

Oct 28, 2024 - 03:00 PM JST

PDB ID	:	8WLU
EMDB ID	:	EMD-37632
Title	:	Cryo-EM structure of bat RsSHC014 spike glycoprotein
Authors	:	Wang, X.; Qiao, S.
Deposited on	:	2023-10-01
Resolution	:	2.87 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.87 Å.

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ran	ks Value
Ramachandran outliers		0
Sidechain outliers		3.8%
Worse		Better
Percenti	le relative to all structures	
Percenti	le relative to all EM structures	
	1	1
Matuia	Whole archive	EM structures
Metric	$(\# { m Entries})$	$(\# {\rm Entries})$
Ramachandran outliers	207382	16835

206894

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

16415

Mol	Chain	Length	Quality of chain	
1	А	1271	84%	• 13%
1	В	1271	84%	• 13%
1	С	1271	85%	• 13%
2	D	2	100%	
2	J	2	100%	
2	Κ	2	100%	
2	L	2	100%	
2	Ν	2	50% 50%	
2	0	2	100%	
2	Р	2	100%	

Mol

Continued from previous page... Chain Length

Quality of chain

2Q 2100% 2 \mathbf{R} $\mathbf{2}$ 100% 2 \mathbf{S} 2100% Т 22100% 2Ζ $\mathbf{2}$ 100% 22 \mathbf{a} 100% $\mathbf{2}$ 2b 100% 2 \mathbf{d} 250% 50% 22е 100% f 22100% $\mathbf{2}$ 2g 100% 22h 100% 2 $\mathbf{2}$ i 100% 22j 100% 22р 100% 2 $\mathbf{2}$ q 100% $\mathbf{2}$ 2r 100% 22 \mathbf{t} 50% 50% 22u 100% 22v 100% $\mathbf{2}$ 2W 100% $\mathbf{2}$ 2х 100% 22у 100% 3 Ε 3 100% 3 F 3 100%

Mol	Chain	Length	Quality of chain	
3	G	3	100%	_
3	Н	3	100%	_
3	Ι	3	67% 33%	
3	М	3	33% 67%	_
3	U	3	100%	_
3	V	3	100%	
3	W	3	100%	_
3	Х	3	100%	_
3	Y	3	67% 33%	
3	с	3	33% 67%	
3	k	3	100%	_
3	1	3	100%	_
3	m	3	100%	
3	n	3	100%	_
3	0	3	33% 67%	
3	\mathbf{S}	3	33% 67%	

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 27438 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1 Λ		1106	Total	С	Ν	Ο	S	0	0
	Π	1100	8604	5477	1439	1644	44	0	0
1	С	1106	Total	С	Ν	Ο	\mathbf{S}	0	0
1	U	1100	8604	5477	1439	1644	44	0	0
1	В	1106	Total	С	Ν	Ο	S	0	0
ГВ	1100	8604	5477	1439	1644	44	0	U	

• Molecule 1 is a protein called Spike glycoprotein, Fibritin.

	There are 16	8 discrepancies	between th	e modelled a	and reference	sequences:
--	--------------	-----------------	------------	--------------	---------------	------------

Chain	Residue	Modelled	Actual	Comment	Reference
А	969	PRO	LYS	conflict	UNP U5WLK5
А	970	PRO	VAL	conflict	UNP U5WLK5
А	1192	GLY	-	linker	UNP U5WLK5
А	1193	SER	-	linker	UNP U5WLK5
А	1220	LEU	-	expression tag	UNP A0A346FJN8
А	1221	GLY	-	expression tag	UNP A0A346FJN8
A	1222	ARG	-	expression tag	UNP A0A346FJN8
A	1223	SER	-	expression tag	UNP A0A346FJN8
А	1224	LEU	-	expression tag	UNP A0A346FJN8
A	1225	GLU	-	expression tag	UNP A0A346FJN8
A	1226	VAL	-	expression tag	UNP A0A346FJN8
А	1227	LEU	-	expression tag	UNP A0A346FJN8
A	1228	PHE	-	expression tag	UNP A0A346FJN8
А	1229	GLN	-	expression tag	UNP A0A346FJN8
A	1230	GLY	-	expression tag	UNP A0A346FJN8
A	1231	PRO	-	expression tag	UNP A0A346FJN8
A	1232	GLY	-	expression tag	UNP A0A346FJN8
A	1233	HIS	-	expression tag	UNP A0A346FJN8
A	1234	HIS	-	expression tag	UNP A0A346FJN8
А	1235	HIS	-	expression tag	UNP A0A346FJN8
А	1236	HIS	-	expression tag	UNP A0A346FJN8
A	1237	HIS	-	expression tag	UNP A0A346FJN8
A	1238	HIS	-	expression tag	UNP A0A346FJN8
A	1239	HIS	-	expression tag	UNP A0A346FJN8

Continu	iea jrom pre	evious page			
Chain	Residue	Modelled	Actual	Comment	Reference
A	1240	HIS	-	expression tag	UNP A0A346FJN8
A	1241	SER	-	expression tag	UNP A0A346FJN8
A	1242	ALA	-	expression tag	UNP A0A346FJN8
А	1243	TRP	-	expression tag	UNP A0A346FJN8
А	1244	SER	-	expression tag	UNP A0A346FJN8
А	1245	HIS	-	expression tag	UNP A0A346FJN8
А	1246	PRO	-	expression tag	UNP A0A346FJN8
А	1247	GLN	-	expression tag	UNP A0A346FJN8
А	1248	PHE	-	expression tag	UNP A0A346FJN8
А	1249	GLU	-	expression tag	UNP A0A346FJN8
A	1250	LYS	-	expression tag	UNP A0A346FJN8
A	1251	GLY	-	expression tag	UNP A0A346FJN8
A	1252	GLY	-	expression tag	UNP A0A346FJN8
А	1253	GLY	-	expression tag	UNP A0A346FJN8
А	1254	SER	-	expression tag	UNP A0A346FJN8
А	1255	GLY	-	expression tag	UNP A0A346FJN8
А	1256	GLY	-	expression tag	UNP A0A346FJN8
А	1257	GLY	-	expression tag	UNP A0A346FJN8
А	1258	GLY	-	expression tag	UNP A0A346FJN8
А	1259	SER	-	expression tag	UNP A0A346FJN8
А	1260	GLY	-	expression tag	UNP A0A346FJN8
А	1261	GLY	-	expression tag	UNP A0A346FJN8
А	1262	SER	-	expression tag	UNP A0A346FJN8
А	1263	ALA	-	expression tag	UNP A0A346FJN8
А	1264	TRP	-	expression tag	UNP A0A346FJN8
А	1265	SER	-	expression tag	UNP A0A346FJN8
А	1266	HIS	-	expression tag	UNP A0A346FJN8
А	1267	PRO	-	expression tag	UNP A0A346FJN8
А	1268	GLN	-	expression tag	UNP A0A346FJN8
А	1269	PHE	-	expression tag	UNP A0A346FJN8
А	1270	GLU	-	expression tag	UNP A0A346FJN8
А	1271	LYS	-	expression tag	UNP A0A346FJN8
С	969	PRO	LYS	conflict	UNP U5WLK5
С	970	PRO	VAL	conflict	UNP U5WLK5
С	1192	GLY	-	linker	UNP U5WLK5
С	1193	SER	-	linker	UNP U5WLK5
С	1220	LEU	-	expression tag	UNP A0A346FJN8
С	1221	GLY	-	expression tag	UNP A0A346FJN8
С	1222	ARG	-	expression tag	UNP A0A346FJN8
С	1223	SER	-	expression tag	UNP A0A346FJN8
С	1224	LEU	-	expression tag	UNP A0A346FJN8
С	1225	GLU	-	expression tag	UNP A0A346FJN8

