Full wwPDB X-ray Structure Validation Report

Mar 13, 2018 – 04:40 pm GMT

PDB ID : 1XCO
Title : Crystal Structure of a Phosphotransacetylase from Bacillus subtilis in complex with acetylphosphate
Deposited on : 2004-09-02
Resolution : 2.85 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

MolProbity : 4.02b-467
Mogul : 1.7.3 (157068), CSD as539be (2018)
Xtriage (Phenix) : 1.13
EDS : trunk31020
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Refmac : 5.8.0158
CCP4 : 7.0 (Gargrove)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : trunk31020
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 2.85 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{free}</td>
<td>111664</td>
<td>2715 (2.90-2.82)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>2976 (2.90-2.82)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>2913 (2.90-2.82)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>2916 (2.90-2.82)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>2654 (2.90-2.82)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for \geq3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $<$5%. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>329</td>
<td></td>
</tr>
</tbody>
</table>
The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>UVW</td>
<td>D</td>
<td>410</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 4 unique types of molecules in this entry. The entry contains 15000 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Phosphate acetyltransferase.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>324</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2449 1547 408 485 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>324</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2449 1547 408 485 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>323</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2445 1545 407 484 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>325</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2453 1549 409 486 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>324</td>
<td>Total C N O S</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2458 1552 409 488 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>323</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2445 1545 407 484 9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 42 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-5</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>A</td>
<td>-4</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>A</td>
<td>-3</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>A</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>A</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>B</td>
<td>-5</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>B</td>
<td>-4</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>B</td>
<td>-3</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>B</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>B</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>C</td>
<td>-4</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>C</td>
<td>-3</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>D</td>
<td>-5</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>D</td>
<td>-4</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>D</td>
<td>-3</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>E</td>
<td>-5</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>E</td>
<td>-4</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>E</td>
<td>-3</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>E</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>F</td>
<td>-5</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>F</td>
<td>-4</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>F</td>
<td>-3</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>F</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>F</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>GLY</td>
<td>-</td>
<td>CLONING ARTIFACT</td>
<td>UNP P39646</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>MET</td>
<td>-</td>
<td>INITIATING METHIONINE</td>
<td>UNP P39646</td>
</tr>
</tbody>
</table>

- Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O₄S).
Molecule 3 is ACETYLPHOSPHATE (three-letter code: UVW) (formula: C$_2$H$_5$O$_5$P).

```
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total C O P</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1</td>
<td>Total C O P</td>
<td>8 2 5 1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 4 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>23</td>
<td>Total O</td>
<td>23 23</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>11</td>
<td>Total O</td>
<td>11 11</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>21</td>
<td>Total O</td>
<td>21 21</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>16</td>
<td>Total O</td>
<td>16 16</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>23</td>
<td>Total O</td>
<td>23 23</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>F</td>
<td>8</td>
<td>Total 8 0 8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Phosphate acetyltransferase

Chain A:

- Molecule 1: Phosphate acetyltransferase

Chain B:

- Molecule 1: Phosphate acetyltransferase

Chain C:
• Molecule 1: Phosphate acetyltransferase

Chain D:

• Molecule 1: Phosphate acetyltransferase

Chain E:

• Molecule 1: Phosphate acetyltransferase

Chain F:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 64 2 2</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>184.66Å 184.66Å 259.46Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>90.00° 90.00° 120.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>19.99 – 2.85</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>99.7 (19.99-2.85)</td>
<td>EDS</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>0.15</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>0.15</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)><sup>1</sup></td>
<td>2.43 (at 2.83Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>CNS 1.1</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R<sub>free</sub></td>
<td>0.245 , 0.288</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.243 , 0.286</td>
<td>DCC</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>1666 reflections (2.72%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å<sup>2</sup>)</td>
<td>47.6</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.486</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub>(e/Å<sup>3</sup>), B<sub>sol</sub>(Å<sup>2</sup>)</td>
<td>0.29 , 44.6</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report.</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>a</sub>F<sub>c</sub> correlation</td>
<td>0.93</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>15000</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>46.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 54.17 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 3.7951e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

¹Intensities estimated from amplitudes.
²Theoretical values of < |L| >, <L²| for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, UVW.

