PDB ID : 2WL4
Title : BIOSYNTHETIC THIOLASE FROM Z. RAMIGERA. COMPLEX OF THE H348A MUTANT WITH COENZYME A.
Authors : Merilainen, G.; Poikela, V.; Kursula, P.; Wierenga, R.K.
Deposited on : 2009-06-22
Resolution : 1.80 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

MolProbity : 4.02b-467
Mogul : 1.7.3 (157068), CSD as539be (2018)
Xtriage (Phenix) : 1.13
EDS : trunk31020
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Refmac : 5.8.0158
CCP4 : 7.0 (Gargrove)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : trunk31020
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 1.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <5%.

The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit crite-
<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CSO</td>
<td>B</td>
<td>89</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1401</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1398</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1394</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1397</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>CL</td>
<td>C</td>
<td>1396</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>CL</td>
<td>D</td>
<td>1399</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 9 unique types of molecules in this entry. The entry contains 12721 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called ACETYL-COA ACETYLTRANSFERASE.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>389</td>
<td>Total C N O S</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2837 1765 511 539 22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 2 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>129</td>
<td>ARG</td>
<td>ALA</td>
<td>SEE REMARK 999</td>
<td>UNP P07097</td>
</tr>
<tr>
<td>A</td>
<td>348</td>
<td>ALA</td>
<td>HIS</td>
<td>engineered mutation</td>
<td>UNP P07097</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called ACETYL-COA ACETYLTRANSFERASE.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>389</td>
<td>Total C N O S</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2843 1770 509 543 21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 2 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>129</td>
<td>ARG</td>
<td>ALA</td>
<td>SEE REMARK 999</td>
<td>UNP P07097</td>
</tr>
<tr>
<td>B</td>
<td>348</td>
<td>ALA</td>
<td>HIS</td>
<td>engineered mutation</td>
<td>UNP P07097</td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called ACETYL-COA ACETYLTRANSFERASE.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>389</td>
<td>Total C N O S</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2816 1747 509 539 21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 2 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>129</td>
<td>ARG</td>
<td>ALA</td>
<td>SEE REMARK 999</td>
<td>UNP P07097</td>
</tr>
<tr>
<td>C</td>
<td>348</td>
<td>ALA</td>
<td>HIS</td>
<td>engineered mutation</td>
<td>UNP P07097</td>
</tr>
</tbody>
</table>
- Molecule 4 is a protein called ACETYL-COA ACETYLTRANSFERASE.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>389</td>
<td>Total C N O S</td>
<td>2828 1755 513 539 21</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

There are 2 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>129</td>
<td>ARG</td>
<td>ALA</td>
<td>SEE REMARK 999</td>
<td>UNP P07097</td>
</tr>
<tr>
<td>D</td>
<td>348</td>
<td>ALA</td>
<td>HIS</td>
<td>engineered mutation</td>
<td>UNP P07097</td>
</tr>
</tbody>
</table>

- Molecule 5 is SULFATE ION (three-letter code: SO4) (formula: O₄S).

![SO₄ diagram]

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Molecule 6 is COENZYME A (three-letter code: COA) (formula: C_{21}H_{36}N_{7}O_{16}P_{3}S).
Molecule 7 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Molecule 8 is SODIUM ION (three-letter code: NA) (formula: Na).

Molecule 9 is water.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>A</td>
<td>426</td>
<td>Total 426</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>407</td>
<td>Total 407</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>149</td>
<td>Total 149</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>188</td>
<td>Total 188</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>188</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: ACETYLCOA ACETYLTRANSFERASE
- Molecule 2: ACETYLCOA ACETYLTRANSFERASE
- Molecule 3: ACETYLCOA ACETYLTRANSFERASE
Molecule 4: ACETYL-COA ACETYLTRANSFERASE

Chain D:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1 2 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>a, b, c, α, β, γ</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>19.61 - 1.80</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>99.6 (19.61-1.80)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.10</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rsym</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)></td>
<td>2.75 (at 1.80Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>PHENIX (PHENIX.REFINE)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, Rfree</td>
<td>0.231, 0.270</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rfree test set</td>
<td>9051 reflections (5.00%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>13.7</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.115</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent ksol(e/Å³), Bsol(Å²)</td>
<td>0.39, 79.9</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning²</td>
<td><</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.159 for h,-k,-l</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Fα,Fc correlation</td>
<td>0.90</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>12721</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>41.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.09% of the height of the origin peak. No significant pseudotranslation is detected.

1 Intensities estimated from amplitudes.
2 Theoretical values of < |L| >, < L² > for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: CSO, CL, CSD, COA, SO4, NA.

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.50</td>
<td>0/2884</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.50</td>
<td>0/2888</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0.25</td>
<td>0/2864</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>0.28</td>
<td>0/2869</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.40</td>
<td>0/11505</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (1) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>39</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.02</td>
<td>126.84</td>
<td>115.30</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2837</td>
<td>0</td>
<td>2870</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>2843</td>
<td>0</td>
<td>2882</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2816</td>
<td>0</td>
<td>2825</td>
<td>205</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>2828</td>
<td>0</td>
<td>2848</td>
<td>230</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 24.