Continu	lea from pre	vious page			DC
Chain	Residue	Modelled	Actual	Comment	Reference
C	1226	VAL	-	expression tag	UNP A0A346FJN8
C	1227	LEU	-	expression tag	UNP A0A346FJN8
C	1228	PHE	-	expression tag	UNP A0A346FJN8
C	1229	GLN	-	expression tag	UNP A0A346FJN8
C	1230	GLY	-	expression tag	UNP A0A346FJN8
C	1231	PRO	-	expression tag	UNP A0A346FJN8
C	1232	GLY	-	expression tag	UNP A0A346FJN8
C	1233	HIS	-	expression tag	UNP A0A346FJN8
С	1234	HIS	-	expression tag	UNP A0A346FJN8
С	1235	HIS	-	expression tag	UNP A0A346FJN8
C	1236	HIS	-	expression tag	UNP A0A346FJN8
С	1237	HIS	-	expression tag	UNP A0A346FJN8
С	1238	HIS	-	expression tag	UNP A0A346FJN8
С	1239	HIS	-	expression tag	UNP A0A346FJN8
С	1240	HIS	-	expression tag	UNP A0A346FJN8
С	1241	SER	-	expression tag	UNP A0A346FJN8
С	1242	ALA	-	expression tag	UNP A0A346FJN8
С	1243	TRP	-	expression tag	UNP A0A346FJN8
С	1244	SER	-	expression tag	UNP A0A346FJN8
С	1245	HIS	-	expression tag	UNP A0A346FJN8
С	1246	PRO	-	expression tag	UNP A0A346FJN8
С	1247	GLN	-	expression tag	UNP A0A346FJN8
С	1248	PHE	-	expression tag	UNP A0A346FJN8
С	1249	GLU	-	expression tag	UNP A0A346FJN8
С	1250	LYS	-	expression tag	UNP A0A346FJN8
С	1251	GLY	-	expression tag	UNP A0A346FJN8
С	1252	GLY	-	expression tag	UNP A0A346FJN8
С	1253	GLY	-	expression tag	UNP A0A346FJN8
С	1254	SER	-	expression tag	UNP A0A346FJN8
С	1255	GLY	_	expression tag	UNP A0A346FJN8
С	1256	GLY	_	expression tag	UNP A0A346FJN8
С	1257	GLY	_	expression tag	UNP A0A346FJN8
C	1258	GLY	-	expression tag	UNP A0A346FJN8
С	1259	SER	-	expression tag	UNP A0A346FJN8
C	1260	GLY	-	expression tag	UNP A0A346FJN8
C	1261	GLY	-	expression tag	UNP A0A346FJN8
C	1262	SER	-	expression tag	UNP A0A346FJN8
C	1263	ALA	-	expression tag	UNP A0A346FJN8
C	1264	TRP	-	expression tag	UNP A0A346FJN8
C	1265	SER	-	expression tag	UNP A0A346FJN8
C	1266	HIS	-	expression tag	UNP A0A346FJN8
C	1267	PRO	_	expression tag	UNP A0A346FJN8

Continu	iea from pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
С	1268	GLN	-	expression tag	UNP A0A346FJN8
С	1269	PHE	-	expression tag	UNP A0A346FJN8
С	1270	GLU	-	expression tag	UNP A0A346FJN8
С	1271	LYS	-	expression tag	UNP A0A346FJN8
В	969	PRO	LYS	conflict	UNP U5WLK5
В	970	PRO	VAL	conflict	UNP U5WLK5
В	1192	GLY	-	linker	UNP U5WLK5
В	1193	SER	-	linker	UNP U5WLK5
В	1220	LEU	-	expression tag	UNP A0A346FJN8
В	1221	GLY	-	expression tag	UNP A0A346FJN8
В	1222	ARG	-	expression tag	UNP A0A346FJN8
В	1223	SER	-	expression tag	UNP A0A346FJN8
В	1224	LEU	-	expression tag	UNP A0A346FJN8
В	1225	GLU	-	expression tag	UNP A0A346FJN8
В	1226	VAL	-	expression tag	UNP A0A346FJN8
В	1227	LEU	-	expression tag	UNP A0A346FJN8
В	1228	PHE	-	expression tag	UNP A0A346FJN8
В	1229	GLN	-	expression tag	UNP A0A346FJN8
В	1230	GLY	-	expression tag	UNP A0A346FJN8
В	1231	PRO	-	expression tag	UNP A0A346FJN8
В	1232	GLY	-	expression tag	UNP A0A346FJN8
В	1233	HIS	-	expression tag	UNP A0A346FJN8
В	1234	HIS	-	expression tag	UNP A0A346FJN8
В	1235	HIS	-	expression tag	UNP A0A346FJN8
В	1236	HIS	-	expression tag	UNP A0A346FJN8
В	1237	HIS	-	expression tag	UNP A0A346FJN8
В	1238	HIS	-	expression tag	UNP A0A346FJN8
В	1239	HIS	-	expression tag	UNP A0A346FJN8
В	1240	HIS	_	expression tag	UNP A0A346FJN8
В	1241	SER	_	expression tag	UNP A0A346FJN8
В	1242	ALA	_	expression tag	UNP A0A346FJN8
В	1243	TRP	_	expression tag	UNP A0A346FJN8
В	1244	SER	-	expression tag	UNP A0A346FJN8
В	1245	HIS	_	expression tag	UNP A0A346FJN8
В	1246	PRO	_	expression tag	UNP A0A346FJN8
В	1247	GLN	-	expression tag	UNP A0A346FJN8
В	1248	PHE	-	expression tag	UNP A0A346FJN8
В	1249	GLU	-	expression tag	UNP A0A346FJN8
В	1250	LYS	-	expression tag	UNP A0A346FJN8
В	1251	GLY	-	expression tag	UNP A0A346FJN8
В	1252	GLY	-	expression tag	UNP A0A346FJN8
В	1253	GLY	-	expression tag	UNP A0A346FJN8

Chain	Residue	Modelled	Actual	Comment	Reference
В	1254	SER	-	expression tag	UNP A0A346FJN8
В	1255	GLY	-	expression tag	UNP A0A346FJN8
В	1256	GLY	-	expression tag	UNP A0A346FJN8
В	1257	GLY	-	expression tag	UNP A0A346FJN8
В	1258	GLY	-	expression tag	UNP A0A346FJN8
В	1259	SER	-	expression tag	UNP A0A346FJN8
В	1260	GLY	-	expression tag	UNP A0A346FJN8
В	1261	GLY	-	expression tag	UNP A0A346FJN8
В	1262	SER	-	expression tag	UNP A0A346FJN8
В	1263	ALA	-	expression tag	UNP A0A346FJN8
В	1264	TRP	-	expression tag	UNP A0A346FJN8
В	1265	SER	-	expression tag	UNP A0A346FJN8
В	1266	HIS	-	expression tag	UNP A0A346FJN8
В	1267	PRO	-	expression tag	UNP A0A346FJN8
В	1268	GLN	-	expression tag	UNP A0A346FJN8
В	1269	PHE	-	expression tag	UNP A0A346FJN8
В	1270	GLU	-	expression tag	UNP A0A346FJN8
В	1271	LYS	-	expression tag	UNP A0A346FJN8

• Molecule 2 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace								
2	D	2	Total C N O	0	0								
			28 10 2 10										
2	J	2	Total C N O	0	0								
		_	28 16 2 10	Ŭ	Ŭ								
2	K	9	Total C N O	0	0								
	п	2	28 16 2 10	0	0								
0	т	т	т	т	т	т	т	т	т т	0	Total C N O	0	0
	L		28 16 2 10	0	0								
0	N	0	Total C N O	0	0								
	IN	2	28 16 2 10	0	0								
0	0	0	Total C N O	0	0								
		2	28 16 2 10	0									
0	D	0	Total C N O	0	0								
	Г	Z	28 16 2 10	0	0								

Continued from previous page...

