2C-CMC-OMC

There are no ring outliers.

193 monomers are involved in 527 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
20	В	809	CLA	4	0
23	В	843	BCR	2	0
23	F	806	BCR	3	0
23	Ι	101	BCR	6	0
19	2	301	CHL	10	0
20	А	827	CLA	6	0
20	А	820	CLA	4	0
20	В	822	CLA	2	0
21	0	205	LUT	5	0
27	В	840	PQN	1	0
20	А	812	CLA	6	0
20	В	815	CLA	1	0
20	В	835	CLA	3	0
20	В	803	CLA	4	0
20	А	834	CLA	3	0
20	3	309	CLA	7	0
20	3	307	CLA	7	0
20	В	838	CLA	3	0
22	2	316	XAT	2	0
26	F	807	HTG	1	0
23	G	606	BCR	3	0
20	А	831	CLA	5	0
20	В	818	CLA	3	0
20	В	807	CLA	2	0
20	А	837	CLA	3	0
20	1	310	CLA	1	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
20	В	813	CLA	7	0
21	4	316	LUT	5	0
20	А	826	CLA	5	0
19	2	314	CHL	1	0
19	4	305	CHL	4	0
20	В	828	CLA	5	0
20	K	203	CLA	1	0
24	2	318	LHG	1	0
20	L	303	CLA	5	0
23	А	849	BCR	4	0
20	2	312	CLA	4	0
20	1	312	CLA	4	0
20	3	313	CLA	1	0
20	В	830	CLA	2	0
20	А	822	CLA	3	0
20	F	802	CLA	4	0
20	А	839	CLA	1	0
23	L	305	BCR	4	0
20	2	311	CLA	3	0
24	В	849	LHG	2	0
20	4	301	CLA	6	0
21	1	315	LUT	4	0
20	В	810	CLA	3	0
20	А	841	CLA	3	0
19	2	307	CHL	3	0
20	В	832	CLA	4	0
20	В	837	CLA	2	0
24	А	844	LHG	1	0
19	2	306	CHL	8	0
19	4	306	CHL	3	0
20	0	203	CLA	6	0
20	2	304	CLA	2	0
20	1	313	CLA	3	0
20	В	819	CLA	2	0
20	В	821	CLA	1	0
20	3	314	CLA	2	0
20	0	202	CLA	6	0
20	В	808	CLA	4	0
23	В	842	BCR	1	0
23	В	846	BCR	3	0
23	2	317	BCR	6	0
25	1	323	LMG	3	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
20	1	321	CLA	5	0
20	4	314	CLA	2	0
20	В	802	CLA	5	0
20	L	302	CLA	3	0
20	В	833	CLA	2	0
20	А	824	CLA	4	0
20	В	834	CLA	3	0
20	В	801	CLA	4	0
20	А	805	CLA	5	0
20	J	101	CLA	1	0
20	4	308	CLA	7	0
27	А	842	PQN	3	0
30	В	848	DGD	2	0
20	А	818	CLA	4	0
25	4	319	LMG	4	0
20	А	810	CLA	7	0
20	В	812	CLA	3	0
20	А	817	CLA	5	0
20	А	821	CLA	3	0
23	В	841	BCR	8	0
20	2	303	CLA	1	0
23	J	104	BCR	2	0
20	А	829	CLA	1	0
20	А	838	CLA	4	0
21	0	204	LUT	3	0
26	Ν	201	HTG	1	0
20	В	836	CLA	2	0
20	А	851	CLA	5	0
22	3	316	XAT	6	0
20	А	825	CLA	6	0
23	А	854	BCR	6	0
20	А	808	CLA	5	0
20	3	304	CLA	1	0
23	А	846	BCR	1	0
26	В	850	HTG	1	0
20	А	840	CLA	1	0
24	А	843	LHG	2	0
20	1	311	CLA	2	0
20	А	809	CLA	3	0
25	1	320	LMG	3	0
20	1	304	CLA	2	0
20	1	303	CLA	6	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
20	А	801	CLA	7	0
20	3	308	CLA	2	0
20	В	824	CLA	9	0
20	А	828	CLA	2	0
22	4	317	XAT	8	0
20	N	203	CLA	2	0
20	2	313	CLA	1	0
20	В	806	CLA	2	0
23	3	317	BCR	4	0
19	4	315	CHL	5	0
20	Κ	205	CLA	3	0
20	Н	201	CLA	3	0
23	J	102	BCR	8	0
20	3	301	CLA	1	0
20	2	309	CLA	2	0
20	В	805	CLA	6	0
20	А	807	CLA	4	0
19	2	305	CHL	5	0
23	А	845	BCR	2	0
23	В	844	BCR	3	0
20	В	829	CLA	3	0
23	L	301	BCR	2	0
20	А	804	CLA	6	0
20	В	823	CLA	4	0
23	А	847	BCR	2	0
20	А	814	CLA	1	0
20	В	825	CLA	4	0
20	А	836	CLA	3	0
23	L	306	BCR	3	0
20	А	833	CLA	4	0
20	2	310	CLA	4	0
20	4	304	CLA	3	0
21	3	315	LUT	4	0
20	В	826	CLA	1	0
23	F	801	BCR	4	0
24	1	318	LHG	7	0
26	1	322	HTG	2	0
21	2	315	LUT	2	0
20	F	805	CLA	3	0
20	3	311	CLA	4	0
20	2	302	CLA	2	0
20	В	816	CLA	2	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
20	В	839	CLA	3	0
20	0	201	CLA	4	0
20	A	816	CLA	2	0
20	В	827	CLA	4	0
20	1	308	CLA	5	0
20	4	312	CLA	5	0
20	А	835	CLA	1	0
20	4	309	CLA	3	0
20	K	201	CLA	2	0
20	1	307	CLA	3	0
20	А	806	CLA	4	0
20	В	804	CLA	1	0
20	В	817	CLA	5	0
23	В	845	BCR	5	0
23	K	204	BCR	4	0
20	А	811	CLA	5	0
19	1	301	CHL	3	0
20	В	831	CLA	5	0
21	1	319	LUT	4	0
20	K	202	CLA	2	0
19	3	306	CHL	3	0
19	4	307	CHL	1	0
20	2	308	CLA	6	0
20	4	303	CLA	8	0
20	А	823	CLA	7	0
20	А	832	CLA	1	0
20	1	302	CLA	3	0
19	1	306	CHL	3	0
20	3	310	CLA	1	0
22	1	316	XAT	2	0
20	4	313	CLA	2	0
20	J	103	CLA	1	0
20	А	802	CLA	3	0
20	А	803	CLA	3	0
20	4	302	CLA	5	0
23	A	848	BCR	4	0
23	4	318	BCR	5	0
20	4	311	CLA	2	0
23	1	317	BCR	4	0
20	1	309	CLA	2	0
20	A	853	CLA	5	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths,

bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