All (551) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:64:GLN:HG2</td>
<td>4:D:88:LEU:HD11</td>
<td>1.42</td>
<td>1.00</td>
</tr>
<tr>
<td>4:D:140:ILE:CD1</td>
<td>4:D:141:ASP:H</td>
<td>1.76</td>
<td>0.98</td>
</tr>
<tr>
<td>3:C:356:ARG:HH21</td>
<td>3:C:357:ILE:HG22</td>
<td>1.25</td>
<td>0.97</td>
</tr>
<tr>
<td>2:B:374:LEU:HD21</td>
<td>2:B:376[B]:THR:HG23</td>
<td>1.46</td>
<td>0.95</td>
</tr>
<tr>
<td>3:C:374:LEU:HD22</td>
<td>3:C:375:ALA:H</td>
<td>1.37</td>
<td>0.90</td>
</tr>
<tr>
<td>3:C:38:VAL:HA</td>
<td>3:C:41:ARG:HD2</td>
<td>1.56</td>
<td>0.87</td>
</tr>
<tr>
<td>2:B:56:GLN:HB2</td>
<td>9:B:2073:HOH:O</td>
<td>1.75</td>
<td>0.86</td>
</tr>
<tr>
<td>3:C:146:ASP:HB2</td>
<td>9:C:2063:HOH:O</td>
<td>1.76</td>
<td>0.86</td>
</tr>
<tr>
<td>4:D:35:ILE:HG23</td>
<td>4:D:112:VAL:HG11</td>
<td>1.58</td>
<td>0.85</td>
</tr>
<tr>
<td>2:B:124:HIS:HD2</td>
<td>9:B:2164:HOH:O</td>
<td>1.60</td>
<td>0.85</td>
</tr>
<tr>
<td>4:D:125:CYS:SG</td>
<td>4:D:140:ILE:HD11</td>
<td>2.18</td>
<td>0.84</td>
</tr>
<tr>
<td>3:C:207:ARG:HD3</td>
<td>3:C:207:ARG:H</td>
<td>1.42</td>
<td>0.84</td>
</tr>
<tr>
<td>2:B:376[B]:THR:HG22</td>
<td>2:B:386:ALA:CB</td>
<td>2.06</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:279:ALA:HA</td>
<td>5:A:1401:SO4:O1</td>
<td>1.77</td>
<td>0.84</td>
</tr>
<tr>
<td>3:C:354:GLY:HA2</td>
<td>3:C:377:LEU:HD21</td>
<td>1.57</td>
<td>0.83</td>
</tr>
<tr>
<td>2:B:279:ALA:HB1</td>
<td>9:B:2310:HOH:O</td>
<td>1.78</td>
<td>0.82</td>
</tr>
<tr>
<td>3:C:207:ARG:HH11</td>
<td>3:C:207:ARG:HG2</td>
<td>1.40</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:376[Br]:THR:HG22</td>
<td>2:B:386:ALA:HB2</td>
<td>1.62</td>
<td>0.81</td>
</tr>
<tr>
<td>2:B:374:LEU:HD21</td>
<td>2:B:376[Br]:THR:CG2</td>
<td>2.10</td>
<td>0.81</td>
</tr>
<tr>
<td>1:A:95:ALA:HB3</td>
<td>9:A:2127:HOH:O</td>
<td>1.79</td>
<td>0.81</td>
</tr>
<tr>
<td>3:C:7:ILE:HD12</td>
<td>3:C:362:LEU:HD21</td>
<td>1.62</td>
<td>0.81</td>
</tr>
<tr>
<td>4:D:344:ILE:HB</td>
<td>9:D:2103:HOH:O</td>
<td>1.81</td>
<td>0.80</td>
</tr>
<tr>
<td>1:A:4:SER:HA</td>
<td>9:A:2295:HOH:O</td>
<td>1.81</td>
<td>0.80</td>
</tr>
<tr>
<td>2:B:207:ARG:H</td>
<td>2:B:207:ARG:HD3</td>
<td>1.47</td>
<td>0.80</td>
</tr>
<tr>
<td>4:D:231:LEU:HB3</td>
<td>9:D:2129:HOH:O</td>
<td>1.81</td>
<td>0.80</td>
</tr>
<tr>
<td>4:D:62:GLU:HB3</td>
<td>9:D:2043:HOH:O</td>
<td>1.81</td>
<td>0.80</td>
</tr>
<tr>
<td>4:D:140:ILE:HD12</td>
<td>4:D:141:ASP:H</td>
<td>1.47</td>
<td>0.80</td>
</tr>
<tr>
<td>3:C:100:MET:HG3</td>
<td>3:C:275:ILE:HG21</td>
<td>1.62</td>
<td>0.79</td>
</tr>
<tr>
<td>4:D:125:CYS:HB3</td>
<td>7:D:1399:CL:CL</td>
<td>2.20</td>
<td>0.79</td>
</tr>
<tr>
<td>3:C:58:LEU:HD22</td>
<td>9:C:2063:HOH:O</td>
<td>1.80</td>
<td>0.79</td>
</tr>
<tr>
<td>4:D:140:ILE:HD13</td>
<td>4:D:141:ASP:H</td>
<td>1.47</td>
<td>0.78</td>
</tr>
<tr>
<td>4:D:207:ARG:H</td>
<td>4:D:207:ARG:HD3</td>
<td>1.47</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:267:ARG:NH1</td>
<td>9:A:2304:HOH:O</td>
<td>2.16</td>
<td>0.78</td>
</tr>
<tr>
<td>3:C:38:VAL:CG1</td>
<td>3:C:257:LEU:HB2</td>
<td>2.13</td>
<td>0.78</td>
</tr>
<tr>
<td>3:C:364:GLU:HA</td>
<td>3:C:367:ARG:HG2</td>
<td>1.64</td>
<td>0.78</td>
</tr>
<tr>
<td>3:C:298:LYS:HE2</td>
<td>3:C:302:ARG:NE</td>
<td>1.99</td>
<td>0.77</td>
</tr>
<tr>
<td>3:C:180:VAL:HG21</td>
<td>3:C:225:LEU:HA</td>
<td>1.65</td>
<td>0.77</td>
</tr>
<tr>
<td>3:C:374:LEU:HD22</td>
<td>3:C:375:ALA:N</td>
<td>2.00</td>
<td>0.76</td>
</tr>
<tr>
<td>3:C:356:ARG:NH2</td>
<td>3:C:357:ILE:HG22</td>
<td>1.98</td>
<td>0.76</td>
</tr>
<tr>
<td>4:D:276:VAL:HG11</td>
<td>4:D:305:TRP:CH2</td>
<td>2.19</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:280:THR:HG22</td>
<td>5:A:1401:SO4:O4</td>
<td>1.84</td>
<td>0.75</td>
</tr>
<tr>
<td>4:D:14:ALA:HB1</td>
<td>9:D:2121:HOH:O</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>4:D:316:ASN:OD1</td>
<td>4:D:337:ILE:HD13</td>
<td>1.85</td>
<td>0.75</td>
</tr>
<tr>
<td>4:D:273:GLY:HA2</td>
<td>4:D:391:SER:HB3</td>
<td>1.67</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:270:GLN:HG3</td>
<td>9:A:2306:HOH:O</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>3:C:54:LEU:HB3</td>
<td>9:C:2025:HOH:O</td>
<td>1.85</td>
<td>0.75</td>
</tr>
<tr>
<td>3:C:105:THR:HG21</td>
<td>4:D:101:GLN:HG2</td>
<td>1.68</td>
<td>0.75</td>
</tr>
<tr>
<td>4:D:140:ILE:HD13</td>
<td>4:D:142:THR:H</td>
<td>1.51</td>
<td>0.74</td>
</tr>
<tr>
<td>2:B:339:VAL:HG11</td>
<td>2:B:368:ARG:NH2</td>
<td>2.04</td>
<td>0.73</td>
</tr>
<tr>
<td>4:D:15:VAL:HG13</td>
<td>9:D:2142:HOH:O</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>3:C:47:GLY:HA2</td>
<td>3:C:77:PRO:HG3</td>
<td>1.69</td>
<td>0.72</td>
</tr>
<tr>
<td>4:D:216:ASP:HA</td>
<td>9:D:2121:HOH:O</td>
<td>1.88</td>
<td>0.72</td>
</tr>
<tr>
<td>2:B:374:LEU:CD2</td>
<td>2:B:376[Br]:THR:HG23</td>
<td>2.18</td>
<td>0.72</td>
</tr>
<tr>
<td>3:C:374:LEU:CD2</td>
<td>3:C:375:ALA:H</td>
<td>2.01</td>
<td>0.72</td>
</tr>
<tr>
<td>3:C:64:GLN:HG2</td>
<td>4:D:88:LEU:CD1</td>
<td>2.18</td>
<td>0.72</td>
</tr>
<tr>
<td>4:D:140:ILE:HD12</td>
<td>4:D:141:ASP:N</td>
<td>2.05</td>
<td>0.72</td>
</tr>
<tr>
<td>4:D:282:GLY:HA2</td>
<td>4:D:383:MET:HA</td>
<td>1.72</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:207:ARG:HG2</td>
<td>2:B:208:LYS:H</td>
<td>1.55</td>
<td>0.72</td>
</tr>
<tr>
<td>4:D:174:GLU:HB2</td>
<td>9:D:2100:HOH:O</td>
<td>1.88</td>
<td>0.72</td>
</tr>
<tr>
<td>4:D:123:PRO:HB2</td>
<td>7:D:1399:CL:CL</td>
<td>2.27</td>
<td>0.72</td>
</tr>
<tr>
<td>3:C:125:CYS:HB2</td>
<td>7:D:1399:CL:CL</td>
<td>2.26</td>
<td>0.71</td>
</tr>
<tr>
<td>4:D:368:ARG:HG3</td>
<td>9:D:2182:HOH:O</td>
<td>1.89</td>
<td>0.71</td>
</tr>
<tr>
<td>3:C:128:LEU:HD21</td>
<td>3:C:137:PHE:CE2</td>
<td>2.25</td>
<td>0.71</td>
</tr>
<tr>
<td>2:B:371:ARG:HG3</td>
<td>9:B:2373:HOH:O</td>
<td>1.90</td>
<td>0.71</td>
</tr>
<tr>
<td>4:D:42:ALA:HB1</td>
<td>9:D:2031:HOH:O</td>
<td>1.89</td>
<td>0.71</td>
</tr>
<tr>
<td>4:D:47:GLY:HA2</td>
<td>4:D:77:PRO:HG2</td>
<td>1.71</td>
<td>0.71</td>
</tr>
<tr>
<td>2:B:139:MET:O</td>
<td>9:B:2164:HOH:O</td>
<td>2.08</td>
<td>0.71</td>
</tr>
<tr>
<td>2:B:124:HIS:CD2</td>
<td>9:B:2164:HOH:O</td>
<td>2.38</td>
<td>0.70</td>
</tr>
<tr>
<td>4:D:162:GLU:HG3</td>
<td>9:D:2132:HOH:O</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>4:D:207:ARG:HD3</td>
<td>4:D:207:ARG:N</td>
<td>2.06</td>
<td>0.70</td>
</tr>
<tr>
<td>3:C:279:ALA:HA</td>
<td>9:C:2112:HOH:O</td>
<td>1.92</td>
<td>0.70</td>
</tr>
<tr>
<td>3:C:280:THR:HG23</td>
<td>4:D:81:THR:HG21</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:133:LYS:HB2</td>
<td>9:D:2013:HOH:O</td>
<td>1.91</td>
<td>0.69</td>
</tr>
<tr>
<td>4:D:35:ILE:HD12</td>
<td>9:D:2023:HOH:O</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>2:B:339:VAL:HG11</td>
<td>2:B:368:ARG:HH22</td>
<td>1.56</td>
<td>0.69</td>
</tr>
<tr>
<td>3:C:310:LEU:HG</td>
<td>9:C:2113:HOH:O</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>3:C:18:PHE:CEZ</td>
<td>4:D:129:ARG:HD3</td>
<td>2.29</td>
<td>0.68</td>
</tr>
<tr>
<td>3:C:8:ALA:HB3</td>
<td>9:C:2095:HOH:O</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>4:D:326:VAL:HG13</td>
<td>9:D:2150:HOH:O</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>4:D:222:GLY:N</td>
<td>9:D:2127:HOH:O</td>
<td>2.27</td>
<td>0.68</td>
</tr>
<tr>
<td>4:D:292:PRO:HB2</td>
<td>9:D:2150:HOH:O</td>
<td>1.94</td>
<td>0.68</td>
</tr>
<tr>
<td>4:D:76:VAL:HG23</td>
<td>5:D:1397:SO4:O1</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>4:D:371:ARG:O</td>
<td>4:D:390:GLU:HA</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>3:C:259:MET:HB2</td>
<td>9:C:2097:HOH:O</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>4:D:207:ARG:HG2</td>
<td>4:D:208:LYS:HG3</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>4:D:299:ALA:HB2</td>
<td>9:D:2152:HOH:O</td>
<td>1.94</td>
<td>0.66</td>
</tr>
<tr>
<td>3:C:65:ASN:OD1</td>
<td>9:C:2035:HOH:O</td>
<td>2.13</td>
<td>0.66</td>
</tr>
<tr>
<td>3:C:83:TRP:HH2</td>
<td>3:C:98:LEU:HD13</td>
<td>1.59</td>
<td>0.66</td>
</tr>
<tr>
<td>4:D:100:MET:HB2</td>
<td>9:D:2061:HOH:O</td>
<td>1.94</td>
<td>0.66</td>
</tr>
<tr>
<td>3:C:43:GLY:HA3</td>
<td>9:C:2021:HOH:O</td>
<td>1.95</td>
<td>0.66</td>
</tr>
<tr>
<td>4:D:35:ILE:HB</td>
<td>9:D:2023:HOH:O</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>3:C:68:ARG:CB</td>
<td>7:C:1396:CL:CL</td>
<td>2.81</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:283:VAL:HA</td>
<td>5:A:1400:SO4:O4</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:280:THR:N</td>
<td>5:A:1401:SO4:O3</td>
<td>2.30</td>
<td>0.65</td>
</tr>
<tr>
<td>3:C:302:ARG:NH1</td>
<td>4:D:107:ASP:HA</td>
<td>2.11</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Continued on next page...
Table of Interatomic Distances and Clash Overlaps