Mol	Chain	Residues	Atoms			AltConf	Trace	
0	0	0	Total	С	Ν	0	0	0
	Q	Ζ	28	16	2	10	0	0
0	D	0	Total	С	Ν	0	0	0
	n	2	28	16	2	10	0	0
0	C	2	Total	С	Ν	0	0	0
	G	2	28	16	2	10	0	0
2	Т	9	Total	С	Ν	0	0	0
	1		28	16	2	10	0	0
2	Z	2	Total	С	Ν	Ο	0	0
			28	16	2	10	0	0
2	а	2	Total	\mathbf{C}	Ν	Ο	0	0
	a		28	16	2	10	0	0
2	h	2	Total	С	Ν	Ο	0	0
	~	_	28	16	2	10	Ŭ	Ŭ
2	d	2	Total	С	Ν	0	0	0
		_	28	16	2	10	Ŭ	
2	е	2	Total	С	Ν	0	0	0
		_	28	16	2	10		
2	f	2	Total	С	Ν	0	0	0
	-	_	28	16	2	10	Ŭ	
2	g	2	Total	C	N	0	0	0
	0		28	16	2	10		
2	h	2	Total	C	N	0	0	0
			28	16	2	10		
2	i	2	Total	C	N	0	0	0
			28	$\frac{10}{0}$	2	10		
2	j	2	Total		N	10	0	0
	-		28	$\frac{10}{C}$	2	10		
2	р	2		16	N O	10	0	0
			Z0 Total	$\frac{10}{C}$	Z N	$\frac{10}{0}$		
2	q	2	10tal	16	1N 9	10	0	0
			Z0 Total	$\frac{10}{C}$	Z N	$\frac{10}{0}$		
2	r	2	10tai	16	IN D	10	0	0
			Z0 Total	$\frac{10}{C}$	Z N	$\frac{10}{0}$		
2	t	2	10tal 98	16	1N 9	10	0	0
			 Total	<u> </u>	Z N	0		
2	u	2	- 10tal - 28	16	1N 9	10	0	0
			Total	-10 	N	0		
2	V	2	- 10tal - 98	16	1N 9	10	0	0
			 Total	<u> </u>	 N	0		
2	W	2	- 100al - 28	16	1 N 9	10	0	0
	1		_ 40	τU	4	τU	1	

Mol	Chain	Residues	Atoms	AltConf Tra	.ce
2	х	2	Total C N C 28 16 2 10	0 0	
2	У	2	Total C N C 28 16 2 10	0 0	

• Molecule 3 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	A	Aton	ns		AltConf	Trace							
2	F	9	Total	С	Ν	0	0	0							
3	Ľ	3	39	22	2	15	0	0							
2	F	9	Total	С	Ν	0	0	0							
3	Г	0	39	22	2	15	0	0							
2	С	2	Total	С	Ν	0	0	0							
່ <u>ບ</u>	G	5	39	22	2	15	0	0							
3	Н	3	Total	С	Ν	0	0	0							
5	11	5	39	22	2	15	0	0							
3	T	3	Total	С	Ν	0	0	0							
5	1	5	39	22	2	15	0	0							
3	М	3	Total	С	Ν	0	0	0							
5	101	5	39	22	2	15	0	0							
3	TT	3	Total	С	Ν	Ο	0	0							
5	U	5	39	22	2	15	0	0							
3	V	V	V	V	V	V	V	V	3	Total	С	Ν	Ο	0	0
0	v	0	39	22	2	15	0	0							
3	W	3	Total	\mathbf{C}	Ν	Ο	0	0							
	••		39	22	2	15	0	0							
3	x	3	Total	С	Ν	Ο	0	0							
0	<u> </u>	0	39	22	2	15	0	0							
3	V	3	Total	С	Ν	Ο	0	0							
	1	0	39	22	2	15	0	0							
3	C	3	Total	С	Ν	Ο	0	0							
	Ŭ		39	22	2	15	0	0							
3	k	3	Total	С	Ν	Ο	0	0							
	K	0	39	22	2	15	0	0							
3	1	3	Total	\mathbf{C}	Ν	Ο	0	0							
	1	5	39	22	2	15	0	0							
3	m	3	Total	С	Ν	Ο	0	0							
	111		39	22	2	15		V							

001000	Contentaca front process page				
Mol	Chain	Residues	Atoms	AltConf	Trace
3	n	3	Total C N O 39 22 2 15	0	0
3	О	3	Total C N O 39 22 2 15	0	0
3	S	3	Total C N O 39 22 2 15	0	0

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	AltConf
4	А	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 14 & 8 & 1 & 5 \end{array}$	0
4	А	1	Total C N O 14 8 1 5	0
4	С	1	Total C N O 14 8 1 5	0
4	С	1	Total C N O 14 8 1 5	0
4	В	1	Total C N O 14 8 1 5	0
4	В	1	Total C N O 14 8 1 5	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

1		
Chain A:	84%	• 13%
MET LYS LEU VAL LEU VAL PHE PHE TAR VAL LEU VAL	TIAR THR THR THR THR TLE CLL CLL CLL CLL CLL CLL CLL CLL CLL C	F335 V338 V338 X366 X467 X466 X467 X466 X467 X466 X467 X466 X468 X466 X468 X466 X468 X466 X468 X466 X468 X466 X466
N590 S593 D644 Q672 D685 V739 K769	D813 M817 D826 M855 L899 L899 D933 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47	ASP SER SER PHE LYR CLU GLU GLU GLU CLV GLU CLV CLU CLV CLU CLV CLU CLV CLU CLV CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
ASP LEU GLY GLY ASP TLE SER GLY TLE ASN ALA SER VAL VAL	ASN ILL CULN CULN CULN CULU ASP ASP ASN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	TYR GLU GLU GLN GLN GLY TYR PRO CLU PRO CLU ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC
ARG LYS ASP GLY GLU TRP CLU TRP LEU LEU SER THR FHE FHE CLU	ALI ALI LEU CLEU CLEU CLEU CLU CLU CLU PLE CLY CLY CLY CLY CLY CLY CLY CLY CLY CLU CLY CLU CLY CLU CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLUU LYS GLY GLY GLY GLY SER SER CLY GLY GLY GLY GLY GLY GLY SER ALA SER ALA SER ALA SER ALA SER SER SER SER SER SER SER SER SER SER
CLN CLU CLU CLU		
• Molecule 1: Spik	æ glycoprotein,Fibritin	
Chain C:	85%	• 13%
Chain C:	ALA THA THA THA THA THA THA THA THA THA TH	• 13% . 14% . 13% . 14% . 13% . 13% . 14% . 14% . 14% . 13% . 14% . 14% . 14% . 14% . 14% . 14% . 14% . 14% . 14% . 13% . 14% . 14%
Chain C:	K1021 TTR N1057 TTR N1057 TTR N1057 TTR N1057 TTR N10 TTR TTR TTR TTR TTR TTR TTR TTR TTR TT	EXERTING AND
Chain C: Iso Chain C: Chain C: Iso Chain Cian Cian Cian Cian Cian Cian Cian C	Allow	GIM 5210 ALA PRO TYY ASP VALA PRO VALA ASP VAL VAL ASP CUV ASP CVV ASP CVV ASP CVV ASP CVV VAL CLP VAL CLP VAL SSR PHIE VAL SSR ASO ARG ASO ARO ASO ARO
Chain C: Chain Cian Chain Cian Chain Cian Chain Cian Chain Chain Cian Chain Cian Chai	ALEAN LEAN 1905 HIS ASR ALEAN 1905 SER ALEAN ASP TILE ALEAN ASP TILE SER ALEAN 10057 SER ALEAN 10057 TRR LEU 10057 CLN 1010 PHE LEU 1010 PHE LH124 PHE LH119 PHE LH124 PHE LH119 PHE LH119	TTRP G.M. F.M. F.M. FIRS A.I.A F.M. F.M. HIS TYR A.R. A.M. PHC V.M. A.R. A.M. PHC M.M. A.R. A.M. PHC M.M. A.R. A.M. PHC M.M. A.R. M.M. PHC L.Y. L.B. V.M. A.R. A.R. A.R. V.M. CUN A.R. C.Y. V.M. UNS C.L. C.S. V.M. UNS C.L. V.M. V.M. TRN M.S. C.S. C.S. V.M. C.L. M.S. M.M. V.M. S.S. C.S. C.S. V.M. M.N. M.N. S.S. S.S. P.M. M.N. S.S. S.S. S.S. A.N. M.N. S.S. S.S. S.S. A.N. M.N. S.S. S.S. S.S. A.N. M.N. S.S. S.S.
Chain C:	85%	TRP G.M. ERM FIR G.M. ERM FIR A.A. PRO FIR A.R. A.R. PRO V.M. A.R. PRO A.R. A.R. CLN A.R. V.M. A.R. A.R. CLU A.R. CLU A.R. CLU A.R. CLU A.R. VAL C.R. CLU A.S. VAL C.R. CLU A.S. VAL S.S. PHE VAL CLU A.S. A.R. A.S. CLU A.S. CLU A.S. VAL S.S. CLU S.S. A.R. A.S. A.S. A.S. A.S. A.S. A.S. A.S. A.S. A.S. A.S. A.S. A.S. A.S.
Chain C:	85%	- 13% - 13%