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.56</td>
<td>0/2483</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.55</td>
<td>0/2483</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.57</td>
<td>0/2479</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.53</td>
<td>0/2487</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.58</td>
<td>0/2492</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>0.50</td>
<td>0/2479</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.55</td>
<td>0/14903</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (7) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>235</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>5.77</td>
<td>127.52</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>235</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>5.64</td>
<td>127.20</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>235</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>5.45</td>
<td>126.71</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>235</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>5.31</td>
<td>126.37</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>238</td>
<td>GLN</td>
<td>N-CA-C</td>
<td>-5.19</td>
<td>96.99</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>140</td>
<td>ILE</td>
<td>N-CA-C</td>
<td>-5.00</td>
<td>97.49</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>235</td>
<td>GLY</td>
<td>N-CA-C</td>
<td>5.00</td>
<td>125.61</td>
<td>113.10</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 24.

All (728) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:B:403:UVW:C1</td>
<td>3:B:403:UVW:O2</td>
<td>1.65</td>
<td>1.44</td>
</tr>
<tr>
<td>3:C:420:UVW:C1</td>
<td>3:C:420:UVW:O2</td>
<td>1.64</td>
<td>1.44</td>
</tr>
<tr>
<td>3:D:421:UVW:C1</td>
<td>3:D:421:UVW:O2</td>
<td>1.64</td>
<td>1.43</td>
</tr>
<tr>
<td>3:E:413:UVW:C1</td>
<td>3:E:413:UVW:O2</td>
<td>1.63</td>
<td>1.42</td>
</tr>
<tr>
<td>3:D:410:UVW:C1</td>
<td>3:D:410:UVW:O2</td>
<td>1.64</td>
<td>1.42</td>
</tr>
<tr>
<td>3:E:422:UVW:O2</td>
<td>3:E:422:UVW:C1</td>
<td>1.65</td>
<td>1.40</td>
</tr>
<tr>
<td>1:C:165:ALA:HB3</td>
<td>1:C:265:VAL:HA</td>
<td>1.33</td>
<td>1.08</td>
</tr>
<tr>
<td>1:C:204:SER:HB2</td>
<td>1:C:208:SER:HB2</td>
<td>1.37</td>
<td>1.07</td>
</tr>
<tr>
<td>1:D:165:ALA:HB3</td>
<td>1:D:265:VAL:HA</td>
<td>1.36</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:204:SER:HB2</td>
<td>1:A:208:SER:HB2</td>
<td>1.35</td>
<td>1.06</td>
</tr>
<tr>
<td>1:B:204:SER:HB2</td>
<td>1:B:208:SER:HB2</td>
<td>1.35</td>
<td>1.05</td>
</tr>
<tr>
<td>1:B:165:ALA:HB3</td>
<td>1:B:265:VAL:HA</td>
<td>1.40</td>
<td>1.03</td>
</tr>
<tr>
<td>3:E:413:UVW:P</td>
<td>3:E:413:UVW:C1</td>
<td>2.46</td>
<td>1.02</td>
</tr>
<tr>
<td>1:E:221:VAL:HG21</td>
<td>1:E:235:GLY:HA3</td>
<td>1.37</td>
<td>1.02</td>
</tr>
<tr>
<td>1:B:221:VAL:HG21</td>
<td>1:B:235:GLY:HA3</td>
<td>1.37</td>
<td>1.02</td>
</tr>
<tr>
<td>3:D:410:UVW:P</td>
<td>3:D:410:UVW:C1</td>
<td>2.47</td>
<td>1.02</td>
</tr>
<tr>
<td>1:C:198:VAL:HB</td>
<td>1:C:233:LEU:HB2</td>
<td>1.42</td>
<td>1.01</td>
</tr>
<tr>
<td>1:D:204:SER:HB2</td>
<td>1:D:208:SER:HB2</td>
<td>1.40</td>
<td>1.00</td>
</tr>
<tr>
<td>1:C:231:LEU:HD12</td>
<td>1:C:233:LEU:HD23</td>
<td>1.42</td>
<td>1.00</td>
</tr>
<tr>
<td>1:E:198:VAL:HB</td>
<td>1:E:233:LEU:HB2</td>
<td>1.43</td>
<td>1.00</td>
</tr>
<tr>
<td>3:D:421:UVW:P</td>
<td>3:D:421:UVW:C1</td>
<td>2.50</td>
<td>0.99</td>
</tr>
<tr>
<td>1:E:204:SER:HB2</td>
<td>1:E:208:SER:HB2</td>
<td>1.42</td>
<td>0.98</td>
</tr>
<tr>
<td>1:E:165:ALA:HB3</td>
<td>1:E:265:VAL:HA</td>
<td>1.45</td>
<td>0.98</td>
</tr>
<tr>
<td>1:C:302:LEU:HD23</td>
<td>1:C:314:LEU:HD12</td>
<td>1.46</td>
<td>0.98</td>
</tr>
<tr>
<td>1:D:16:ASP:HB2</td>
<td>1:D:43:ASN:HD21</td>
<td>1.27</td>
<td>0.98</td>
</tr>
<tr>
<td>3:E:415:UVW:P</td>
<td>3:E:415:UVW:C1</td>
<td>2.51</td>
<td>0.97</td>
</tr>
<tr>
<td>3:E:422:UVW:C1</td>
<td>3:E:422:UVW:P</td>
<td>2.54</td>
<td>0.96</td>
</tr>
<tr>
<td>3:B:403:UVW:C1</td>
<td>3:B:403:UVW:P</td>
<td>2.54</td>
<td>0.96</td>
</tr>
<tr>
<td>1:F:204:SER:HB2</td>
<td>1:F:208:SER:HB2</td>
<td>1.46</td>
<td>0.95</td>
</tr>
<tr>
<td>3:C:420:UVW:C1</td>