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:274:ARG:HH21</td>
<td>3:C:392:LEU:HD21</td>
<td>1.62</td>
<td>0.65</td>
</tr>
<tr>
<td>3:C:6:VAL:HG13</td>
<td>9:C:2098:HOH:O</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>4:D:140:ILE:N</td>
<td>9:D:2083:HOH:O</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>3:C:228:MET:HG3</td>
<td>9:C:2093:HOH:O</td>
<td>1.96</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:302:ARG:NH1</td>
<td>5:A:1401:SO4:O1</td>
<td>2.30</td>
<td>0.64</td>
</tr>
<tr>
<td>6:B:1401:COA:H31</td>
<td>9:B:2172:HOH:O</td>
<td>1.95</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:31:GLY:O</td>
<td>3:C:35:ILE:HG13</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:65:ASN:HB3</td>
<td>7:C:1396:CL:CL</td>
<td>2.35</td>
<td>0.64</td>
</tr>
<tr>
<td>2:B:175:GLN:HE22</td>
<td>2:B:240:THR:CG2</td>
<td>2.10</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:60:ALA:HB1</td>
<td>9:C:2029:HOH:O</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:371:ARG:HA</td>
<td>9:C:2141:HOH:O</td>
<td>1.96</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:38:VAL:HG12</td>
<td>3:C:257:LEU:HB2</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>4:D:298:LYS:HE3</td>
<td>9:D:2153:HOH:O</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:183:GLN:OE1</td>
<td>3:C:220:ARG:HG2</td>
<td>1.96</td>
<td>0.64</td>
</tr>
<tr>
<td>4:D:150:ASP:HB2</td>
<td>9:D:2086:HOH:O</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>4:D:175:PHE:HB2</td>
<td>5:D:1396:SO4:O1</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>4:D:247:SER:HB3</td>
<td>4:D:318:ALA:HA</td>
<td>1.79</td>
<td>0.63</td>
</tr>
<tr>
<td>2:B:228:MET:HE1</td>
<td>9:B:2404:HOH:O</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:168:TRP:CH2</td>
<td>1:A:329:ASP:HB2</td>
<td>2.33</td>
<td>0.63</td>
</tr>
<tr>
<td>3:C:53:ILE:HG12</td>
<td>3:C:83:TRP:CE2</td>
<td>2.34</td>
<td>0.62</td>
</tr>
<tr>
<td>4:D:183:GLN:NE2</td>
<td>4:D:220:ARG:HD3</td>
<td>2.15</td>
<td>0.62</td>
</tr>
<tr>
<td>3:C:65:ASN:ND2</td>
<td>7:C:1396:CL:CL</td>
<td>2.70</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:316:ASN:HB3</td>
<td>9:A:2343:HOH:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>3:C:374:LEU:HD21</td>
<td>3:C:387:MET:O</td>
<td>1.99</td>
<td>0.61</td>
</tr>
<tr>
<td>3:C:362:LEU:HD12</td>
<td>9:C:2132:HOH:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:279:ALA:HB1</td>
<td>1:A:298:LYS:HD3</td>
<td>1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>3:C:33:ASP:O</td>
<td>3:C:336:ILE:HG12</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>4:D:51:GLU:HB3</td>
<td>4:D:111:ILE:CD1</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:207:ARG:HG2</td>
<td>2:B:208:LYS:N</td>
<td>2.14</td>
<td>0.61</td>
</tr>
<tr>
<td>3:C:51:GLU:HA</td>
<td>3:C:81:THR:O</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>4:D:142:THR:O</td>
<td>4:D:146:ASP:HB2</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>4:D:305:TRP:CZ3</td>
<td>4:D:388:CYS:HB3</td>
<td>2.36</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:139:MET:HG3</td>
<td>3:C:139:MET:HE2</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:166:LYS:HG3</td>
<td>9:B:2187:HOH:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>4:D:232:ARG:NH1</td>
<td>4:D:232:ARG:HB2</td>
<td>2.15</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:110:ILE:HG23</td>
<td>4:D:257:LEU:HD21</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>3:C:232:ARG:H</td>
<td>3:C:232:ARG:NE</td>
<td>1.99</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:5:ILE:HG13</td>
<td>3:C:10:MET:HG2</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>3:C:52:VAL:HG13</td>
<td>3:C:11:2:VAL:HG12</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:269:ILE:HD13</td>
<td>9:D:2031:HOH:O</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:279:ALA:HB3</td>
<td>9:D:2152:HOH:O</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>2:B:89:CSO:HD</td>
<td>6:B:1401:COA:H22</td>
<td>1.67</td>
<td>0.60</td>
</tr>
<tr>
<td>3:C:293:ILE:HA</td>
<td>3:C:330:LEU:HD21</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>2:B:376[A]:THR:HG23</td>
<td>2:B:385:VAL:O</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>3:C:358:LEU:HD22</td>
<td>3:C:362:LEU:HG</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>3:C:144:ILE:HD13</td>
<td>3:C:148:LEU:HD12</td>
<td>1.81</td>
<td>0.59</td>
</tr>
<tr>
<td>4:D:57:VAL:C</td>
<td>4:D:59:PRO:HD3</td>
<td>2.23</td>
<td>0.59</td>
</tr>
<tr>
<td>4:D:168:TRP:HB3</td>
<td>9:D:2099:HOH:O</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>3:C:200:VAL:HG13</td>
<td>9:C:2080:HOH:O</td>
<td>2.00</td>
<td>0.59</td>
</tr>
<tr>
<td>4:D:250:ASN:HB3</td>
<td>9:D:2142:HOH:O</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:312:LEU:HD23</td>
<td>1:A:361:LEU:HD12</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>2:B:207:ARG:HD3</td>
<td>2:B:207:ARG:N</td>
<td>2.15</td>
<td>0.59</td>
</tr>
<tr>
<td>4:D:12:ARG:HH22</td>
<td>4:D:199:ILE:HD11</td>
<td>1.68</td>
<td>0.59</td>
</tr>
<tr>
<td>3:C:316:ASN:ND2</td>
<td>3:C:377:LEU:HD23</td>
<td>2.18</td>
<td>0.59</td>
</tr>
<tr>
<td>4:D:140:ILE:CD1</td>
<td>4:D:141:ASP:N</td>
<td>2.54</td>
<td>0.58</td>
</tr>
<tr>
<td>3:C:57:VAL:HG12</td>
<td>3:C:58:LEU:HD23</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>4:D:140:ILE:HD12</td>
<td>9:D:2083:HOH:O</td>
<td>2.02</td>
<td>0.58</td>
</tr>
<tr>
<td>4:D:275:ILE:CD1</td>
<td>9:D:2061:HOH:O</td>
<td>2.52</td>
<td>0.58</td>
</tr>
<tr>
<td>4:D:277:SER:HB3</td>
<td>4:D:303:ALA:HB2</td>
<td>1.85</td>
<td>0.58</td>
</tr>
<tr>
<td>4:D:94:ARG:NH2</td>
<td>9:D:2059:HOH:O</td>
<td>2.36</td>
<td>0.58</td>
</tr>
<tr>
<td>3:C:153:TYR:HB3</td>
<td>3:C:155:TYR:CE2</td>
<td>2.38</td>
<td>0.58</td>
</tr>
<tr>
<td>2:B:221:HIS:HD2</td>
<td>9:B:2220:HOH:O</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>2:B:374:LEU:HD21</td>
<td>2:B:376[A]:THR:OG1</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>4:D:274:ARG:HB3</td>
<td>4:D:390:GLU:O</td>
<td>2.02</td>
<td>0.58</td>
</tr>
<tr>
<td>2:B:16:GLY:HA2</td>
<td>9:B:2261:HOH:O</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>3:C:274:ARG:NH2</td>
<td>3:C:392:LEU:HD21</td>
<td>2.19</td>
<td>0.57</td>
</tr>
<tr>
<td>3:C:87:GLN:N</td>
<td>3:C:91:SER:OG</td>
<td>2.37</td>
<td>0.57</td>
</tr>
<tr>
<td>4:D:242:THR:HB</td>
<td>9:D:2129:HOH:O</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>3:C:83:TRP:CH2</td>
<td>3:C:98:LEU:HD13</td>
<td>2.40</td>
<td>0.57</td>
</tr>
<tr>
<td>4:D:96:VAL:HG12</td>
<td>9:D:2061:HOH:O</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>3:C:68:ARG:HG3</td>
<td>4:D:152:PHE:HZ</td>
<td>1.70</td>
<td>0.57</td>
</tr>
<tr>
<td>2:B:363:PHE:CD1</td>
<td>2:B:366[A]:LYS:NZ</td>
<td>2.72</td>
<td>0.57</td>
</tr>
<tr>
<td>3:C:116:MET:HG2</td>
<td>9:C:2025:HOH:O</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>3:C:272:LEU:HD12</td>
<td>3:C:366:LYS:HD2</td>
<td>1.87</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:125:CYS:CB</td>
<td>7:D:1399:CL:CL</td>
<td>2.90</td>
<td>0.57</td>
</tr>
<tr>
<td>9:C:2029:HOH:O</td>
<td>4:D:125:CYS:SG</td>
<td>2.54</td>
<td>0.57</td>
</tr>
<tr>
<td>4:D:96:VAL:O</td>
<td>9:D:2061:HOH:O</td>
<td>2.18</td>
<td>0.57</td>
</tr>
<tr>
<td>2:B:243:ALA:HB1</td>
<td>6:B:1401:COA:02A</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:9:SER:OG</td>
<td>4:D:42:ALA:HB2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:141:ASP:O</td>
<td>4:D:143:MET:N</td>
<td>2.31</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:287:VAL:HB</td>
<td>4:D:290:THR:HG23</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:80:ALA:HB2</td>
<td>9:D:2033:HOH:O</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:34:GLY:HA3</td>
<td>9:C:2516:HOH:O</td>
<td>2.03</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:180:VAL:HG13</td>
<td>3:C:223:ALA:O</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:353:SER:O</td>
<td>3:C:357:ILE:HG23</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:183:GLN:HG3</td>
<td>9:B:2404:HOH:O</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:316:ASN:HB2</td>
<td>3:C:377:LEU:HA</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:349:PRO:HG3</td>
<td>9:D:2142:HOH:O</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:100:MET:SD</td>
<td>5:B:1398:SO4:O4</td>
<td>2.64</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:44:VAL:HG13</td>
<td>4:D:48:GLU:OE1</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:51:GLU:HB3</td>
<td>4:D:111:ILE:HD12</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:175:GLN:HE22</td>
<td>2:B:240:THR:HG21</td>
<td>1.71</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:276:VAL:HG22</td>
<td>3:C:388:CY3:HB3</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:165:ALA:HA</td>
<td>4:D:170:LEU:HD12</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:305:TRP:CE2</td>
<td>4:D:372:LYS:HD3</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:35:ILE:HG23</td>
<td>4:D:112:VAL:HG21</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>4:D:298:LYS:HB3</td>
<td>9:D:2153:HOH:O</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:316:ASN:HB3</td>
<td>9:B:2381:HOH:O</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>3:C:146:ASP:HB3</td>
<td>5:D:1394:SO4:O1</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>4:D:327:ASN:HB3</td>
<td>9:D:2165:HOH:O</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>3:C:272:LEU:CD1</td>
<td>3:C:366:LYS:HD2</td>
<td>2.37</td>
<td>0.55</td>
</tr>
<tr>
<td>3:C:314:GLU:O</td>
<td>3:C:375:ALA:HA</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:34:VAL:HG12</td>
<td>2:B:255:ALA:HB3</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>4:D:85:MET:HG3</td>
<td>9:D:2039:HOH:O</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>4:D:283:VAL:HG11</td>
<td>4:D:290:THR:O</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>3:C:306:LYS:HB3</td>
<td>9:C:2114:HOH:O</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>3:C:340[C]:ASN:HD21</td>
<td>3:C:360:THR:HG23</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>3:C:100:MET:HG3</td>
<td>3:C:275:ILE:CG2</td>
<td>2.36</td>
<td>0.54</td>
</tr>
<tr>
<td>4:D:34:VAL:O</td>
<td>4:D:38:VAL:HG13</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:21:ALA:HB3</td>
<td>9:B:2261:HOH:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>4:D:357:ILE:HD11</td>
<td>4:D:377:LEU:CD1</td>
<td>2.31</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:230:LYS:HA</td>
<td>9:C:2094:HOH:O</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:187:GLU:HG3</td>
<td>9:D:2127:HOH:O</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:204:VAL:HB</td>
<td>9:D:2119:HOH:O</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:236:ASP:HB2</td>
<td>9:D:2132:HOH:O</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:7:ILE:HD13</td>
<td>4:D:362:LEU:HD11</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:266:ARG:NH2</td>
<td>5:A:1394:SO4:O1</td>
<td>2.39</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:11:ALA:HB3</td>
<td>3:C:38:VAL:HG23</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:215:ALA:HA</td>
<td>9:D:2120:HOH:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:316:ASN:OD1</td>
<td>4:D:357:ILE:HG21</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>6:B:1401:COA:H122</td>
<td>6:B:1401:COA:O2A</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:207:ARG:HH11</td>
<td>2:B:207:ARG:N</td>
<td>2.06</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:68:ARG:HB3</td>
<td>7:C:1396:CL:CL</td>
<td>2.46</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:178:PHE:HE1</td>
<td>4:D:317:GLU:CD</td>
<td>2.12</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:93:LEU:HG23</td>
<td>4:D:385:VAL:HG13</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>4:D:169:GLN:HG3</td>
<td>9:D:2095:HOH:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:207:ARG:HH11</td>
<td>3:C:207:ARG:CG</td>
<td>2.15</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:103:ILE:HG23</td>
<td>4:D:108:ALA:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:35:ILE:HG12</td>
<td>4:D:112:VAL:HG11</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:324:CYS:O</td>
<td>2:B:328:LYS:HG3</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:35:ILE:O</td>
<td>4:D:39:LEU:HD23</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:297:ARG:NE</td>
<td>9:A:2319:HOH:O</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:316:ASN:ND2</td>
<td>9:B:2335:HOH:O</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:302:ARG:NH1</td>
<td>9:C:2112:HOH:O</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:25:THR:HG21</td>
<td>3:C:30:LEU:HD21</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:281:VAL:HG13</td>
<td>9:D:2151:HOH:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:274:ARG:H</td>
<td>4:D:389:ILE:HG23</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:300:LEU:HD13</td>
<td>4:D:307:ILE:CD1</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:146:ASP:HB3</td>
<td>9:B:2076:HOH:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:284:ASP:HA</td>
<td>9:D:2055:HOH:O</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:322:GLN:O</td>
<td>3:C:326:VAL:HG23</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:163:ASN:HD22</td>
<td>4:D:286:LYS:HB3</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:274:ARG:NH2</td>
<td>9:B:2307:HOH:O</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:247:SER:HB2</td>
<td>3:C:318:ALA:O</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:44:VAL:HG13</td>
<td>3:C:48:GLU:HB2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:349:PRO:O</td>
<td>4:D:350:ILE:C</td>
<td>2.48</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:232:ARG:H</td>
<td>3:C:232:ARG:HE</td>
<td>1.57</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:216:ASP:CA</td>
<td>9:D:2121:HOH:O</td>
<td>2.53</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:44:VAL:CA</td>
<td>9:D:2031:HOH:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:312:LEU:HD23</td>
<td>2:B:361:LEU:HD22</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:356:ARG:HD2</td>
<td>2:B:356:ARG:C</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:377:LEU:HD22</td>
<td>9:C:2044:HOH:O</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:97:ALA:HA</td>
<td>3:C:387:MET:CE</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:293:ILE:HB</td>
<td>4:D:294:PRO:HD3</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:39:LEU:HD21</td>
<td>3:C:46:ALA:HA</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:381:GLY:N</td>
<td>9:D:2088:HOH:O</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:200:VAL:HG22</td>
<td>9:D:2114:HOH:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:97:ALA:HA</td>
<td>3:C:387:MET:HE1</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:247:SER:HA</td>
<td>4:D:344:ILE:HA</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:144:ILE:HA</td>
<td>4:D:148:LEU:HB2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:93:LEU:HD11</td>
<td>4:D:387:MET:HB3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:33:THR:HG21</td>
<td>4:D:202:PHE:HD1</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:163:ASN:O</td>
<td>3:C:167:GLN:HB2</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:330:LEU:HD13</td>
<td>3:C:332:TRP:CH2</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:275:ILE:HD12</td>
<td>9:D:2004:HOH:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:364:GLU:OE2</td>
<td>4:D:368:ARG:HG2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:47:GLY:HA2</td>
<td>4:D:77:PRO:CG</td>
<td>2.38</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:99:GLY:O</td>
<td>4:D:103:ILE:HD12</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:190:GLN:OE1</td>
<td>2:B:221:HIS:HE1</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:51:GLU:OE2</td>
<td>3:C:83:TRP:CD1</td>
<td>2.65</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:55:GLY:HA3</td>
<td>4:D:91[B]:SER:OG</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:133:LYS:HD3</td>
<td>1:A:133:LYS:H</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:153:TYR:HB3</td>
<td>4:D:155:TYR:CE2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:12:ARG:HB2</td>
<td>3:C:254:ALA:HB2</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:81:THR:HG23</td>
<td>4:D:383:MET:SD</td>
<td>2.51</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:66:PRO:HB2</td>
<td>4:D:116:MET:HE3</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:87:GLN:OE1</td>
<td>4:D:94:ARG:HG2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:128:LEU:HD12</td>
<td>4:D:124:HIS:HB2</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:32:ALA:HA</td>
<td>9:D:2023:HOH:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:371:ARG:HD3</td>
<td>4:D:371:ARG:N</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:386:ALA:HB3</td>
<td>9:D:2152:HOH:O</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:374:LEU:CD2</td>
<td>3:C:375:ALA:N</td>
<td>2.69</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:365:MET:HE2</td>
<td>3:C:391:SER:H</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:140:ILE:O</td>
<td>4:D:141:ASP:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:274:ARG:NH2</td>
<td>1:A:390:GLU:OE1</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:47:GLY:HA2</td>
<td>2:B:77:PRO:CG</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:227:SER:HA</td>
<td>3:C:230:LYS:HE3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:317:GLU:O</td>
<td>4:D:344:ILE:HG13</td>
<td>2.12</td>
<td>0.49</td>
</tr>
</tbody>
</table>
| 4:D:305:TRP:HZ3 | 4:D:388:CYS:HB3 | 1.75 | 0.49