• Molecule 1: Spike glycoprotein, Fibritin

D685 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 87/02 888 988 988 988 988 988 988 988 988 988 992 992 1963 1963 1963 1963 1963 1964 1965 1965 1964 1965 1965 1964 1965 1964 1965 1964 1964 1965 1964 1964

LYS

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain D:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain J:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain L:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

Chain N: 50%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain O:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain P:	100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Q:	100%	

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain R:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain S:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain T:

100%

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Z:

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain a:	100%	
NAG1 NAG2		
• Molecule 2: opyranose	$\label{eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido} 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido$	o-2-deoxy-beta-D-gluc
Chain b	100%	
NAG2 NAG2		
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluc
Chain d:	50% 50%	
NAG1 NAG2		
• Molecule 2: opyranose	$\label{eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido} 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido$	o-2-deoxy-beta-D-gluc
Chain e:	100%	
NAG1 NAG2		
• Molecule 2: opyranose	$\label{eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido} 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido$	o-2-deoxy-beta-D-gluc
Chain f:	100%	
NAG1 NAG2		
• Molecule 2: opyranose	$\label{eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido} 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-acetamid$	o-2-deoxy-beta-D-gluc

Chain g:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain h:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain i:	100%
NAG1 NAG2	
• Molecule 2: opyranose	eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-a
Chain j:	100%
NAG1 NAG2	

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain p:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain q:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain r:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

α		
Chain	t:	50%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

01 .	
Chain u:	100%

NAG 1 NAG 2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain v:	100%	
NAG2 NAG2		
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluc
Chain w:	100%	1
MAG1 MAG2		
• Molecule 2: opyranose	eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2	o-2-deoxy-beta-D-gluc
Chain x:	100%	
MAG1 NAG2		
• Molecule 2: opyranose	eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-acetamido-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-a	o-2-deoxy-beta-D-gluc

Chain y:

100%

NAG1 NAG2

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain E:

100%

 \bullet Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain F:

100%

NAG1 NAG2 BMA3

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain G:	100%	

NAG1 NAG2 BMA3

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-de
oxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-de
oxy-beta-D-glucopyranose

Chain H:	100%	
NAG1 NAG2 BMA3		

• Molecule 3: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain I:	67%	33%
-		

NAG1 NAG2 BMA3

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain M: 7	33%	67%
enam nn	5570	0,,,,

NAG1 NAG2 BMA3

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain U:

100%

NAG1 NAG2 BMA3

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain V:

100%

NAG1 NAG2 BMA3

• Molecule 3: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain W:

100%

NAG1 NAG2 BMA3

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain X: 100%

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Y:	67%	33%
NAG1 NAG2 BMA3		

• Molecule 3: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain c:	33%	67%

NAG1 NAG2 BMA3

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain k:	100%	

NAG1 NAG2 BMA3

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain l:

100%

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain m:

100%

NAG1 NAG2 BMA3

• Molecule 3: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain n:	100%	
MAG1 NAG2 BMA3		

• Molecule 3: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain o:	33%	67%	
NAG1 NAG2 BMA3			

• Molecule 3: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	250439	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, BMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.27	0/8810	0.51	0/11997	
1	В	0.27	0/8810	0.50	0/11997	
1	С	0.27	0/8810	0.51	0/11997	
All	All	0.27	0/26430	0.51	0/35991	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	1104/1271~(87%)	1074 (97%)	30 (3%)	0	100 100
1	В	1104/1271~(87%)	1078 (98%)	26 (2%)	0	100 100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	С	1104/1271~(87%)	1077 (98%)	27~(2%)	0	100	100
All	All	3312/3813~(87%)	3229 (98%)	83 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	960/1099~(87%)	921~(96%)	39~(4%)	26 57
1	В	960/1099~(87%)	922~(96%)	38 (4%)	27 58
1	С	960/1099~(87%)	928~(97%)	32 (3%)	33 65
All	All	2880/3297~(87%)	2771 (96%)	109 (4%)	30 60

All (109) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	78	ASP
1	А	100	ARG
1	А	118	MET
1	А	166	SER
1	А	167	LYS
1	А	181	LYS
1	А	191	LYS
1	А	237	THR
1	А	293	SER
1	А	314	VAL
1	А	319	ASN
1	А	335	PHE
1	А	338	VAL
1	А	366	LYS
1	А	433	THR
1	А	467	SER
1	А	468	CYS

Mol	Chain	Res Type	
1	А	476	TYR
1	А	524	GLN
1	А	562	SER
1	А	575	SER
1	А	590	ASN
1	А	593	SER
1	А	644	ASP
1	А	672	GLN
1	А	685	ASP
1	А	739	TYR
1	А	769	LYS
1	А	813	ASP
1	А	817	MET
1	A	826	ASP
1	А	885	MET
1	А	899	LEU
1	А	933	ASP
1	А	947	LYS
1	А	960	LEU
1	A	1057	ASN
1	A	1089	GLN
1	А	1119	THR
1	С	57	GLN
1	С	78	ASP
1	С	96	SER
1	С	99	ILE
1	С	166	SER
1	С	167	LYS
1	С	181	LYS
1	С	189	ARG
1	С	237	THR
1	C	293	SER
1	C	314	VAL
1	C	319	ASN
1	C	335	PHE
1	C	338	VAL
1	C	433	THR
1	C	467	SER
1	C	468	CYS
1	C	556	VAL
1	C	561	ASP
1	C	562	SER

Mol	Chain	Res	Type
1	С	575	SER
1	С	685	ASP
1	С	739	TYR
1	С	813	ASP
1	С	826	ASP
1	С	885	MET
1	С	892	ILE
1	С	933	ASP
1	С	963	ILE
1	С	1021	LYS
1	С	1057	ASN
1	С	1119	THR
1	В	57	GLN
1	В	77	PHE
1	В	78	ASP
1	В	166	SER
1	В	167	LYS
1	В	181	LYS
1	В	189	ARG
1	В	237	THR
1	В	314	VAL
1	В	319	ASN
1	В	335	PHE
1	В	338	VAL
1	В	361	SER
1	В	433	THR
1	В	468	CYS
1	В	476	TYR
1	В	482	TYR
1	В	561	ASP
1	В	562	SER
1	В	575	SER
1	В	593	SER
1	B	680	MET
1	В	685	ASP
1	В	702	SER
1	В	739	TYR
1	В	743	CYS
1	В	813	ASP
1	В	817	MET
1	В	883	MET
1	В	885	MET

Continued from previous paye								
Mol	Chain	\mathbf{Res}	Type					
1	В	892	ILE					
1	В	930	LYS					
1	В	963	ILE					
1	В	997	ARG					
1	В	1057	ASN					
1	В	1079	VAL					
1	В	1090	ARG					
1	В	1094	SER					

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	948	GLN
1	С	722	ASN
1	С	948	GLN
1	В	940	GLN
1	В	948	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

114 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Type	Chain	Ros	Link	Bo	ond leng	ths	В	ond ang	les
	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
2	NAG	D	1	2,1	14,14,15	0.73	0	17,19,21	1.12	2 (11%)