<td>3:C:420:UVW:P</td>
<td>2.54</td>
<td>0.94</td>
</tr>
<tr>
<td>1:D:198:VAL:HB</td>
<td>1:D:233:LEU:HB2</td>
<td>1.49</td>
<td>0.94</td>
</tr>
<tr>
<td>1:A:19:ILE:HG22</td>
<td>1:A:21:PHE:CE1</td>
<td>2.03</td>
<td>0.93</td>
</tr>
<tr>
<td>1:B:302:LEU:HD23</td>
<td>1:B:314:LEU:HD12</td>
<td>1.49</td>
<td>0.92</td>
</tr>
<tr>
<td>1:B:198:VAL:HB</td>
<td>1:B:233:LEU:HB2</td>
<td>1.52</td>
<td>0.92</td>
</tr>
<tr>
<td>1:E:231:LEU:HD12</td>
<td>1:E:233:LEU:HD23</td>
<td>1.54</td>
<td>0.88</td>
</tr>
<tr>
<td>1:D:221:VAL:HG21</td>
<td>1:D:235:GLY:HA3</td>
<td>1.53</td>
<td>0.88</td>
</tr>
<tr>
<td>1:D:36:LEU:HD13</td>
<td>1:D:42:LEU:HD11</td>
<td>1.56</td>
<td>0.87</td>
</tr>
<tr>
<td>1:E:36:LEU:HD13</td>
<td>1:E:42:LEU:HD11</td>
<td>1.56</td>
<td>0.87</td>
</tr>
<tr>
<td>1:D:49:ASN:HD22</td>
<td>1:D:52:GLU:H</td>
<td>1.24</td>
<td>0.86</td>
</tr>
<tr>
<td>1:D:16:ASP:HB2</td>
<td>1:D:43:ASN:ND2</td>
<td>1.91</td>
<td>0.85</td>
</tr>
<tr>
<td>1:A:141:LYS:HB2</td>
<td>3:A:401:UVW:H1M3</td>
<td>1.57</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:221:VAL:HG21</td>
<td>1:A:235:GLY:HA3</td>
<td>1.58</td>
<td>0.84</td>
</tr>
<tr>
<td>1:E:200:MET:HG3</td>
<td>1:E:221:VAL:HG22</td>
<td>1.60</td>
<td>0.84</td>
</tr>
<tr>
<td>1:C:129:THR:O</td>
<td>1:C:133:VAL:HG12</td>
<td>1.78</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:16:ASP:HB2</td>
<td>1:B:43:ASN:HD21</td>
<td>1.45</td>
<td>0.81</td>
</tr>
<tr>
<td>1:E:221:VAL:CG2</td>
<td>1:E:235:GLY:HA3</td>
<td>2.09</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:221:VAL:CG2</td>
<td>1:B:235:GLY:HA3</td>
<td>2.10</td>
<td>0.80</td>
</tr>
<tr>
<td>1:B:19:ILE:HG22</td>
<td>1:B:21:PHE:CE1</td>
<td>2.17</td>
<td>0.80</td>
</tr>
<tr>
<td>1:B:231:LEU:HD12</td>
<td>1:B:233:LEU:HD23</td>
<td>1.62</td>
<td>0.80</td>
</tr>
<tr>
<td>1:E:19:ILE:HG22</td>
<td>1:E:21:PHE:CE1</td>
<td>2.17</td>
<td>0.79</td>
</tr>
<tr>
<td>1:E:16:ASP:HB2</td>
<td>1:E:43:ASN:HD21</td>
<td>1.47</td>
<td>0.79</td>
</tr>
<tr>
<td>1:D:231:LEU:HD12</td>
<td>1:D:233:LEU:HD23</td>
<td>1.64</td>
<td>0.78</td>
</tr>
<tr>
<td>1:F:16:ASP:HB2</td>
<td>1:F:43:ASN:HD21</td>
<td>1.48</td>
<td>0.78</td>
</tr>
<tr>
<td>1:C:49:ASN:HD22</td>
<td>1:C:52:GLU:H</td>
<td>1.31</td>
<td>0.77</td>
</tr>
<tr>
<td>1:E:302:LEU:HD23</td>
<td>1:E:314:LEU:HD12</td>
<td>1.67</td>
<td>0.76</td>
</tr>
<tr>
<td>1:D:221:VAL:CG2</td>
<td>1:D:235:GLY:HA3</td>
<td>2.15</td>
<td>0.76</td>
</tr>
<tr>
<td>1:E:49:ASN:HD22</td>
<td>1:E:52:GLU:H</td>
<td>1.30</td>
<td>0.76</td>
</tr>
<tr>
<td>1:B:49:ASN:HD22</td>
<td>1:B:52:GLU:H</td>
<td>1.34</td>
<td>0.75</td>
</tr>
<tr>
<td>1:F:129:THR:O</td>
<td>1:F:133:VAL:HG12</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:D:129:THR:O</td>
<td>1:D:133:VAL:HG12</td>
<td>1.87</td>
<td>0.74</td>
</tr>
<tr>
<td>1:C:19:ILE:HG22</td>
<td>1:C:21:PHE:CE1</td>
<td>2.22</td>
<td>0.74</td>
</tr>
<tr>
<td>1:F:19:ILE:HG22</td>
<td>1:F:21:PHE:CE1</td>
<td>2.22</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:94:THR:HB</td>
<td>1:D:97:GLN:HG3</td>
<td>1.69</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:165:ALA:CB</td>
<td>1:D:265:VAL:HA</td>
<td>2.18</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:16:ASP:HB2</td>
<td>1:B:43:ASN:ND2</td>
<td>2.02</td>
<td>0.73</td>
</tr>
<tr>
<td>1:C:221:VAL:HG21</td>
<td>1:C:235:GLY:HA3</td>
<td>1.69</td>
<td>0.73</td>
</tr>
<tr>
<td>1:F:49:ASN:ND2</td>
<td>1:F:52:GLU:H</td>
<td>1.86</td>
<td>0.73</td>
</tr>
<tr>
<td>1:F:165:ALA:CB</td>
<td>1:F:265:VAL:HA</td>
<td>2.16</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:200:MET:HG3</td>
<td>1:B:221:VAL:HG22</td>
<td>1.70</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:72:PRO:HG3</td>
<td>1:B:108:PHE:CD1</td>
<td>2.25</td>
<td>0.72</td>
</tr>
<tr>
<td>1:E:165:ALA:CB</td>
<td>1:E:265:VAL:HA</td>
<td>2.19</td>
<td>0.72</td>
</tr>
<tr>
<td>1:F:18:LYS:O</td>
<td>1:F:19:ILE:HD12</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>1:E:129:THR:O</td>
<td>1:E:133:VAL:HG12</td>
<td>1.90</td>
<td>0.71</td>
</tr>
<tr>
<td>1:D:262:ASN:H</td>
<td>1:D:262:ASN:HD22</td>
<td>1.39</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:302:LEU:CD2</td>
<td>1:B:314:LEU:HD12</td>