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:153:TYR:CE1</td>
<td>3:C:286:LYS:HG3</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:207:ARG:NH1</td>
<td>3:C:207:ARG:HG2</td>
<td>2.18</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:6:VAL:HB</td>
<td>3:C:271:PRO:HB3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:84:GLY:N</td>
<td>9:C:2035:HOH:O</td>
<td>2.41</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:9:SER:OG</td>
<td>3:C:38:VAL:HG13</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:26:PRO:HD2</td>
<td>4:D:29:GLU:OE1</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:183:GLN:CD</td>
<td>3:C:220:ARG:HG2</td>
<td>2.33</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:7:ILE:HD13</td>
<td>3:C:362:LEU:HD11</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:298:LYS:NZ</td>
<td>5:A:1401:SO4:O2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:22:PHE:HG3</td>
<td>3:C:25:THR:HB</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:387:MET:CG</td>
<td>3:C:388:CYS:N</td>
<td>2.76</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:4:SER:C</td>
<td>1:A:5:ILE:HD12</td>
<td>2.33</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:379:ILE:HB</td>
<td>2:B:383:MET:HB2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:183:GLN:OE1</td>
<td>4:D:220:ARG:HG2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:276:VAL:HG22</td>
<td>1:A:388:CYS:HB2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:316:ASN:CG</td>
<td>3:C:377:LEU:HD23</td>
<td>2.34</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:358:LEU:CD2</td>
<td>3:C:362:LEU:HG</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:387:MET:CG</td>
<td>3:C:388:CYS:H</td>
<td>2.25</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:78:GLN:HG3</td>
<td>3:C:79:GLU:OE2</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:191[A]:LYS:NZ</td>
<td>2:B:191[A]:LYS:HB3</td>
<td>2.29</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:17:SER:HB3</td>
<td>9:C:2008:HOH:O</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:313:VAL:HA</td>
<td>3:C:374:LEU:O</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:283:VAL:CG1</td>
<td>4:D:294:PRO:HG2</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:376[B]:THR:HG22</td>
<td>2:B:386:ALA:HB1</td>
<td>1.91</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:369:GLY:HA3</td>
<td>9:C:2138:HOH:O</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:78:GLN:NE2</td>
<td>4:D:285:PRO:HD3</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:168:TRP:HH2</td>
<td>1:A:329:ASP:HB2</td>
<td>1.77</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:7:ILE:HG12</td>
<td>3:C:258:LEU:HD11</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:278:TRP:HA</td>
<td>3:C:387:MET:HA</td>
<td>1.94</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:12:ARG:NH1</td>
<td>4:D:13:THR:O</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:207:ARG:NH1</td>
<td>4:D:208:LYS:H</td>
<td>2.11</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:284:ASP:HB3</td>
<td>3:C:287:VAL:HG22</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:284:ASP:OD1</td>
<td>4:D:286:LYS:HB2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:354:GLY:HA3</td>
<td>9:C:2044:HOH:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:68:ARG:HB2</td>
<td>7:C:1396:CL:CL</td>
<td>2.52</td>
<td>0.47</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4:D:35:ILE:CG2</td>
<td>4:D:112:VAL:HG11</td>
<td>2.38</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:53:ILE:HD13</td>
<td>4:D:83:TRP:CZ2</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:123:PRO:HD2</td>
<td>9:C:2026:HOH:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:19:ASN:N</td>
<td>4:D:19:ASN:HD22</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:132:VAL:HG21</td>
<td>3:C:137:PHE:CD1</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:236:ASP:HB3</td>
<td>3:C:239:GLY:HA3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:257:LEU:HD22</td>
<td>9:C:2095:HOH:O</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:328:LYS:HB2</td>
<td>1:A:328:LYS:HE3</td>
<td>1.58</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:19:ASN:C</td>
<td>3:C:23:ALA:HB2</td>
<td>2.36</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:289:GLY:O</td>
<td>3:C:292:PRO:HD2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:115:GLY:HA3</td>
<td>3:C:352:ALA:HA</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:190:GLN:OE1</td>
<td>2:B:221:HIS:CE1</td>
<td>2.68</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:357:ILE:CD1</td>
<td>3:C:375:ALA:HB1</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:170:LEU:HD21</td>
<td>9:D:2099:HOH:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:388:CYS:C</td>
<td>4:D:389:ILE:HD12</td>
<td>2.35</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:172:ARG:HA</td>
<td>2:B:240:THR:OG1</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:385:VAL:HB</td>
<td>9:D:2056:HOH:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:358:LEU:HD22</td>
<td>4:D:362:LEU:HG</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:74:ALA:HB2</td>
<td>9:D:2023:HOH:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:298:LYS:HE2</td>
<td>1:A:302:ARG: CZ</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:129:ARG:CZ</td>
<td>9:C:2056:HOH:O</td>
<td>2.62</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:371:ARG:O</td>
<td>3:C:390:GLU:HA</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:283:VAL:N</td>
<td>4:D:382:GLY:O</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:133:LYS:H</td>
<td>1:A:133:LYS:CD</td>
<td>2.28</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:168:TRP:CH2</td>
<td>2:B:329:ASP:HB2</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:89:CSO:HD</td>
<td>6:B:1401:COA:C2P</td>
<td>2.27</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:198:GLU:HG3</td>
<td>3:C:199:ILE:N</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:302:ARG:HG3</td>
<td>9:D:2153:HOH:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:141:ASP:OD1</td>
<td>4:D:143:MET:HB3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:181:ALA:O</td>
<td>4:D:185:LYS:HG3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:237:LYS:HA</td>
<td>1:A:237:LYS:HD3</td>
<td>1.70</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:276:VAL:O</td>
<td>5:B:1398:SO4:O2</td>
<td>2.33</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:298:LYS:HG2</td>
<td>9:B:2310:HOH:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:123:PRO:C</td>
<td>7:D:1399:CL:CL</td>
<td>2.91</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:13:THR:HA</td>
<td>9:C:2080:HOH:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:103:ILE:HD13</td>
<td>3:C:259:MET:HA</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:368:ARG:HB3</td>
<td>9:D:2179:HOH:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:94:ARG:HH2</td>
<td>4:D:51:GLU:CD</td>
<td>2.20</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:202:PHE:HD1</td>
<td>9:C:2014:HOH:O</td>
<td>2.00</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:45:ALA:HB3</td>
<td>3:C:48:GLU:OE1</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:129:ARG:HD2</td>
<td>9:D:2068:HOH:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:140:ILE:HD13</td>
<td>4:D:142:THR:N</td>
<td>2.28</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:66:PRO:CG</td>
<td>9:D:2043:HOH:O</td>
<td>2.64</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:316:ASN:OD1</td>
<td>3:C:357:ILE:HG21</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:236:ASP:OD1</td>
<td>2:B:238:GLU:HG2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:316:ASN:OD1</td>
<td>3:C:377:LEU:HD23</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:292:PRO:HB3</td>
<td>4:D:376:THR:OG1</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:59:PRO:HB2</td>
<td>5:D:1394:SO4:O3</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:122:ALA:HA</td>
<td>9:C:2026:HOH:O</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:146:ASP:HB3</td>
<td>5:D:1394:SO4:S</td>
<td>2.57</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:356:ARG:NH1</td>
<td>9:C:2133:HOH:O</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:87:GLN:HG3</td>
<td>9:D:2046:HOH:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:38:VAL:HG11</td>
<td>3:C:257:LEU:N</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:83:TRP:HA</td>
<td>9:C:2035:HOH:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:233:PRO:HB2</td>
<td>4:D:236:ASP:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:58:LEU:N</td>
<td>4:D:59:PRO:HD3</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:378:CSD:OD1</td>
<td>6:B:1401:COA:S1P</td>
<td>2.71</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:4:SER:HB3</td>
<td>9:B:2394:HOH:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:298:LYS:HE3</td>
<td>3:C:301:GLU:OE1</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:364:GLU:OE1</td>
<td>3:C:367:ARG:HD2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:54:LEU:N</td>
<td>9:C:2024:HOH:O</td>
<td>2.49</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:124:HIS:C</td>
<td>7:D:1399:CL:CL</td>
<td>2.92</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:278:TRP:HH2</td>
<td>9:D:2059:HOH:O</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:207:ARG:HG2</td>
<td>9:C:2086:HOH:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:89:CSO:SG</td>
<td>9:B:2376:HOH:O</td>
<td>2.62</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:79:GLU:O</td>
<td>4:D:281:VAL:HG23</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:293:ILE:CB</td>
<td>4:D:294:PRO:HD3</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:365:MET:HE2</td>
<td>4:D:370:ALA:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:10:ALA:HB3</td>
<td>3:C:363:PHE:CE2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:311:ASP:HB2</td>
<td>3:C:370:ALA:HB1</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:76:VAL:HG13</td>
<td>3:C:77:PRO:HD2</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:144:ILE:HD13</td>
<td>2:B:148:LEU:HD12</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:275:ILE:HD13</td>
<td>9:D:2061:HOH:O</td>
<td>2.15</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:280:THR:O</td>
<td>5:A:1401:SO4:O3</td>
<td>2.34</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:89:CSO:OD</td>
<td>6:B:1401:COA:H22</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:207:ARG:NH1</td>
<td>3:C:207:ARG:CG</td>
<td>2.77</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:316:ASN:HD21</td>
<td>3:C:377:LEU:HD23</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:273:GLY:HA2</td>
<td>3:C:391:SER:HA</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:48:GLU:N</td>
<td>3:C:48:GLU:OE1</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:140:ILE:C</td>
<td>9:D:2083:HOH:O</td>
<td>2.55</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:D:334:PRO:HD3</td>
<td>9:D:2165:HOH:O</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:96:VAL:HG21</td>
<td>4:D:358:LEU:HD12</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:88:LEU:HD23</td>