	т		Ъ	τ· 1	Bo	ond leng	ths	Bond angles		
IVIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	NAG	D	2	2	14,14,15	0.18	0	17,19,21	0.67	1 (5%)
3	NAG	Е	1	1,3	14,14,15	0.24	0	17,19,21	0.50	0
3	NAG	Е	2	3	14,14,15	0.29	0	17,19,21	0.40	0
3	BMA	Е	3	3	11,11,12	0.59	0	$15,\!15,\!17$	0.76	0
3	NAG	F	1	1,3	14,14,15	0.18	0	17,19,21	0.43	0
3	NAG	F	2	3	14,14,15	0.19	0	17,19,21	0.51	0
3	BMA	F	3	3	11,11,12	0.51	0	$15,\!15,\!17$	0.76	0
3	NAG	G	1	1,3	14,14,15	0.22	0	17,19,21	0.45	0
3	NAG	G	2	3	14,14,15	0.17	0	17,19,21	0.47	0
3	BMA	G	3	3	11,11,12	0.69	0	$15,\!15,\!17$	0.70	0
3	NAG	Н	1	1,3	14,14,15	0.35	0	17,19,21	0.47	0
3	NAG	Н	2	3	14,14,15	0.35	0	17,19,21	0.40	0
3	BMA	Н	3	3	11,11,12	0.55	0	15,15,17	0.73	0
3	NAG	I	1	1,3	14,14,15	0.44	0	17,19,21	0.45	0
3	NAG	Ι	2	3	14,14,15	0.65	1 (7%)	$17,\!19,\!21$	0.82	0
3	BMA	Ι	3	3	11,11,12	0.70	0	$15,\!15,\!17$	1.00	0
2	NAG	J	1	2,1	14,14,15	0.16	0	$17,\!19,\!21$	0.53	0
2	NAG	J	2	2	14,14,15	0.23	0	$17,\!19,\!21$	0.34	0
2	NAG	K	1	2,1	14,14,15	0.22	0	17,19,21	0.39	0
2	NAG	K	2	2	14,14,15	0.20	0	17,19,21	0.40	0
2	NAG	L	1	2,1	14,14,15	0.43	0	17,19,21	0.39	0
2	NAG	L	2	2	14,14,15	0.27	0	$17,\!19,\!21$	0.43	0
3	NAG	М	1	1,3	14,14,15	0.37	0	17,19,21	1.29	2 (11%)
3	NAG	М	2	3	14,14,15	0.67	1 (7%)	17,19,21	0.97	2 (11%)
3	BMA	М	3	3	11,11,12	0.76	0	$15,\!15,\!17$	0.91	0
2	NAG	Ν	1	2,1	14,14,15	0.29	0	17,19,21	0.72	1 (5%)
2	NAG	N	2	2	14,14,15	0.36	0	17,19,21	0.50	0
2	NAG	0	1	2,1	14,14,15	0.55	0	$17,\!19,\!21$	1.40	2 (11%)
2	NAG	0	2	2	14,14,15	0.42	0	17,19,21	0.79	1 (5%)
2	NAG	Р	1	2,1	14,14,15	0.23	0	17,19,21	0.34	0
2	NAG	Р	2	2	14,14,15	0.24	0	17,19,21	0.49	0
2	NAG	Q	1	2,1	14,14,15	0.28	0	17,19,21	0.33	0
2	NAG	Q	2	2	14,14,15	0.30	0	17,19,21	0.41	0
2	NAG	R	1	2,1	14,14,15	0.19	0	17,19,21	0.53	0
2	NAG	R	2	2	14,14,15	0.19	0	17,19,21	0.43	0
2	NAG	S	1	2,1	14,14,15	0.28	0	17,19,21	0.41	0
2	NAG	S	2	2	14,14,15	0.18	0	17,19,21	0.43	0
2	NAG	Т	1	2,1	14,14,15	0.77	1 (7%)	17,19,21	1.13	2 (11%)
2	NAG	Т	2	2	14,14,15	0.16	0	17,19,21	0.68	1 (5%)
3	NAG	U	1	1,3	14,14,15	0.23	0	17,19,21	0.48	0
3	NAG	U	2	3	14,14,15	0.29	0	17,19,21	0.39	0

263	-	<u> </u>	ъ	.	Bo	ond leng	ths	Bond angles		
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	BMA	U	3	3	11,11,12	0.58	0	15,15,17	0.74	0
3	NAG	V	1	1,3	14,14,15	0.21	0	17,19,21	0.41	0
3	NAG	V	2	3	14,14,15	0.20	0	17,19,21	0.51	0
3	BMA	V	3	3	11,11,12	0.51	0	$15,\!15,\!17$	0.75	0
3	NAG	W	1	1,3	$14,\!14,\!15$	0.25	0	$17,\!19,\!21$	0.48	0
3	NAG	W	2	3	14,14,15	0.16	0	17,19,21	0.49	0
3	BMA	W	3	3	11,11,12	0.69	0	$15,\!15,\!17$	0.68	0
3	NAG	Х	1	1,3	14,14,15	0.28	0	17,19,21	0.52	0
3	NAG	Х	2	3	14,14,15	0.33	0	17,19,21	0.40	0
3	BMA	X	3	3	11,11,12	0.54	0	15,15,17	0.76	0
3	NAG	Y	1	1,3	14,14,15	0.52	0	17,19,21	0.48	0
3	NAG	Y	2	3	14, 14, 15	0.65	1 (7%)	17,19,21	0.84	0
3	BMA	Y	3	3	11,11,12	0.69	0	$15,\!15,\!17$	1.00	0
2	NAG	Z	1	2,1	14,14,15	0.17	0	17,19,21	0.50	0
2	NAG	Z	2	2	14,14,15	0.23	0	17,19,21	0.35	0
2	NAG	a	1	2,1	14,14,15	0.23	0	17,19,21	0.40	0
2	NAG	a	2	2	14,14,15	0.20	0	17,19,21	0.39	0
2	NAG	b	1	2,1	14,14,15	0.41	0	17,19,21	0.41	0
2	NAG	b	2	2	14,14,15	0.28	0	17,19,21	0.42	0
3	NAG	с	1	1,3	14,14,15	0.37	0	17,19,21	1.30	2 (11%)
3	NAG	с	2	3	14, 14, 15	0.71	1 (7%)	17,19,21	0.98	2 (11%)
3	BMA	с	3	3	11,11,12	0.74	0	$15,\!15,\!17$	0.92	0
2	NAG	d	1	2,1	14,14,15	0.27	0	17,19,21	0.72	1 (5%)
2	NAG	d	2	2	14,14,15	0.33	0	17,19,21	0.47	0
2	NAG	е	1	2,1	14,14,15	0.55	0	$17,\!19,\!21$	1.40	2 (11%)
2	NAG	е	2	2	14,14,15	0.34	0	$17,\!19,\!21$	0.82	1 (5%)
2	NAG	f	1	2,1	14,14,15	0.18	0	17,19,21	0.35	0
2	NAG	f	2	2	14,14,15	0.24	0	17,19,21	0.54	0
2	NAG	g	1	2,1	$14,\!14,\!15$	0.28	0	$17,\!19,\!21$	0.33	0
2	NAG	g	2	2	14,14,15	0.25	0	17,19,21	0.42	0
2	NAG	h	1	2,1	14,14,15	0.20	0	17,19,21	0.52	0
2	NAG	h	2	2	14,14,15	0.18	0	17,19,21	0.45	0
2	NAG	i	1	2,1	14,14,15	0.27	0	17,19,21	0.42	0
2	NAG	i	2	2	14,14,15	0.15	0	17,19,21	0.43	0
2	NAG	j	1	2,1	14,14,15	0.74	0	17,19,21	1.12	2 (11%)
2	NAG	j	2	2	$14,\!14,\!15$	0.15	0	$17,\!19,\!21$	0.70	1 (5%)
3	NAG	k	1	1,3	14,14,15	0.24	0	17,19,21	0.54	0
3	NAG	k	2	3	14,14,15	0.28	0	17,19,21	0.40	0
3	BMA	k	3	3	11,11,12	0.58	0	15,15,17	0.74	0
3	NAG	1	1	1,3	14,14,15	0.19	0	17,19,21	0.46	0
3	NAG	1	2	3	14,14,15	0.20	0	17,19,21	0.48	0

