

wwPDB EM Validation Summary Report (i)

Oct 28, 2024 - 01:20 PM JST

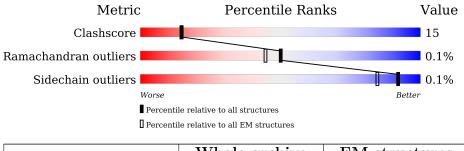
PDB ID	:	8WHZ
EMDB ID	:	EMD-37553
Title	:	BA.2.86 RBD in complex with hACE2 (local refinement)
Authors	:	Yue, C.; Liu, P.
Deposited on	:	2023-09-23
Resolution	:	3.93 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:


EMDB validation analysis	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.93 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${ m EM~structures}\ (\#{ m Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain					
1	А	597	70%	30%				
2	В	194	67%	33%				

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 6515 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Processed angiotensin-converting enzyme 2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	А	597	Total 4870	C 3115	N 806	O 920	S 29	0	0

• Molecule 2 is a protein called Spike protein S1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	В	194	Total 1559	C 1010	N 261	O 280	S 8	0	0

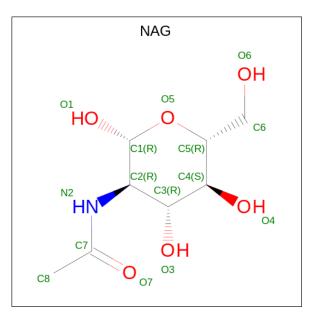
There are 25 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	339	HIS	GLY	variant	UNP P0DTC2
В	356	THR	LYS	conflict	UNP P0DTC2
В	371	PHE	SER	variant	UNP P0DTC2
В	373	PRO	SER	variant	UNP P0DTC2
В	375	PHE	SER	variant	UNP P0DTC2
В	376	ALA	THR	variant	UNP P0DTC2
В	403	LYS	ARG	conflict	UNP P0DTC2
В	405	ASN	ASP	variant	UNP P0DTC2
В	408	SER	ARG	variant	UNP P0DTC2
В	417	ASN	LYS	variant	UNP P0DTC2
В	440	LYS	ASN	conflict	UNP P0DTC2
В	445	HIS	VAL	variant	UNP P0DTC2
В	446	SER	GLY	conflict	UNP P0DTC2
В	450	ASP	ASN	conflict	UNP P0DTC2
В	452	TRP	LEU	conflict	UNP P0DTC2
В	460	LYS	ASN	variant	UNP P0DTC2
В	477	ASN	SER	variant	UNP P0DTC2
В	478	LYS	THR	variant	UNP P0DTC2
В	481	LYS	ASN	conflict	UNP P0DTC2
В	?	-	VAL	deletion	UNP P0DTC2
В	484	LYS	GLU	variant	UNP P0DTC2

Continued on next page...

Chain	Residue	Modelled	Actual	Comment	Reference				
В	486	PRO	PHE	variant	UNP P0DTC2				
В	498	ARG	GLN	variant	UNP P0DTC2				
В	501	TYR	ASN	variant	UNP P0DTC2				
В	505	HIS	TYR	variant	UNP P0DTC2				

Continued from previous page...


• Molecule 3 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
3	А	1	Total Zn 1 1	0

• Molecule 4 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	AltConf
4	А	1	Total Cl 1 1	0