<td>4:D:88:LEU:HA</td>
<td>1.86</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:379:ILE:HB</td>
<td>1:A:383:MET:HB2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:274:ARG:O</td>
<td>3:C:389:ILE:HA</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:140:ILE:CA</td>
<td>9:D:2083:HOH:O</td>
<td>2.66</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:298:LYS:HD2</td>
<td>9:D:2154:HOH:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:343:ALA:O</td>
<td>4:D:344:ILE:C</td>
<td>2.55</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:374:LEU:CD2</td>
<td>3:C:387:MET:O</td>
<td>2.66</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:287:VAL:HB</td>
<td>4:D:290:THR:CG2</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:291:GLY:N</td>
<td>4:D:292:PRO:CD</td>
<td>2.81</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:118:SER:HB2</td>
<td>9:C:2050:HOH:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:207:ARG:HD3</td>
<td>3:C:207:ARG:N</td>
<td>2.21</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:123:PRO:CB</td>
<td>4:D:1399:CL:CL</td>
<td>3.00</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:370:ALA:N</td>
<td>9:D:2182:HOH:O</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:233:PRO:HB2</td>
<td>1:A:236:ASP:O</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:343:ALA:N</td>
<td>9:C:2116:HOH:O</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:136:ASP:OD1</td>
<td>4:D:140:ILE:HA</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:57:VAL:HG21</td>
<td>3:C:350:ILE:CG2</td>
<td>2.47</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:47:GLY:HA2</td>
<td>3:C:77:PRO:CG</td>
<td>2.45</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:66:PRO:HD2</td>
<td>9:D:2048:HOH:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:126:ALA:O</td>
<td>3:C:128:LEU:HG</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:291:GLY:O</td>
<td>4:D:294:PRO:HD2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:300:LEU:CD1</td>
<td>4:D:307:ILE:HG3</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:129:ARG:NH2</td>
<td>4:D:122:ALA:O</td>
<td>2.40</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:378:CSD:SG</td>
<td>9:B:2381:HOH:O</td>
<td>2.62</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:207:ARG:HG2</td>
<td>2:B:208:LYS:HG2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:364:GLU:O</td>
<td>3:C:368:ARG:HG2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:326:VAL:CG1</td>
<td>4:D:332:TRP:HZ2</td>
<td>2.32</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:33:THR:O</td>
<td>4:D:37:ALA:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:270:GLN:HA</td>
<td>3:C:271:PRO:HD3</td>
<td>1.86</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:220:ARG:O</td>
<td>3:C:222:GLY:N</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:293:ILE:O</td>
<td>4:D:330:LEU:HD21</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:291:GLY:N</td>
<td>2:B:292:PRO:CD</td>
<td>2.81</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:282:GLY:HA2</td>
<td>3:C:383:MET:HA</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:22:PHE:HB3</td>
<td>4:D:25:THR:HB</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:7:ILE:HG21</td>
<td>3:C:362:LEU:CD1</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:38:VAL:HG23</td>
<td>4:D:257:LEU:HB2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:138:LYS:HD3</td>
<td>2:B:140:ILE:HD11</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:152:PHE:CZ</td>
<td>2:B:72:MET:HG3</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:357:ILE:HD11</td>
<td>3:C:375:ALA:HB1</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:24:ASN:O</td>
<td>3:C:26:PRO:HD3</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:25:THR:HA</td>
<td>4:D:26:PRO:HD3</td>
<td>1.87</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:68:ARG:HG2</td>
<td>7:C:1396:CL:CL</td>
<td>2.57</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:383:MET:HA</td>
<td>9:D:2184:HOH:O</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:365:MET:HA</td>
<td>9:D:2182:HOH:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:89:CSO:O</td>
<td>4:D:377:LEU:HD22</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:93:LEU:HD11</td>
<td>4:D:387:MET:CB</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:78:GLN:NE2</td>
<td>9:D:2055:HOH:O</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:207:ARG:HH11</td>
<td>4:D:208:LYS:H</td>
<td>1.66</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:233:PRO:HB2</td>
<td>2:B:236:ASP:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:112:VAL:HG12</td>
<td>3:C:112:VAL:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:274:ARG:HH21</td>
<td>3:C:392:LEU:HD11</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:28:HIS:HA</td>
<td>4:D:116:MET:SD</td>
<td>2.60</td>
<td>0.42</td>
</tr>
<tr>
<td>9:C:2035:HOH:O</td>
<td>4:D:86:ASN:O</td>
<td>2.21</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:190:GLN:OE1</td>
<td>1:A:221:HIS:HE1</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:155:TYR:HE1</td>
<td>3:C:160:THR:HG22</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:124:HIS:HA</td>
<td>2:B:140:ILE:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:6:VAL:HG12</td>
<td>3:C:274:ARG:HD3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:5:ILE:HD13</td>
<td>4:D:260:SER:HA</td>
<td>2.00</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:292:PRO:HB3</td>
<td>3:C:376:THR:OG1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:325:ALA:HB2</td>
<td>9:D:2163:HOH:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:175:GLN:HE22</td>
<td>3:C:240:THR:CG2</td>
<td>2.33</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:118:SER:OG</td>
<td>4:D:121:MET:HB2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:333:ASP:HA</td>
<td>4:D:334:PRO:HD2</td>
<td>1.88</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:168:TRP:N</td>
<td>2:B:168:TRP:CD1</td>
<td>2.88</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:181:ALA:O</td>
<td>3:C:185:LYS:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:293:ILE:O</td>
<td>3:C:297:ARG:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:313:VAL:HA</td>
<td>4:D:374:LEU:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:272:LEU:HD12</td>
<td>2:B:366[A]:LYS:HD3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:7:ILE:HA</td>
<td>2:B:258[A]:LEU:HD13</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:53:ILE:HD12</td>
<td>3:C:111:ILE:HG21</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:6:VAL:CG1</td>
<td>3:C:274:ARG:HD3</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:15:VAL:HG11</td>
<td>3:C:347:GLY:HA3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:389:ILE:N</td>
<td>4:D:389:ILE:HD12</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:5:ILE:HD12</td>
<td>4:D:103:ILE:HB</td>
<td>2.02</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:374:LEU:C</td>
<td>2:B:374:LEU:HD23</td>
<td>2.40</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:52:VAL:O</td>
<td>2:B:82:ALA:HA</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:224:THR:C</td>
<td>3:C:226:ASP:N</td>
<td>2.74</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:17:SER:OG</td>
<td>4:D:217:GLU:HG3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:300:LEU:HD13</td>
<td>4:D:307:ILE:CG1</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:282:GLY:O</td>
<td>4:D:79:GLU:HA</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:25:THR:HG21</td>
<td>3:C:30:LEU:CD2</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:51:GLU:HG3</td>
<td>3:C:81:THR:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:102:GLN:NE2</td>
<td>9:D:2063:HOH:O</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:187:GLU:HG3</td>
<td>4:D:221:HIS:HA</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:205:LYS:HA</td>
<td>4:D:210:ASP:OD1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:320:ALA:O</td>
<td>4:D:324:CYS:SG</td>
<td>2.75</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:33:THR:HG21</td>
<td>4:D:202:PHE:CD1</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:220:ARG:HG2</td>
<td>4:D:220:ARG:H</td>
<td>1.74</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:322:GLN:HE21</td>
<td>4:D:322:GLN:HB2</td>
<td>1.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:358:LEU:HD22</td>
<td>1:A:362:LEU:HG</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:55:GLY:HA3</td>
<td>1:A:91:SER:HB3</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:374:LEU:HA</td>
<td>3:C:374:LEU:HD23</td>
<td>1.74</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:356:ARG:NH1</td>
<td>9:D:2173:HOH:O</td>
<td>2.31</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:38:VAL:CG2</td>
<td>4:D:257:LEU:HB2</td>
<td>2.50</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:35:ILE:HD11</td>
<td>4:D:54:LEU:HD11</td>
<td>2.04</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:298:LYS:HD3</td>
<td>5:A:1401:SO4:O3</td>
<td>2.20</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:57:VAL:C</td>
<td>3:C:58:LEU:HD23</td>
<td>2.42</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:64:GLN:HE22</td>
<td>4:D:157:MET:CE</td>
<td>2.35</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:7:ILE:HG21</td>
<td>3:C:362:LEU:HD13</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:31:GLY:O</td>
<td>4:D:35:ILE:HD12</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:276:VAL:HG2</td>
<td>1:A:388:CYS:CB</td>
<td>2.52</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:217:GLU:HG2</td>
<td>9:B:2261:HOH:O</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:340:GLN:CG:ASN:HG2</td>
<td>3:C:360:THR:CG2</td>
<td>2.35</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:11:ALA:HB3</td>
<td>4:D:38:VAL:HG12</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>6:B:1401:COA:09P</td>
<td>6:B:1401:COA:H141</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:88:LEU:HB2</td>
<td>2:B:379:ILE:HG23</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:387:MET:HG2</td>
<td>3:C:388:CYS:N</td>
<td>2.37</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:7:ILE:HG2</td>
<td>3:C:258:LEU:CD1</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:365:MET:HE1</td>
<td>4:D:373:GLY:N</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:39:LEU:HD12</td>
<td>4:D:44:VAL:O</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:68:ARG:O</td>
<td>4:D:72:MET:HG2</td>
<td>2.21</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>391/392 (100%)</td>
<td>376 (96%)</td>
<td>15 (4%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>392/392 (100%)</td>
<td>378 (96%)</td>
<td>13 (3%)</td>
<td>1 (0%)</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>389/392 (99%)</td>
<td>350 (90%)</td>
<td>36 (9%)</td>
<td>3 (1%)</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>389/392 (99%)</td>
<td>352 (90%)</td>
<td>31 (8%)</td>
<td>6 (2%)</td>
<td>11</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1561/1568 (100%)</td>
<td>1456 (93%)</td>
<td>95 (6%)</td>
<td>10 (1%)</td>
<td>27</td>
</tr>
</tbody>
</table>