<td>2.20</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:302:LEU:HD23</td>
<td>1:D:314:LEU:HD12</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:18:LYS:O</td>
<td>1:A:19:ILE:HD12</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:36:LEU:HD13</td>
<td>1:C:42:LEU:HD11</td>
<td>1.75</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:169:ILE:HG22</td>
<td>1:F:170:ASN:N</td>
<td>2.07</td>
<td>0.69</td>
</tr>
<tr>
<td>1:F:16:ASP:HB2</td>
<td>1:F:43:ASN:ND2</td>
<td>2.08</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:171:ILE:H</td>
<td>1:D:171:ILE:HD12</td>
<td>1.58</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:68:LYS:HB2</td>
<td>1:A:68:LYS:NZ</td>
<td>2.09</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:16:ASP:HB2</td>
<td>1:B:43:ASN:ND2</td>
<td>2.09</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:30:LYS:N</td>
<td>1:D:19:ILE:HD12</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:47:ILE:HD13</td>
<td>1:E:70:TYR:HB2</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>1:F:165:ALA:HB1</td>
<td>1:F:181:ILE:CG2</td>
<td>2.26</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:157:ARG:NH2</td>
<td>1:D:282:LEU:O</td>
<td>2.28</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:114:TYR:HA</td>
<td>1:D:297:MET:HE2</td>
<td>1.77</td>
<td>0.65</td>
</tr>
<tr>
<td>1:E:173:PRO:HB2</td>
<td>1:E:178:LEU:HD22</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>1:F:188:THR:OG1</td>
<td>1:F:293:GLN:NE2</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:30:LYS:N</td>
<td>1:B:16:ASP:HB2</td>
<td>1.96</td>
<td>0.65</td>
</tr>
<tr>
<td>1:E:1:MET:CE</td>
<td>1:E:288:VAL:HG23</td>
<td>2.26</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:129:THR:O</td>
<td>1:A:133:VAL:HG12</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:129:THR:O</td>
<td>1:B:133:VAL:HG12</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:291:ILE:HD13</td>
<td>1:C:317:ILE:HD13</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:171:ILE:H</td>
<td>1:F:171:ILE:HD12</td>
<td>1.61</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:198:VAL:HB</td>
<td>1:F:233:LEU:CB</td>
<td>2.21</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:47:ILE:HD13</td>
<td>1:B:70:TYR:HB2</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:3:ASP:CG</td>
<td>1:D:246:SER:HG</td>
<td>2.01</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:72:PRO:HG3</td>
<td>1:F:108:PHE:CD1</td>
<td>2.33</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:198:VAL:HB</td>
<td>1:C:233:LEU:CB</td>
<td>2.21</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:217:VAL:O</td>
<td>1:E:221:VAL:HG23</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:200:MET:HG3</td>
<td>1:A:221:VAL:HG22</td>
<td>1.80</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Continued on next page...
Full wwPDB X-ray Structure Validation Report

1XCO

Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:94:THR:HG22</td>
<td>1:A:95:GLU:H</td>
<td>1.64</td>
<td>0.63</td>
</tr>
<tr>
<td>1:E:1:MET:O</td>
<td>1:E:4:LEU:HB3</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:E:50:GLU:O</td>
<td>1:E:54:GLN:HB2</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:F:200:MET:HG3</td>
<td>1:F:221:VAL:HG22</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:E:163:VAL:HG21</td>
<td>1:E:189:ALA:HB2</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:19:ILE:HG22</td>
<td>1:D:21:PHE:CE1</td>
<td>2.33</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:63:THR:HG22</td>
<td>1:A:65:GLY:H</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:169:ILE:HG22</td>
<td>1:C:170:ASN:N</td>
<td>2.14</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:23:GLU:OE1</td>
<td>1:C:127:HIS:HD2</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:198:VAL:HB</td>
<td>1:D:233:LEU:CB</td>
<td>2.26</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:47:ILE:HD13</td>
<td>1:D:70:TYR:HB2</td>
<td>1.80</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:114:TYR:HA</td>
<td>1:D:297:MET:CE</td>
<td>2.30</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:280:GLN:HG2</td>
<td>1:B:281:ARG:HD2</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>1:F:312:TYR:HE2</td>