Mal	Turne	Chain	Dec	T in le	Bo	ond leng	$_{\rm sths}$	B	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
3	BMA	1	3	3	11,11,12	0.49	0	15,15,17	0.77	0	
3	NAG	m	1	1,3	14,14,15	0.26	0	17,19,21	0.46	0	
3	NAG	m	2	3	14,14,15	0.18	0	17,19,21	0.45	0	
3	BMA	m	3	3	11,11,12	0.69	0	15,15,17	0.69	0	
3	NAG	n	1	1,3	14,14,15	0.33	0	17,19,21	0.51	0	
3	NAG	n	2	3	14,14,15	0.33	0	17,19,21	0.40	0	
3	BMA	n	3	3	11,11,12	0.55	0	$15,\!15,\!17$	0.74	0	
3	NAG	0	1	1,3	14,14,15	0.69	1 (7%)	17,19,21	0.63	0	
3	NAG	0	2	3	14,14,15	0.73	1 (7%)	17,19,21	0.92	1 (5%)	
3	BMA	0	3	3	11,11,12	0.73	0	15,15,17	0.96	0	
2	NAG	р	1	2,1	14,14,15	0.18	0	17,19,21	0.51	0	
2	NAG	р	2	2	14,14,15	0.24	0	17,19,21	0.35	0	
2	NAG	q	1	2,1	14,14,15	0.22	0	17,19,21	0.41	0	
2	NAG	q	2	2	14,14,15	0.19	0	17,19,21	0.39	0	
2	NAG	r	1	2,1	14,14,15	0.39	0	17,19,21	0.38	0	
2	NAG	r	2	2	14,14,15	0.27	0	17,19,21	0.41	0	
3	NAG	s	1	1,3	14,14,15	0.38	0	17,19,21	1.31	2 (11%)	
3	NAG	s	2	3	14,14,15	0.64	1 (7%)	17,19,21	0.98	2 (11%)	
3	BMA	s	3	3	11,11,12	0.73	0	15,15,17	0.90	0	
2	NAG	t	1	2,1	14,14,15	0.29	0	17,19,21	0.71	1 (5%)	
2	NAG	t	2	2	14,14,15	0.33	0	17,19,21	0.49	0	
2	NAG	u	1	2,1	14,14,15	0.55	0	17,19,21	1.40	2 (11%)	
2	NAG	u	2	2	14,14,15	0.43	0	17,19,21	0.80	1 (5%)	
2	NAG	v	1	2,1	14,14,15	0.19	0	17,19,21	0.35	0	
2	NAG	v	2	2	14,14,15	0.24	0	17,19,21	0.53	0	
2	NAG	W	1	2,1	14,14,15	0.26	0	17,19,21	0.33	0	
2	NAG	W	2	2	14,14,15	0.29	0	17,19,21	0.42	0	
2	NAG	X	1	2,1	14,14,15	0.25	0	17,19,21	0.52	0	
2	NAG	X	2	2	14,14,15	0.19	0	17,19,21	0.43	0	
2	NAG	У	1	2,1	14,14,15	0.30	0	17,19,21	0.45	0	
2	NAG	у	2	2	14,14,15	0.16	0	17,19,21	0.42	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	D	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	D	2	2	-	4/6/23/26	0/1/1/1

OOmit	naca jioi		is puye	• • •			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	Е	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Е	2	3	-	0/6/23/26	0/1/1/1
3	BMA	Е	3	3	-	0/2/19/22	0/1/1/1
3	NAG	F	1	$1,\!3$	-	2/6/23/26	0/1/1/1
3	NAG	F	2	3	-	0/6/23/26	0/1/1/1
3	BMA	F	3	3	-	2/2/19/22	0/1/1/1
3	NAG	G	1	1,3	-	4/6/23/26	0/1/1/1
3	NAG	G	2	3	-	0/6/23/26	0/1/1/1
3	BMA	G	3	3	-	0/2/19/22	0/1/1/1
3	NAG	Н	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Н	2	3	-	0/6/23/26	0/1/1/1
3	BMA	Н	3	3	-	0/2/19/22	0/1/1/1
3	NAG	Ι	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Ι	2	3	-	4/6/23/26	0/1/1/1
3	BMA	Ι	3	3	-	2/2/19/22	0/1/1/1
2	NAG	J	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	J	2	2	-	2/6/23/26	0/1/1/1
2	NAG	K	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	K	2	2	-	0/6/23/26	0/1/1/1
2	NAG	L	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	L	2	2	-	0/6/23/26	0/1/1/1
3	NAG	М	1	1,3	-	5/6/23/26	0/1/1/1
3	NAG	М	2	3	-	2/6/23/26	0/1/1/1
3	BMA	М	3	3	-	1/2/19/22	0/1/1/1
2	NAG	N	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	Ν	2	2	-	2/6/23/26	0/1/1/1
2	NAG	О	1	2,1	-	3/6/23/26	0/1/1/1
2	NAG	0	2	2	-	4/6/23/26	0/1/1/1
2	NAG	Р	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	Р	2	2	-	0/6/23/26	0/1/1/1
2	NAG	Q	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	Q	2	2	-	0/6/23/26	0/1/1/1
2	NAG	R	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	R	2	2	-	0/6/23/26	0/1/1/1
2	NAG	S	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	S	2	2	-	0/6/23/26	0/1/1/1
2	NAG	Т	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	Т	2	2	-	4/6/23/26	0/1/1/1

OOnu	naca jio		is puye	• • •			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	U	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	U	2	3	-	0/6/23/26	0/1/1/1
3	BMA	U	3	3	-	0/2/19/22	0/1/1/1
3	NAG	V	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	V	2	3	-	0/6/23/26	0/1/1/1
3	BMA	V	3	3	-	2/2/19/22	0/1/1/1
3	NAG	W	1	1,3	-	3/6/23/26	0/1/1/1
3	NAG	W	2	3	-	0/6/23/26	0/1/1/1
3	BMA	W	3	3	-	0/2/19/22	0/1/1/1
3	NAG	Х	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Х	2	3	-	0/6/23/26	0/1/1/1
3	BMA	Х	3	3	-	0/2/19/22	0/1/1/1
3	NAG	Y	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	Y	2	3	-	4/6/23/26	0/1/1/1
3	BMA	Y	3	3	-	2/2/19/22	0/1/1/1
2	NAG	Z	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	Ζ	2	2	-	2/6/23/26	0/1/1/1
2	NAG	a	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	a	2	2	-	0/6/23/26	0/1/1/1
2	NAG	b	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	b	2	2	-	0/6/23/26	0/1/1/1
3	NAG	с	1	1,3	-	5/6/23/26	0/1/1/1
3	NAG	с	2	3	-	2/6/23/26	0/1/1/1
3	BMA	с	3	3	-	2/2/19/22	0/1/1/1
2	NAG	d	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	d	2	2	-	2/6/23/26	0/1/1/1
2	NAG	е	1	2,1	-	3/6/23/26	0/1/1/1
2	NAG	е	2	2	-	4/6/23/26	0/1/1/1
2	NAG	f	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	f	2	2	-	0/6/23/26	0/1/1/1
2	NAG	g	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	g	2	2	-	0/6/23/26	0/1/1/1
2	NAG	h	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	h	2	2	-	0/6/23/26	0/1/1/1
2	NAG	i	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	i	2	2	-	0/6/23/26	0/1/1/1
2	NAG	j	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	j	2	2	-	4/6/23/26	0/1/1/1

Continued from previous page...