• Molecule 5 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms				AltConf
5	Λ	1	Total	С	Ν	0	0
D A	1	14	8	1	5	0	
5	5 1	1	Total	С	Ν	0	0
0	Л		14	8	1	5	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
5	Λ	1	Total C N O	0
0	Л	1	14 8 1 5	0
5	Λ	1	Total C N O	0
0	0 A	1	14 8 1 5	0
5	В	1	Total C N O	0
0	D	1	14 8 1 5	0
5	В	1	Total C N O	0
5	D	1	14 8 1 5	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	70%	30%
819 23 24 24 24 25 127 127 127 127 128 124 138 1335 129 1335 129 1336 1336 1336 1336 1336 1336 1336 133	M82 465 465 465 465 770 870 870 8770 173 188 188 188 188 188 188 196 196 196 100	8106 D111 K114 K114 K115 L116 L116 L119 L120 N121 N121
M1 23 81 24 11 125 11 125 11 126 11 126 11 44 11 44 11 51 11 51	11 00 00 00 00 00 00 00 00 00 00 00 00 0	1223 1223 1223 1233 1233 1233 1234 1235 1236 1236 1236 1236
R245 1266 P263 P266 M270 W271 W271 W271 W271 W290 W275 W290 W290 W290	K309 K315 K313 K313 K313 K315 K315 K318 K318 K353 K350 K360 K360 K360 K360 K360 K360 K360 K36	C361 M376 Y384 A384 A384 A384 A384 C390 L391 L392 L392 L392 L393 R393
II394 II394 G395 G395 G416 H417 H417 H417 H417 H416 H416 H416 H417 H416 H417 H416 H417 H417 H417 H416 H416 H416 H417 H416 H416 H416 H417 H416 H416 H416 H417 H416 H416 H416 H417 H416 H418 H416 H419 H416 H418 H416 H418 H416 H418 H416 H418 H416 H418 H416 H418<	V455 V455 E455 E455 E455 E455 E455 E455	14480 14481 14482 14482 14482 14483 144545 14483 14484
Y510 1513 1513 1513 7519 1519 1520 1520 1522 1522 1522 1525 1555 1555	P565 P565 P565 P565 P565 P565 P565 A576 A576 A576 A576 A576 P583	K 1999 K 1996 K 1997 K 19 K 19 K 19 K 19 K 19 K 19 K 19 K 19 K 19
• Molecule 2: Spike protein S1		
Chain B:	57%	33%
1333 1333 1334 1335 1335 1335 1335 1335	T385 T385 K386 K386 K486 K403 K403 F406 Q409 Q409 Q415 C415 1418 M417 1425 F425 F425 F425 F425 F425 F425	1435 1434 1435 1435 1437 1437 1437 1437 1437 1437 1437 1443 1444
Y453 R454 F456 F456 F456 R457 R457 F458 S458 S458 F461 L461 1461 1468 C474 G475 G475 G475 G475 G476 G476 C480 F7491	F497 F497 F498 F498 F498 F498 F409 F509 F509 F509 F509 F513 F513 F523 F523 F523 F527	

• Molecule 1: Processed angiotensin-converting enzyme 2

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	331577	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	FEI TITAN	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, CL, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond	angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.27	0/5007	0.50	0/6803
2	В	0.31	0/1611	0.54	0/2193
All	All	0.28	0/6618	0.51	0/8996

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	В	0	1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	В	361	CYS	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4870	0	4639	127	0
2	В	1559	0	1478	67	0
3	А	1	0	0	0	0
4	А	1	0	0	1	0
5	А	56	0	52	0	0
5	В	28	0	26	1	0
All	All	6515	0	6195	191	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 15.

The worst 5 of 191 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:B:454:ARG:NH2	2:B:457:ARG:HG2	1.27	1.42
2:B:457:ARG:NH1	2:B:461:LEU:HD11	1.49	1.25
2:B:421:TYR:O	2:B:457:ARG:CZ	1.87	1.23
2:B:454:ARG:NH2	2:B:457:ARG:CG	2.07	1.17
2:B:454:ARG:CZ	2:B:457:ARG:HE	1.63	1.10

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	595/597~(100%)	579~(97%)	16 (3%)	0	100	100
2	В	192/194~(99%)	175~(91%)	16 (8%)	1 (0%)	25	60
All	All	787/791~(100%)	754 (96%)	32~(4%)	1 (0%)	50	81

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	В	476	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	527/527~(100%)	527~(100%)	0	100 100
2	В	168/168~(100%)	167~(99%)	1 (1%)	84 87
All	All	695/695~(100%)	694 (100%)	1 (0%)	92 95

All (1) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	В	394	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 6 such sidechains are listed below:

Mol	Chain	Res	Type
2	В	409	GLN
2	В	422	ASN
2	В	437	ASN
1	А	330	ASN
1	А	139	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 8 ligands modelled in this entry, 2 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Turne	Chain	Res	Link	Bond lengths			Bond angles		
10101	Type	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
5	NAG	А	903	1	14,14,15	0.19	0	17,19,21	0.43	0
5	NAG	А	904	1	14,14,15	0.22	0	17,19,21	0.40	0
5	NAG	В	601	2	14,14,15	0.21	0	17,19,21	0.47	0
5	NAG	А	906	1	14,14,15	0.20	0	17,19,21	0.42	0
5	NAG	А	905	1	14,14,15	0.24	0	17,19,21	0.37	0
5	NAG	В	602	2	14,14,15	0.41	0	17,19,21	0.55	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	А	903	1	-	0/6/23/26	0/1/1/1
5	NAG	А	904	1	-	2/6/23/26	0/1/1/1
5	NAG	В	601	2	-	4/6/23/26	0/1/1/1
5	NAG	А	906	1	-	4/6/23/26	0/1/1/1
5	NAG	А	905	1	-	2/6/23/26	0/1/1/1
5	NAG	В	602	2	-	2/6/23/26	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

5 of 14 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	А	904	NAG	O5-C5-C6-O6
5	А	904	NAG	C4-C5-C6-O6
5	А	906	NAG	C8-C7-N2-C2
5	А	906	NAG	O7-C7-N2-C2
5	В	601	NAG	C8-C7-N2-C2

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	В	602	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