<td>1:F:316:LEU:HD11</td>
<td>1.64</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:302:LEU:CD2</td>
<td>1:C:314:LEU:HD12</td>
<td>2.23</td>
<td>0.62</td>
</tr>
<tr>
<td>1:E:227:LYS:O</td>
<td>1:E:229:PRO:HD3</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:23:GLU:OE1</td>
<td>1:A:127:HIS:HD2</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:205:THR:HA</td>
<td>1:F:236:GLU:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:68:LYS:HB2</td>
<td>1:F:68:LYS:HZ2</td>
<td>1.65</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:163:VAL:HG21</td>
<td>1:B:189:ALA:HB2</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:204:SER:HB2</td>
<td>1:E:208:SER:CB</td>
<td>2.26</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:240:ASP:HB3</td>
<td>1:E:247:VAL:HG11</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:82:VAL:O</td>
<td>1:C:86:VAL:HG13</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:185:SER:HA</td>
<td>1:D:293:GLN:HE22</td>
<td>1.65</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:1:MET:CE</td>
<td>1:B:288:VAL:HG23</td>
<td>2.31</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:217:VAL:O</td>
<td>1:C:220:ALA:HB3</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:230:GLU:H</td>
<td>1:E:230:GLU:CD</td>
<td>1.98</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:26:ASP:HB3</td>
<td>1:A:29:ILE:HD13</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:169:ILE:HG22</td>
<td>1:B:170:ASN:N</td>
<td>2.17</td>
<td>0.60</td>
</tr>
<tr>
<td>1:F:173:PRO:HB2</td>
<td>1:F:178:LEU:HD22</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:26:ASP:HB3</td>
<td>1:B:29:ILE:HD13</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:1:MET:O</td>
<td>1:E:4:LEU:N</td>
<td>2.28</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:1:MET:O</td>
<td>1:C:4:LEU:HB3</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:302:LEU:CD2</td>
<td>1:D:314:LEU:HD12</td>
<td>2.30</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:114:TYR:HA</td>
<td>1:B:297:MET:HE2</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:68:LYS:HB2</td>
<td>1:D:68:LYS:NZ</td>
<td>2.17</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:28:ARG:HG2</td>
<td>1:E:28:ARG:HH11</td>
<td>1.67</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:94:THR:HG22</td>
<td>1:E:95:GLU:H</td>
<td>1.67</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:200:MET:HG3</td>
<td>1:C:221:VAL:HG22</td>
<td>1.85</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:298:PRO:HG2</td>
<td>1:E:322:ALA:HB2</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:16:ASP:HB2</td>
<td>1:A:43:ASN:HD21</td>
<td>1.68</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:1:MET:O</td>
<td>1:F:4:LEU:N</td>
<td>2.29</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:79:GLU:OE2</td>
<td>1:D:99:ARG:NH1</td>
<td>2.37</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:188:THR:OG1</td>
<td>1:D:293:GLN:NE2</td>
<td>2.37</td>
<td>0.58</td>
</tr>
<tr>
<td>1:F:217:VAL:O</td>
<td>1:F:221:VAL:HG23</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:68:LYS:HB2</td>
<td>1:B:68:LYS:NZ</td>
<td>2.19</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:136:ALA:O</td>
<td>1:B:140:ILE:O</td>
<td>2.22</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:88:ARG:NH2</td>
<td>3:C:407:UVW:O3P</td>
<td>2.32</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:169:ILE:HG22</td>
<td>1:D:170:ASN:N</td>
<td>2.18</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:63:THR:HG22</td>
<td>1:E:65:GLY:H</td>
<td>1.67</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:205:THR:HG23</td>
<td>1:C:237:PHE:HA</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>1:F:262:ASN:ND2</td>
<td>1:F:263:VAL:HG23</td>
<td>2.19</td>
<td>0.57</td>
</tr>
<tr>
<td>1:F:266:PHE:CD2</td>
<td>1:F:272:GLY:HA2</td>
<td>2.39</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:230:GLU:H</td>
<td>1:C:230:GLU:CD</td>
<td>2.07</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:244:VAL:HG22</td>
<td>1:C:247:VAL:HG23</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:302:LEU:CD2</td>
<td>1:E:314:LEU:HD12</td>
<td>2.34</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:23:GLU:OE1</td>