Contre	naca jio		is puye	•••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	k	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	k	2	3	-	0/6/23/26	0/1/1/1
3	BMA	k	3	3	-	0/2/19/22	0/1/1/1
3	NAG	1	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	1	2	3	-	0/6/23/26	0/1/1/1
3	BMA	1	3	3	-	2/2/19/22	0/1/1/1
3	NAG	m	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	m	2	3	-	0/6/23/26	0/1/1/1
3	BMA	m	3	3	-	0/2/19/22	0/1/1/1
3	NAG	n	1	1,3	-	2/6/23/26	0/1/1/1
3	NAG	n	2	3	-	0/6/23/26	0/1/1/1
3	BMA	n	3	3	-	0/2/19/22	0/1/1/1
3	NAG	0	1	1,3	-	3/6/23/26	0/1/1/1
3	NAG	0	2	3	-	4/6/23/26	0/1/1/1
3	BMA	0	3	3	-	2/2/19/22	0/1/1/1
2	NAG	р	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	р	2	2	-	2/6/23/26	0/1/1/1
2	NAG	q	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	q	2	2	-	0/6/23/26	0/1/1/1
2	NAG	r	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	r	2	2	-	1/6/23/26	0/1/1/1
3	NAG	s	1	1,3	-	5/6/23/26	0/1/1/1
3	NAG	s	2	3	-	2/6/23/26	0/1/1/1
3	BMA	s	3	3	-	2/2/19/22	0/1/1/1
2	NAG	t	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	t	2	2	-	2/6/23/26	0/1/1/1
2	NAG	u	1	2,1	-	3/6/23/26	0/1/1/1
2	NAG	u	2	2	-	4/6/23/26	0/1/1/1
2	NAG	V	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	V	2	2	-	0/6/23/26	0/1/1/1
2	NAG	W	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	W	2	2	-	0/6/23/26	0/1/1/1
2	NAG	х	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	Х	2	2	-	0/6/23/26	0/1/1/1
2	NAG	у	1	2,1	-	2/6/23/26	0/1/1/1
2	NAG	У	2	2	-	0/6/23/26	0/1/1/1

All (8) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
3	0	2	NAG	O5-C1	-2.59	1.39	1.43
3	с	2	NAG	O5-C1	-2.41	1.39	1.43
3	0	1	NAG	O5-C1	-2.41	1.39	1.43
3	М	2	NAG	O5-C1	-2.28	1.40	1.43
3	Y	2	NAG	O5-C1	-2.27	1.40	1.43
3	Ι	2	NAG	O5-C1	-2.26	1.40	1.43
3	s	2	NAG	O5-C1	-2.19	1.40	1.43
2	Т	1	NAG	O5-C1	2.12	1.47	1.43

All (34) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
3	s	1	NAG	C2-N2-C7	4.32	129.05	122.90
3	с	1	NAG	C2-N2-C7	4.31	129.03	122.90
3	М	1	NAG	C2-N2-C7	4.29	129.01	122.90
2	е	1	NAG	C2-N2-C7	4.23	128.93	122.90
2	u	1	NAG	C2-N2-C7	4.23	128.92	122.90
2	0	1	NAG	C2-N2-C7	4.20	128.88	122.90
2	D	1	NAG	C1-O5-C5	3.11	116.41	112.19
2	j	1	NAG	C1-O5-C5	3.08	116.37	112.19
2	Т	1	NAG	C1-O5-C5	3.06	116.34	112.19
2	е	2	NAG	C1-O5-C5	2.98	116.23	112.19
2	u	2	NAG	C1-O5-C5	2.87	116.08	112.19
2	0	2	NAG	C1-O5-C5	2.82	116.02	112.19
2	Ν	1	NAG	C1-O5-C5	2.61	115.73	112.19
2	t	1	NAG	C1-O5-C5	2.56	115.66	112.19
2	d	1	NAG	C1-O5-C5	2.55	115.65	112.19
2	j	2	NAG	C1-O5-C5	2.48	115.55	112.19
2	Т	2	NAG	C1-O5-C5	2.42	115.47	112.19
2	D	2	NAG	C1-O5-C5	2.35	115.37	112.19
3	с	2	NAG	C3-C4-C5	2.18	114.13	110.24
3	s	2	NAG	C3-C4-C5	2.18	114.13	110.24
3	М	2	NAG	C3-C4-C5	2.18	114.12	110.24
2	Т	1	NAG	O4-C4-C5	2.13	114.58	109.30
3	с	1	NAG	C1-C2-N2	2.10	114.08	110.49
3	с	2	NAG	O4-C4-C3	-2.10	105.49	110.35
3	0	2	NAG	O4-C4-C3	-2.10	105.50	110.35
3	s	1	NAG	C1-C2-N2	2.09	114.06	110.49
3	s	2	NAG	O4-C4-C3	-2.08	105.54	110.35
2	j	1	NAG	O4-C4-C5	2.07	114.44	109.30
2	D	1	NAG	O4-C4-C5	2.07	114.43	109.30
3	М	1	NAG	C1-C2-N2	2.07	114.02	110.49
2	0	1	NAG	O4-C4-C3	2.05	115.08	110.35

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	е	1	NAG	O4-C4-C3	2.04	115.06	110.35
3	М	2	NAG	O4-C4-C3	-2.04	105.64	110.35
2	u	1	NAG	O4-C4-C3	2.01	114.99	110.35

There are no chirality outliers.

All (148) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	М	1	NAG	O5-C5-C6-O6
3	с	1	NAG	O5-C5-C6-O6
3	s	1	NAG	O5-C5-C6-O6
3	Ι	3	BMA	C4-C5-C6-O6
3	0	3	BMA	C4-C5-C6-O6
3	Y	3	BMA	C4-C5-C6-O6
2	0	2	NAG	O5-C5-C6-O6
2	d	2	NAG	O5-C5-C6-O6
2	е	2	NAG	O5-C5-C6-O6
2	t	2	NAG	O5-C5-C6-O6
2	u	2	NAG	O5-C5-C6-O6
3	Ι	2	NAG	O5-C5-C6-O6
3	Ι	3	BMA	O5-C5-C6-O6
3	0	3	BMA	O5-C5-C6-O6
3	Y	2	NAG	O5-C5-C6-O6
3	Е	1	NAG	C4-C5-C6-O6
3	М	1	NAG	C4-C5-C6-O6
3	с	1	NAG	C4-C5-C6-O6
3	s	1	NAG	C4-C5-C6-O6
3	Y	3	BMA	O5-C5-C6-O6
3	0	2	NAG	O5-C5-C6-O6
2	0	2	NAG	C4-C5-C6-O6
2	Т	1	NAG	C4-C5-C6-O6
2	u	2	NAG	C4-C5-C6-O6
3	U	1	NAG	C4-C5-C6-O6
3	k	1	NAG	C4-C5-C6-O6
2	е	2	NAG	C4-C5-C6-O6
2	D	2	NAG	O5-C5-C6-O6
2	D	2	NAG	C8-C7-N2-C2
2	D	2	NAG	O7-C7-N2-C2
2	0	1	NAG	C8-C7-N2-C2
2	0	1	NAG	O7-C7-N2-C2
2	0	2	NAG	C8-C7-N2-C2
2	0	2	NAG	O7-C7-N2-C2