All (10) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>140</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>141</td>
<td>ASP</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>330</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>350</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>131</td>
<td>GLY</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>221</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>350</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>142</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>236</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>369</td>
<td>GLY</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>279/277 (101%)</td>
<td>269 (96%)</td>
<td>10 (4%)</td>
<td>38</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>280/276 (101%)</td>
<td>268 (96%)</td>
<td>12 (4%)</td>
<td>32 16</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>277/278 (100%)</td>
<td>260 (94%)</td>
<td>17 (6%)</td>
<td>20 7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>277/277 (100%)</td>
<td>260 (94%)</td>
<td>17 (6%)</td>
<td>20 7</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1113/1108 (100%)</td>
<td>1057 (95%)</td>
<td>56 (5%)</td>
<td>26 11</td>
</tr>
</tbody>
</table>

All (56) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>4</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>39</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>133</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>155</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>237</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>272</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>288</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>322</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>332</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>358</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>39</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>138</td>
<td>LYS</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>155</td>
<td>TYR</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>207</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>221</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>272</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>276</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>288</td>
<td>MET</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>322</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>332</td>
<td>TRP</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>361</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>371</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>39</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>40</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>207</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>232</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>251</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>272</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>288</td>
<td>MET</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>298</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>322</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>332</td>
<td>TRP</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>358</td>
<td>LEU</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>359</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>361</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>371</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>374</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>377</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>378</td>
<td>CYS</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>24</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>33</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>36</td>
<td>SER</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>38</td>
<td>VAL</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>78</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>187</td>
<td>GLU</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>207</td>
<td>ARG</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>258</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>288</td>
<td>MET</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>293</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>298</td>
<td>LYS</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>322</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>332</td>
<td>TRP</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>350</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>358</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>359</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>371</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (17) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>78</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>169</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>184</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>221</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>78</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>175</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>184</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>221</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>316</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>64</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>78</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>175</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>184</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>322</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>19</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>163</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>184</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

4 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>1</td>
<td>CSD</td>
<td>A</td>
<td>378</td>
<td>1</td>
<td>4,7,8</td>
<td>1.25</td>
</tr>
<tr>
<td>2</td>
<td>CSD</td>
<td>B</td>
<td>378</td>
<td>2</td>
<td>4,7,8</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>CSO</td>
<td>B</td>
<td>89</td>
<td>2</td>
<td>4,6,7</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td>CSO</td>
<td>D</td>
<td>89</td>
<td>4</td>
<td>4,6,7</td>
<td>1.11</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSD</td>
<td>A</td>
<td>378</td>
<td>1</td>
<td>-</td>
<td>0/2/6/8</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>CSD</td>
<td>B</td>
<td>378</td>
<td>2</td>
<td>-</td>
<td>0/2/6/8</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>CSO</td>
<td>B</td>
<td>89</td>
<td>2</td>
<td>-</td>
<td>0/1/5/7</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>CSO</td>
<td>D</td>
<td>89</td>
<td>4</td>
<td>-</td>
<td>0/1/5/7</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

All (2) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>378</td>
<td>CSD</td>
<td>CA-C</td>
<td>2.20</td>
<td>1.53</td>
<td>1.50</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>378</td>
<td>CSD</td>
<td>CA-C</td>
<td>2.51</td>
<td>1.53</td>
<td>1.50</td>
</tr>
</tbody>
</table>

All (1) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>378</td>
<td>CSD</td>
<td>OD1-SG-CB</td>
<td>2.40</td>
<td>110.10</td>
<td>105.54</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

4 monomers are involved in 8 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>378</td>
<td>CSD</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>378</td>
<td>CSD</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>89</td>
<td>CSO</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>89</td>
<td>CSO</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

Of 33 ligands modelled in this entry, 6 are monoatomic - leaving 27 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1394</td>
<td>-</td>
<td>4,4,4</td>
<td>0.18</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1395</td>
<td>-</td>
<td>4,4,4</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1396</td>
<td>-</td>
<td>4,4,4</td>
<td>0.24</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1397</td>
<td>-</td>
<td>4,4,4</td>
<td>0.15</td>
</tr>
</tbody>
</table>
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1394</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1395</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1396</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1397</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1398</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1399</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1400</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1401</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1402</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1403</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1395</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1396</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1397</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1398</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1399</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1400</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1401</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1402</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1403</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1404</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1393</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1397</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1398</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1399</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1394</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1395</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1396</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1397</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1397</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1398</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1399</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>6</td>
<td>COA</td>
<td>B</td>
<td>1401</td>
<td>-</td>
<td>-</td>
<td>0/44/64/64</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1402</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1403</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1404</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1393</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1397</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1398</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1399</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1394</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1395</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1396</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1397</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

All (10) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(A)</th>
<th>Ideal(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>C5A-C4A</td>
<td>2.13</td>
<td>1.45</td>
<td>1.40</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>C5A-C4A</td>
<td>2.47</td>
<td>1.46</td>
<td>1.40</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>P1A-O2A</td>
<td>2.91</td>
<td>1.69</td>
<td>1.55</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>P1A-O2A</td>
<td>3.04</td>
<td>1.70</td>
<td>1.55</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>P2A-O5A</td>
<td>3.06</td>
<td>1.70</td>
<td>1.55</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>P2A-O5A</td>
<td>3.08</td>
<td>1.70</td>
<td>1.55</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>P3A-O8A</td>
<td>3.79</td>
<td>1.70</td>
<td>1.54</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>P3A-O8A</td>
<td>3.87</td>
<td>1.70</td>
<td>1.54</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>P3A-O7A</td>
<td>5.89</td>
<td>1.70</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>P3A-O7A</td>
<td>5.90</td>
<td>1.70</td>
<td>1.50</td>
</tr>
</tbody>
</table>