<td>1:B:127:HIS:HD2</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:49:ASN:ND2</td>
<td>1:E:52:GLU:H</td>
<td>2.02</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:291:ILE:CD1</td>
<td>1:C:317:ILE:HD13</td>
<td>2.34</td>
<td>0.57</td>
</tr>
<tr>
<td>1:F:156:ALA:HA</td>
<td>1:F:160:GLU:O</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:F:280:GLN:HG2</td>
<td>1:F:281:ARG:HD2</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:281:ARG:HB3</td>
<td>1:B:243:PHE:HD2</td>
<td>1.68</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:94:THR:CB</td>
<td>1:D:97:GLN:HG3</td>
<td>2.35</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:152:VAL:HG11</td>
<td>1:A:293:GLN:NE2</td>
<td>2.20</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:205:THR:HG23</td>
<td>1:D:237:PHE:HA</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:154:ILE:HD13</td>
<td>1:B:291:ILE:HD12</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:217:VAL:O</td>
<td>1:D:220:ALA:HB3</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:240:ASP:HB3</td>
<td>1:B:247:VAL:HG11</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:240:ASP:CB</td>
<td>1:A:247:VAL:HG11</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:68:LYS:NZ</td>
<td>1:E:68:LYS:HB2</td>
<td>2.20</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:288:VAL:O</td>
<td>1:D:289:GLY:O</td>
<td>2.22</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:288:VAL:O</td>
<td>1:E:289:GLY:O</td>
<td>2.22</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:165:ALA:HB1</td>
<td>1:F:181:ILE:HG22</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:262:ASN:ND2</td>
<td>1:F:262:ASN:H</td>
<td>2.03</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:1:MET:CE</td>
<td>1:A:288:VAL:HG23</td>
<td>2.36</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:28:ARG:HH12</td>
<td>1:A:306:CYS:H</td>
<td>1.52</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:114:TYR:HA</td>
<td>1:A:297:MET:HE2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:298:PRO:HG2</td>
<td>1:C:322:ALA:HB2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:163:VAL:HG21</td>
<td>1:D:189:ALA:HB2</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:76:GLU:OE2</td>
<td>1:F:76:GLU:N</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:75:TYR:OH</td>
<td>1:A:117:LEU:HD22</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:7:THR:O</td>
<td>1:F:10:GLU:HB3</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:185:SER:HA</td>
<td>1:B:293:GLN:HE22</td>
<td>1.70</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:106:ASN:HD21</td>
<td>1:D:127:HIS:CD2</td>
<td>2.23</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:4:LEU:HD21</td>
<td>1:D:192:PHE:CD2</td>
<td>2.41</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:4:LEU:HD21</td>
<td>1:E:192:PHE:CD2</td>
<td>2.41</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:141:LYS:CB</td>
<td>3:A:401:UVW:H1M3</td>
<td>2.33</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:204:SER:HB2</td>
<td>1:B:208:SER:CB</td>
<td>2.24</td>
<td>0.55</td>
</tr>
<tr>
<td>1:F:262:ASN:N</td>
<td>1:F:262:ASN:HD22</td>
<td>2.01</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:82:VAL:O</td>
<td>1:E:86:VAL:HG13</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:94:THR:CB</td>
<td>1:A:97:GLN:HG3</td>
<td>2.36</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:205:THR:HA</td>
<td>1:C:236:GLU:O</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:16:ASP:HB2</td>
<td>1:A:43:ASN:ND2</td>
<td>2.21</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:95:GLU:HG2</td>
<td>1:C:99:ARG:NH2</td>
<td>2.22</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:28:ARG:HG2</td>
<td>1:A:28:ARG:HH11</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:134:ARG:HB3</td>
<td>1:B:135:PRO:CD</td>
<td>2.36</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:280:GLN:HG2</td>
<td>1:E:281:ARG:HD2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:264:PHE:N</td>
<td>1:E:264:PHE:CD1</td>
<td>2.73</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:312:TYR:CE2</td>
<td>1:F:316:LEU:HD11</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:121:LEU:HD23</td>