Mol	Chain	Res	Type	Atoms
2	Т	2	NAG	C8-C7-N2-C2
2	Т	2	NAG	O7-C7-N2-C2
2	е	1	NAG	C8-C7-N2-C2
2	е	1	NAG	O7-C7-N2-C2
2	е	2	NAG	C8-C7-N2-C2
2	е	2	NAG	O7-C7-N2-C2
2	j	2	NAG	C8-C7-N2-C2
2	j	2	NAG	O7-C7-N2-C2
2	u	1	NAG	C8-C7-N2-C2
2	u	1	NAG	O7-C7-N2-C2
2	u	2	NAG	C8-C7-N2-C2
2	u	2	NAG	O7-C7-N2-C2
3	F	1	NAG	C8-C7-N2-C2
3	F	1	NAG	O7-C7-N2-C2
3	G	1	NAG	C8-C7-N2-C2
3	G	1	NAG	O7-C7-N2-C2
3	Ι	1	NAG	C8-C7-N2-C2
3	Ι	1	NAG	O7-C7-N2-C2
3	Ι	2	NAG	C8-C7-N2-C2
3	Ι	2	NAG	O7-C7-N2-C2
3	М	1	NAG	C8-C7-N2-C2
3	М	1	NAG	O7-C7-N2-C2
3	V	1	NAG	C8-C7-N2-C2
3	V	1	NAG	O7-C7-N2-C2
3	W	1	NAG	C8-C7-N2-C2
3	W	1	NAG	O7-C7-N2-C2
3	Y	1	NAG	C8-C7-N2-C2
3	Y	1	NAG	O7-C7-N2-C2
3	Y	2	NAG	C8-C7-N2-C2
3	Y	2	NAG	O7-C7-N2-C2
3	с	1	NAG	C8-C7-N2-C2
3	с	1	NAG	O7-C7-N2-C2
3	1	1	NAG	C8-C7-N2-C2
3	l	1	NAG	O7-C7-N2-C2
3	m	1	NAG	C8-C7-N2-C2
3	m	1	NAG	07-C7-N2-C2
3	0	1	NAG	C8-C7-N2-C2
3	0	1	NAG	O7-C7-N2-C2
3	0	2	NAG	C8-C7-N2-C2
3	0	2	NAG	O7-C7-N2-C2
3	s	1	NAG	C8-C7-N2-C2
3	S	1	NAG	07-C7-N2-C2

Mol	Chain	Res		Atoms
2	i	1	NAG	C4-C5-C6-O6
2	N	2	NAG	05-C5-C6-O6
3	0	2	NAG	C4-C5-C6-O6
2	T	2	NAG	05-C5-C6-O6
2	i	2	NAG	05-C5-C6-O6
2	D	1	NAG	C4-C5-C6-O6
3	Y	2	NAG	C4-C5-C6-O6
2	T	1	NAG	05-C5-C6-O6
3	F	3	BMA	C4-C5-C6-O6
2	i	1	NAG	O5-C5-C6-O6
3	I	2	NAG	C4-C5-C6-O6
2	D	1	NAG	O5-C5-C6-O6
2	р	2	NAG	C4-C5-C6-O6
2	D	2	NAG	C4-C5-C6-O6
3	Е	1	NAG	O5-C5-C6-O6
3	U	1	NAG	O5-C5-C6-O6
3	k	1	NAG	O5-C5-C6-O6
2	j	2	NAG	C4-C5-C6-O6
3	F	3	BMA	O5-C5-C6-O6
2	Т	2	NAG	C4-C5-C6-O6
2	Ζ	2	NAG	C4-C5-C6-O6
3	1	3	BMA	C4-C5-C6-O6
3	n	1	NAG	C4-C5-C6-O6
3	V	3	BMA	C4-C5-C6-O6
3	n	1	NAG	O5-C5-C6-O6
2	J	2	NAG	C4-C5-C6-O6
2	S	1	NAG	C4-C5-C6-O6
2	р	2	NAG	O5-C5-C6-O6
2	d	2	NAG	C4-C5-C6-O6
2	h	1	NAG	C4-C5-C6-O6
2	S	1	NAG	O5-C5-C6-O6
3	с	3	BMA	C4-C5-C6-O6
3	S	3	BMA	C4-C5-C6-O6
2	t	2	NAG	C4-C5-C6-O6
3	1	3	BMA	O5-C5-C6-O6
3	V	3	BMA	O5-C5-C6-O6
2	R	1	NAG	C4-C5-C6-O6
3	Н	1	NAG	C4-C5-C6-O6
2	i	1	NAG	C4-C5-C6-O6
2	У	1	NAG	C4-C5-C6-O6
2	Z	2	NAG	O5-C5-C6-O6
3	Н	1	NAG	O5-C5-C6-O6

Continued from previous page...

Continued on next page...

Mol	Chain	Res	Type	Atoms
3	Х	1	NAG	C4-C5-C6-O6
2	J	2	NAG	O5-C5-C6-O6
2	у	1	NAG	O5-C5-C6-O6
2	i	1	NAG	O5-C5-C6-O6
2	Х	1	NAG	C4-C5-C6-O6
3	Х	1	NAG	O5-C5-C6-O6
2	h	1	NAG	O5-C5-C6-O6
3	М	3	BMA	C4-C5-C6-O6
3	G	1	NAG	C4-C5-C6-O6
2	0	1	NAG	C3-C2-N2-C7
2	е	1	NAG	C3-C2-N2-C7
2	u	1	NAG	C3-C2-N2-C7
2	R	1	NAG	O5-C5-C6-O6
3	с	3	BMA	O5-C5-C6-O6
3	G	1	NAG	O5-C5-C6-O6
3	0	1	NAG	C4-C5-C6-O6
3	s	3	BMA	O5-C5-C6-O6
3	М	2	NAG	C1-C2-N2-C7
2	Ν	2	NAG	C4-C5-C6-O6
2	Х	1	NAG	O5-C5-C6-O6
3	с	2	NAG	C1-C2-N2-C7
3	s	2	NAG	C1-C2-N2-C7
3	М	1	NAG	C3-C2-N2-C7
3	М	2	NAG	C3-C2-N2-C7
3	с	1	NAG	C3-C2-N2-C7
3	с	2	NAG	C3-C2-N2-C7
3	s	1	NAG	C3-C2-N2-C7
3	s	2	NAG	C3-C2-N2-C7
2	r	2	NAG	O5-C5-C6-O6
3	W	1	NAG	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

6 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Res	Link	Bo	ond leng	\mathbf{ths}	Bond angles		
IVIOI					Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	NAG	А	1301	1	$14,\!14,\!15$	0.37	0	$17,\!19,\!21$	0.34	0
4	NAG	А	1302	1	14,14,15	0.83	1 (7%)	$17,\!19,\!21$	0.50	0
4	NAG	В	1302	1	14,14,15	0.29	0	17,19,21	0.36	0
4	NAG	С	1301	1	14,14,15	0.33	0	17,19,21	0.35	0
4	NAG	С	1302	1	14,14,15	0.73	1 (7%)	$17,\!19,\!21$	0.68	1 (5%)
4	NAG	В	1301	1	14,14,15	0.34	0	17,19,21	0.35	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	А	1301	1	-	4/6/23/26	0/1/1/1
4	NAG	А	1302	1	-	4/6/23/26	0/1/1/1
4	NAG	В	1302	1	-	4/6/23/26	0/1/1/1
4	NAG	С	1301	1	-	4/6/23/26	0/1/1/1
4	NAG	С	1302	1	-	2/6/23/26	0/1/1/1
4	NAG	В	1301	1	-	4/6/23/26	0/1/1/1

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
4	А	1302	NAG	C1-C2	2.87	1.56	1.52
4	С	1302	NAG	C1-C2	2.49	1.56	1.52

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	С	1302	NAG	C1-O5-C5	2.09	115.02	112.19

There are no chirality outliers.

All (22) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
4	С	1301	NAG	C4-C5-C6-O6
4	В	1301	NAG	C4-C5-C6-O6
4	А	1301	NAG	C4-C5-C6-O6
4	А	1302	NAG	O5-C5-C6-O6
4	А	1301	NAG	O5-C5-C6-O6
4	С	1301	NAG	O5-C5-C6-O6
4	В	1301	NAG	O5-C5-C6-O6
4	А	1302	NAG	C4-C5-C6-O6
4	А	1302	NAG	C8-C7-N2-C2
4	А	1302	NAG	O7-C7-N2-C2
4	С	1302	NAG	C8-C7-N2-C2
4	С	1302	NAG	O7-C7-N2-C2
4	В	1302	NAG	C8-C7-N2-C2
4	В	1302	NAG	O7-C7-N2-C2
4	В	1302	NAG	C4-C5-C6-O6
4	А	1301	NAG	C1-C2-N2-C7
4	В	1301	NAG	C1-C2-N2-C7
4	С	1301	NAG	C1-C2-N2-C7
4	В	1302	NAG	O5-C5-C6-O6
4	А	1301	NAG	C3-C2-N2-C7
4	С	1301	NAG	C3-C2-N2-C7
4	В	1301	NAG	C3-C2-N2-C7

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