All (15) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>N3A-C2A-N1A</td>
<td>-6.02</td>
<td>123.71</td>
<td>128.86</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>C7P-C6P-C5P</td>
<td>-4.68</td>
<td>104.63</td>
<td>112.31</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>N3A-C2A-N1A</td>
<td>-4.65</td>
<td>124.89</td>
<td>128.86</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>P2A-O3A-P1A</td>
<td>-4.22</td>
<td>118.46</td>
<td>132.63</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>C7P-N8P-C9P</td>
<td>-3.12</td>
<td>116.86</td>
<td>122.59</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>P2A-O3A-P1A</td>
<td>-2.98</td>
<td>122.61</td>
<td>132.63</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>C7P-N8P-C9P</td>
<td>-2.93</td>
<td>117.20</td>
<td>122.59</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>C3P-N4P-C5P</td>
<td>-2.85</td>
<td>117.45</td>
<td>122.85</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>C7P-C6P-C5P</td>
<td>-2.61</td>
<td>108.02</td>
<td>112.31</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>C4B-O4B-C1B</td>
<td>-2.42</td>
<td>107.30</td>
<td>109.83</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>C1B-N9A-C4A</td>
<td>-2.15</td>
<td>122.92</td>
<td>126.64</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>C2A-N1A-C6A</td>
<td>2.21</td>
<td>122.51</td>
<td>118.75</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>C6P-C5P-N4P</td>
<td>2.22</td>
<td>120.31</td>
<td>116.46</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>C6P-C7P-N8P</td>
<td>2.63</td>
<td>117.19</td>
<td>111.85</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>C6P-C7P-N8P</td>
<td>3.20</td>
<td>118.34</td>
<td>111.85</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

9 monomers are involved in 25 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td>1394</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1400</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1401</td>
<td>SO4</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>1402</td>
<td>COA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>1398</td>
<td>SO4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>1401</td>
<td>COA</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>1394</td>
<td>SO4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>1396</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>1397</td>
<td>SO4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>388/392 (98%)</td>
<td>-0.37</td>
<td>2 (0%)</td>
<td>90</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>387/392 (98%)</td>
<td>-0.36</td>
<td>4 (1%)</td>
<td>82</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>389/392 (99%)</td>
<td>2.34</td>
<td>192 (49%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>388/392 (98%)</td>
<td>2.69</td>
<td>213 (54%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1552/1568 (98%)</td>
<td>1.08</td>
<td>411 (26%)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

All (411) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>307</td>
<td>ILE</td>
<td>14.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>392</td>
<td>LEU</td>
<td>13.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>331</td>
<td>GLY</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>330</td>
<td>LEU</td>
<td>12.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>170</td>
<td>LEU</td>
<td>11.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>206</td>
<td>GLY</td>
<td>11.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>358</td>
<td>LEU</td>
<td>9.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>325</td>
<td>ALA</td>
<td>9.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>310</td>
<td>LEU</td>
<td>9.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>223</td>
<td>ALA</td>
<td>9.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>367</td>
<td>ARG</td>
<td>9.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>334</td>
<td>PRO</td>
<td>9.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>299</td>
<td>ALA</td>
<td>9.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>339</td>
<td>VAL</td>
<td>7.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>208</td>
<td>LYS</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>312</td>
<td>LEU</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>389</td>
<td>ILE</td>
<td>7.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>106</td>
<td>GLY</td>
<td>7.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>258</td>
<td>LEU</td>
<td>7.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>132</td>
<td>VAL</td>
<td>7.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>229</td>
<td>ALA</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>275</td>
<td>ILE</td>
<td>7.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>320</td>
<td>ALA</td>
<td>7.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>361</td>
<td>LEU</td>
<td>6.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>388</td>
<td>CYS</td>
<td>6.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>42</td>
<td>ALA</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>260</td>
<td>SER</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>340</td>
<td>ASN</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>325</td>
<td>ALA</td>
<td>6.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>185</td>
<td>LYS</td>
<td>6.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>334</td>
<td>PRO</td>
<td>6.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>269</td>
<td>ILE</td>
<td>6.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>262</td>
<td>ALA</td>
<td>6.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>326</td>
<td>VAL</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>108</td>
<td>ALA</td>
<td>6.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>177</td>
<td>ALA</td>
<td>6.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>5</td>
<td>ILE</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>5</td>
<td>ILE</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>369</td>
<td>GLY</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>192</td>
<td>ASP</td>
<td>6.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>276</td>
<td>VAL</td>
<td>6.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>186</td>
<td>ALA</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>329</td>
<td>ASP</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>289</td>
<td>GLY</td>
<td>5.9</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>227</td>
<td>SER</td>
<td>5.9</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>228</td>
<td>MET</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>371</td>
<td>ARG</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>340[^A]</td>
<td>ASN</td>
<td>5.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>207</td>
<td>ARG</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>107</td>
<td>ASP</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>315</td>
<td>ALA</td>
<td>5.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>293</td>
<td>ILE</td>
<td>5.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>81</td>
<td>THR</td>
<td>5.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>168</td>
<td>TRP</td>
<td>5.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>165</td>
<td>ALA</td>
<td>5.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>6</td>
<td>VAL</td>
<td>5.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>362</td>
<td>LEU</td>
<td>5.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>197</td>
<td>ASP</td>
<td>5.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>232</td>
<td>ARG</td>
<td>5.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>246</td>
<td>ALA</td>
<td>5.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>180</td>
<td>VAL</td>
<td>5.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>265</td>
<td>SER</td>
<td>5.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>161</td>
<td>ALA</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>211</td>
<td>ILE</td>
<td>5.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>303</td>
<td>ALA</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>164</td>
<td>VAL</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>281</td>
<td>VAL</td>
<td>5.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>305</td>
<td>TRP</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>279</td>
<td>ALA</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>375</td>
<td>ALA</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>312</td>
<td>LEU</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>387</td>
<td>MET</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>332</td>
<td>TRP</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>180</td>
<td>VAL</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>316</td>
<td>ASN</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>179</td>
<td>ALA</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>347</td>
<td>GLY</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>47</td>
<td>GLY</td>
<td>5.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>219</td>
<td>ILE</td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>272</td>
<td>LEU</td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>43</td>
<td>GLY</td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>337</td>
<td>VAL</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>97</td>
<td>ALA</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>181</td>
<td>ALA</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>315</td>
<td>ALA</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>372</td>
<td>LYS</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>353</td>
<td>SER</td>
<td>4.9</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>6</td>
<td>VAL</td>
<td>4.9</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>385</td>
<td>VAL</td>
<td>4.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>105</td>
<td>THR</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>36</td>
<td>SER</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>333</td>
<td>ASP</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>377</td>
<td>LEU</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>153</td>
<td>TYR</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>236</td>
<td>ASP</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>341</td>
<td>GLY</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>240</td>
<td>THR</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>225</td>
<td>LEU</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>231</td>
<td>LEU</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>188</td>
<td>ALA</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>239</td>
<td>GLY</td>
<td>4.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>209</td>
<td>GLY</td>
<td>4.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>305</td>
<td>TRP</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>321</td>
<td>ALA</td>
<td>4.6</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>132</td>
<td>VAL</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>169</td>
<td>GLN</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>4</td>
<td>SER</td>
<td>4.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>313</td>
<td>VAL</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>301</td>
<td>GLU</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>362</td>
<td>LEU</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>60</td>
<td>ALA</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>204</td>
<td>VAL</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>311</td>
<td>ASP</td>
<td>4.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>278</td>
<td>TRP</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>220</td>
<td>ARG</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>278</td>
<td>TRP</td>
<td>4.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>392</td>
<td>LEU</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>207</td>
<td>ARG</td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>272</td>
<td>LEU</td>
<td>4.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>277</td>
<td>SER</td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>15</td>
<td>VAL</td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>360</td>
<td>THR</td>
<td>4.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>287</td>
<td>VAL</td>
<td>4.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>161</td>
<td>ALA</td>
<td>4.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>107</td>
<td>ASP</td>
<td>4.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>348</td>
<td>ALA</td>
<td>4.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>391</td>
<td>SER</td>
<td>4.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>342</td>
<td>GLY</td>
<td>4.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>7</td>
<td>ILE</td>
<td>4.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>382</td>
<td>GLY</td>
<td>4.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>391</td>
<td>SER</td>
<td>4.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>367</td>
<td>ARG</td>
<td>4.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>352</td>
<td>ALA</td>
<td>4.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>331</td>
<td>GLY</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>262</td>
<td>ALA</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>341</td>
<td>GLY</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>374</td>
<td>LEU</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>39</td>
<td>LEU</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>42</td>
<td>ALA</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>360</td>
<td>THR</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>182</td>
<td>SER</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>317</td>
<td>GLU</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>370</td>
<td>ALA</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>389</td>
<td>ILE</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>218</td>
<td>TYR</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>233</td>
<td>PRO</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>46</td>
<td>ALA</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>308</td>
<td>GLY</td>
<td>3.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>227</td>
<td>SER</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>171</td>
<td>SER</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>324</td>
<td>CYS</td>
<td>3.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>115</td>
<td>GLY</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>292</td>
<td>PRO</td>
<td>3.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>108</td>
<td>ALA</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>239</td>
<td>GLY</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>339</td>
<td>VAL</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>67</td>
<td>ALA</td>
<td>3.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>270</td>
<td>GLN</td>
<td>3.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>285</td>
<td>PRO</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>269</td>
<td>ILE</td>
<td>3.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>83</td>
<td>TRP</td>
<td>3.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>255</td>
<td>ALA</td>
<td>3.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>162</td>
<td>GLU</td>
<td>3.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>152</td>
<td>PHE</td>
<td>3.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>363</td>
<td>PHE</td>
<td>3.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>264</td>
<td>ALA</td>
<td>3.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>310</td>
<td>LEU</td>
<td>3.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>255</td>
<td>ALA</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>103</td>
<td>ILE</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>226</td>
<td>ASP</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>57</td>
<td>VAL</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>280</td>
<td>THR</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>208</td>
<td>LYS</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>241</td>
<td>VAL</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>370</td>
<td>ALA</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>8</td>
<td>ALA</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>226</td>
<td>ASP</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>290</td>
<td>THR</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>24</td>
<td>ASN</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>172[A]</td>
<td>ARG</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>390</td>
<td>GLU</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>361</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>151</td>
<td>ALA</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>343</td>
<td>ALA</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>225</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>44</td>
<td>VAL</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>256</td>
<td>ALA</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>170</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>321</td>
<td>ALA</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>233</td>
<td>PRO</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>357</td>
<td>ILE</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>49</td>
<td>VAL</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>80</td>
<td>ALA</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>330</td>
<td>LEU</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>8</td>
<td>ALA</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>275</td>
<td>ILE</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>147</td>
<td>GLY</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>241</td>
<td>VAL</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>298</td>
<td>LYS</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>320</td>
<td>ALA</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>292</td>
<td>PRO</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>14</td>
<td>ALA</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>113</td>
<td>ALA</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>293</td>
<td>ILE</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>257</td>
<td>LEU</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>105</td>
<td>THR</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>99</td>
<td>GLY</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>234</td>
<td>ALA</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>346</td>
<td>ILE</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>346</td>
<td>ILE</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>283</td>
<td>VAL</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>295</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>319</td>
<td>PHE</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>328</td>
<td>LYS</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>372</td>
<td>LYS</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>384</td>
<td>GLY</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>158</td>
<td>GLY</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>230</td>
<td>LYS</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>253</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>83</td>
<td>TRP</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>44</td>
<td>VAL</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>313</td>
<td>VAL</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>237</td>
<td>LYS</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>93</td>
<td>LEU</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>10</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>113</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>228</td>
<td>MET</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>218</td>
<td>TYR</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>299</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>302</td>
<td>ARG</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>7</td>
<td>ILE</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>211</td>
<td>ILE</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>243</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>254</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>232</td>
<td>ARG</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>195</td>
<td>PHE</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>276</td>
<td>VAL</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>22</td>
<td>PHE</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>235</td>
<td>PHE</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>318</td>
<td>ALA</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>327</td>
<td>ASN</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>191</td>
<td>LYS</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>365</td>
<td>MET</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>58</td>
<td>LEU</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>10</td>
<td>ALA</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>274</td>
<td>ARG</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>332</td>
<td>TRP</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>169</td>
<td>GLN</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>74</td>
<td>ALA</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>257</td>
<td>LEU</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>271</td>
<td>PRO</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>202</td>
<td>PHE</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>387</td>
<td>MET</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>324</td>
<td>CYS</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>110</td>
<td>ILE</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>203</td>
<td>ILE</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>195</td>
<td>PHE</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>240</td>
<td>THR</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>38</td>
<td>VAL</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>368</td>
<td>ARG</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>99</td>
<td>GLY</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>338</td>
<td>ASN</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>223</td>
<td>ALA</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>365</td>
<td>MET</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>187</td>
<td>GLU</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>235</td>
<td>PHE</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>207</td>
<td>ARG</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>210</td>
<td>ASP</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>306</td>
<td>LYS</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>386</td>
<td>ALA</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>306</td>
<td>LYS</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>94</td>
<td>ARG</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>96</td>
<td>VAL</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>57</td>
<td>VAL</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>314</td>
<td>GLU</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>356</td>
<td>ARG</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>112</td>
<td>VAL</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>230</td>
<td>LYS</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>280</td>
<td>THR</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>95</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>355</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>104</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>374</td>
<td>LEU</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>173</td>
<td>ASP</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>21</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>279</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>221</td>
<td>HIS</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>373</td>
<td>GLY</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>122</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>153</td>
<td>TYR</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>358</td>
<td>LEU</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>238</td>
<td>GLU</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>80</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>356</td>
<td>ARG</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>371</td>
<td>ARG</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>98</td>
<td>LEU</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>221</td>
<td>HIS</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>335</td>
<td>SER</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>295</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>112</td>
<td>VAL</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>164</td>
<td>VAL</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>366</td>
<td>LYS</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>173</td>
<td>ASP</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>300</td>
<td>LEU</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>336</td>
<td>ILE</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>77</td>
<td>PRO</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>182</td>
<td>SER</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>385</td>
<td>VAL</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>263</td>
<td>GLU</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>301</td>
<td>GLU</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>237</td>
<td>LYS</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>190</td>
<td>GLN</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>231</td>
<td>LEU</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>208</td>
<td>LYS</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>49</td>
<td>VAL</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>188</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>344</td>
<td>ILE</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>380</td>
<td>GLY</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>224</td>
<td>THR</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>286</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>22</td>
<td>PHE</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>352</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>37</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>236</td>
<td>ASP</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>224</td>
<td>THR</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>52</td>
<td>VAL</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>81</td>
<td>THR</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>359</td>
<td>ASN</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>168</td>
<td>TRP</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>294</td>
<td>PRO</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>348</td>
<td>ALA</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>266</td>
<td>ARG</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>91</td>
<td>SER</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>337</td>
<td>VAL</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>249</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>291</td>
<td>GLY</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>309</td>
<td>ASP</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>171</td>
<td>SER</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>111</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>140</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>199</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>271</td>
<td>PRO</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>98</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>308</td>
<td>GLY</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>43</td>
<td>GLY</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>152</td>
<td>PHE</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>290</td>
<td>THR</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>176</td>
<td>ASP</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>289</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>154</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>336</td>
<td>ILE</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>194[A]</td>
<td>ARG</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>288</td>
<td>MET</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>373</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>384</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>33</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>178</td>
<td>PHE</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>140</td>
<td>ILE</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>242</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>317</td>
<td>GLU</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>288</td>
<td>MET</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>111</td>
<td>ILE</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>378</td>
<td>CYS</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>154</td>
<td>GLY</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>285</td>
<td>PRO</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>294</td>
<td>PRO</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>95</td>
<td>ALA</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>109</td>
<td>SER</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>20</td>
<td>GLY</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>381</td>
<td>GLY</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>93</td>
<td>LEU</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>328</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>266</td>
<td>ARG</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>18</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>176</td>
<td>ASP</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>104</td>
<td>ALA</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>106</td>
<td>GLY</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>345</td>
<td>ALA</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>53</td>
<td>ILE</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>9</td>
<td>SER</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>26</td>
<td>PRO</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>354</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>323</td>
<td>ALA</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>296</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>12</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>50</td>
<td>ASN</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>157</td>
<td>MET</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>131</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>297</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>319</td>
<td>PHE</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>167</td>
<td>GLN</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>119</td>
<td>MET</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>166</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>304</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>131</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>244</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>248</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>326</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>259</td>
<td>MET</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>380</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>185</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>207</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>159</td>
<td>THR</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>238</td>
<td>GLU</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>335</td>
<td>SER</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>222</td>
<td>GLY</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>368</td>
<td>ARG</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>34</td>
<td>VAL</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>45</td>
<td>ALA</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>167</td>
<td>GLN</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>79</td>
<td>GLU</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CSO</td>
<td>D</td>
<td>89</td>
<td>7/8</td>
<td>0.85</td>
<td>0.13</td>
<td>36,42,63,77</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CSO</td>
<td>B</td>
<td>89</td>
<td>7/8</td>
<td>0.96</td>
<td>0.08</td>
<td>4,10,34,73</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CSD</td>
<td>B</td>
<td>378</td>
<td>8/9</td>
<td>0.98</td>
<td>0.07</td>
<td>4,9,24,109</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>CSD</td>
<td>A</td>
<td>378</td>
<td>8/9</td>
<td>0.98</td>
<td>0.08</td>
<td>7,13,23,32</td>
<td>0</td>
</tr>
</tbody>
</table>