<td>1:A:122:VAL:N</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:12:VAL:HA</td>
<td>1:B:323:LEU:HD11</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:280:GLN:HG2</td>
<td>1:A:281:ARG:HD2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:4:LEU:HD21</td>
<td>1:A:192:PHE:CD2</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:188:THR:OG1</td>
<td>1:C:293:GLN:NE2</td>
<td>2.39</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:28:ARG:HH11</td>
<td>1:C:28:ARG:HG2</td>
<td>1.71</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:171:ILE:N</td>
<td>1:D:171:ILE:HD12</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:23:GLU:OE1</td>
<td>1:E:127:HIS:HD2</td>
<td>1.91</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:165:ALA:CE</td>
<td>1:B:265:VAL:HA</td>
<td>2.26</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:68:LYS:HD3</td>
<td>1:C:70:TYR:CZ</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:262:ASN:H</td>
<td>1:E:262:ASN:ND2</td>
<td>2.05</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:47:ILE:HD12</td>
<td>1:C:108:PHE:CD1</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:121:LEU:HD23</td>
<td>1:E:122:VAL:N</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:94:THR:HB</td>
<td>1:A:97:GLN:HG3</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:185:SER:HA</td>
<td>1:F:293:GLN:HE22</td>
<td>1.72</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:61:ASN:CA</td>
<td>1:D:63:THR:HB</td>
<td>2.39</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:1:MET:O</td>
<td>1:A:4:LEU:HB3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:113:VAL:O</td>
<td>1:B:297:MET:HE2</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:72:PRO:HG3</td>
<td>1:B:108:PHE:CG</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:171:ILE:HD12</td>
<td>1:B:171:ILE:N</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:244:VAL:HG22</td>
<td>1:F:244:VAL:O</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:61:ASN:ND2</td>
<td>1:D:65:GLY:HA3</td>
<td>2.24</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:288:VAL:O</td>
<td>1:A:289:GLY:O</td>
<td>2.26</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:88:ARG:NH2</td>
<td>3:D:410:UVW:O3P</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:185:SER:HA</td>
<td>1:E:293:GLN:HE22</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:110:THR:HG23</td>
<td>1:B:140:ILE:HD11</td>
<td>1.89</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:169:ILE:HG22</td>
<td>1:E:170:ASN:N</td>
<td>2.24</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:28:ARG:HH12</td>
<td>1:A:306:CYS:N</td>
<td>2.07</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:262:ASN:HD22</td>
<td>1:C:262:ASN:H</td>
<td>1.56</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:33:VAL:HG22</td>
<td>1:E:44:PRO:HB2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:227:LYS:O</td>
<td>1:F:229:PRO:HD3</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:7:THR:O</td>
<td>1:C:10:GLU:HB3</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:78:MET:O</td>
<td>1:F:81:LEU:HB2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:264:PHE:N</td>
<td>1:A:264:PHE:CD1</td>
<td>2.76</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:168:ALA:C</td>
<td>1:F:169:ILE:HD12</td>
<td>2.30</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:217:VAL:O</td>
<td>1:B:221:VAL:HG23</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:200:MET:HG3</td>
<td>1:D:221:VAL:HG22</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:222:LYS:O</td>
<td>1:E:226:GLU:HB2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:304:ARG:H</td>
<td>1:A:304:ARG:HD3</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:123:SER:OG</td>
<td>1:E:124:GLY:N</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:171:ILE:HD12</td>
<td>1:E:171:ILE:H</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:50:GLU:O</td>
<td>1:A:54:GLN:HB2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:230:GLU:H</td>
<td>1:B:230:GLU:CD</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:262:ASN:ND2</td>
<td>1:B:263:VAL:HG23</td>