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CL</td>
<td>D</td>
<td>1399</td>
<td>1/1</td>
<td>-0.13</td>
<td>0.34</td>
<td>80,80,80,80</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1399</td>
<td>5/5</td>
<td>0.54</td>
<td>0.28</td>
<td>95,99,101,101</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1397</td>
<td>5/5</td>
<td>0.69</td>
<td>0.56</td>
<td>120,121,122,123</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1403</td>
<td>5/5</td>
<td>0.74</td>
<td>0.35</td>
<td>94,94,95,98</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>NA</td>
<td>C</td>
<td>1395</td>
<td>1/1</td>
<td>0.76</td>
<td>0.12</td>
<td>60,60,60,60</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1393</td>
<td>5/5</td>
<td>0.76</td>
<td>0.24</td>
<td>108,108,109,109</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1399</td>
<td>5/5</td>
<td>0.76</td>
<td>0.15</td>
<td>90,91,94,94</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1394</td>
<td>5/5</td>
<td>0.82</td>
<td>0.27</td>
<td>63,70,71,75</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1398</td>
<td>5/5</td>
<td>0.83</td>
<td>0.22</td>
<td>96,97,97,98</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1397</td>
<td>5/5</td>
<td>0.84</td>
<td>0.14</td>
<td>66,66,71,73</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1403</td>
<td>5/5</td>
<td>0.84</td>
<td>0.24</td>
<td>86,87,88,89</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1395</td>
<td>5/5</td>
<td>0.84</td>
<td>0.18</td>
<td>89,89,90,91</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>C</td>
<td>1397</td>
<td>5/5</td>
<td>0.87</td>
<td>0.16</td>
<td>84,84,85,86</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1398</td>
<td>5/5</td>
<td>0.87</td>
<td>0.21</td>
<td>71,78,79,81</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1400</td>
<td>5/5</td>
<td>0.88</td>
<td>0.20</td>
<td>60,60,69,75</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1399</td>
<td>5/5</td>
<td>0.88</td>
<td>0.21</td>
<td>78,78,80,81</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1396</td>
<td>5/5</td>
<td>0.89</td>
<td>0.13</td>
<td>31,39,50,57</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1404</td>
<td>5/5</td>
<td>0.89</td>
<td>0.26</td>
<td>77,77,79,82</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1395</td>
<td>5/5</td>
<td>0.89</td>
<td>0.15</td>
<td>46,54,58,59</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1396</td>
<td>5/5</td>
<td>0.90</td>
<td>0.14</td>
<td>45,49,57,63</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>COA</td>
<td>A</td>
<td>1402</td>
<td>48/48</td>
<td>0.90</td>
<td>0.12</td>
<td>21,32,63,131</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>COA</td>
<td>B</td>
<td>1401</td>
<td>48/48</td>
<td>0.91</td>
<td>0.12</td>
<td>20,36,80,112</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1402</td>
<td>5/5</td>
<td>0.92</td>
<td>0.12</td>
<td>75,75,76,76</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>D</td>
<td>1396</td>
<td>5/5</td>
<td>0.92</td>
<td>0.16</td>
<td>52,59,70,71</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1397</td>
<td>5/5</td>
<td>0.93</td>
<td>0.17</td>
<td>47,48,56,56</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>NA</td>
<td>D</td>
<td>1398</td>
<td>1/1</td>
<td>0.93</td>
<td>0.10</td>
<td>38,38,38,38</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>CL</td>
<td>C</td>
<td>1396</td>
<td>1/1</td>
<td>0.93</td>
<td>0.14</td>
<td>58,58,58,58</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1398</td>
<td>5/5</td>
<td>0.94</td>
<td>0.14</td>
<td>45,51,56,57</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>NA</td>
<td>C</td>
<td>1394</td>
<td>1/1</td>
<td>0.94</td>
<td>0.10</td>
<td>34,34,34,34</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1394</td>
<td>5/5</td>
<td>0.95</td>
<td>0.11</td>
<td>41,43,48,48</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>B</td>
<td>1395</td>
<td>5/5</td>
<td>0.97</td>
<td>0.11</td>
<td>47,50,52,55</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>CL</td>
<td>B</td>
<td>1400</td>
<td>1/1</td>
<td>0.99</td>
<td>0.03</td>
<td>28,28,28,28</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>SO4</td>
<td>A</td>
<td>1401</td>
<td>5/5</td>
<td>0.99</td>
<td>0.36</td>
<td>28,44,49,50</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.