<td>2.24</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:4:LEU:HD21</td>
<td>1:B:192:PHE:CD2</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:205:THR:HA</td>
<td>1:D:236:GLU:O</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:141:LYS:HB2</td>
<td>3:E:413:UVW:H1M3</td>
<td>1.91</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:88:ARG:NH2</td>
<td>3:A:401:UVW:O3P</td>
<td>2.32</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:68:LYS:HD3</td>
<td>1:A:70:TYR:CZ</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:95:GLU:HG2</td>
<td>1:A:99:ARG:NH2</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:94:THR:HB</td>
<td>1:F:97:GLN:HG3</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:3:ASP:CG</td>
<td>1:D:246:SER:OG</td>
<td>2.48</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:206:PHE:CD2</td>
<td>1:D:272:GLY:HA2</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:106:ASN:HD2</td>
<td>1:F:127:HIS:CD2</td>
<td>2.29</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:298:PRO:HG2</td>
<td>1:A:322:ALA:HB2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:174:ASP:OD1</td>
<td>1:B:174:ASP:C</td>
<td>2.49</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:114:TYR:HA</td>
<td>1:B:297:MET:CE</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:18:LYS:O</td>
<td>1:C:19:ILE:HD12</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:61:ASN:C</td>
<td>1:D:63:THR:HB</td>
<td>2.30</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:156:ALA:HA</td>
<td>1:B:160:GLU:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:4:LEU:HD21</td>
<td>1:F:192:PHE:CD2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:68:LYS:HD3</td>
<td>1:E:70:TYR:CZ</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:217:VAL:O</td>
<td>1:A:221:VAL:HG2</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:182:ALA:HA</td>
<td>1:B:265:VAL:HG2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:298:PRO:HG2</td>
<td>1:B:322:ALA:HB2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:49:ASN:ND2</td>
<td>1:C:52:GLU:H</td>
<td>2.03</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:83:GLN:O</td>
<td>1:C:86:VAL:HG22</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:26:ASP:HB3</td>
<td>1:D:29:ILE:HD13</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:165:ALA:HB1</td>
<td>1:D:181:ILE:CG2</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:81:LEU:HD22</td>
<td>1:D:111:MET:HB3</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:12:VAL:HA</td>
<td>1:E:323:LEU:HD11</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:1:MET:CE</td>
<td>1:F:288:VAL:HG23</td>
<td>2.41</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:28:ARG:HH12</td>
<td>1:C:306:CYS:H</td>
<td>1.57</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:47:ILE:HD13</td>
<td>1:A:70:TYR:HB2</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:94:THR:OG1</td>
<td>1:A:97:GLN:HG3</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:280:GLN:HG2</td>
<td>1:C:281:ARG:HD2</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:304:ARG:HD3</td>
<td>1:E:304:ARG:H</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:171:ILE:HD12</td>
<td>1:C:171:ILE:H</td>
<td>1.74</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:264:PHE:CD1</td>
<td>1:C:264:PHE:N</td>
<td>2.78</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:222:LYS:O</td>
<td>1:F:226:GLU:HB2</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:1:MET:HB3</td>
<td>1:F:286:GLU:OE1</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:68:LYS:HB2</td>
<td>1:A:68:LYS:HZ3</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:134:ARG:CB</td>
<td>1:B:135:PRO:CD</td>
<td>2.90</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:240:ASP:CB</td>
<td>1:B:247:VAL:HG11</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:63:THR:HB</td>
<td>1:C:61:ASN:CA</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:1:MET:SD</td>
<td>1:D:4:LEU:HD22</td>
<td>2.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:18:LYS:O</td>
<td>1:E:19:ILE:HD12</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:74:THR:O</td>
<td>1:E:75:TYR:C</td>
<td>2.48</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:94:THR:CB</td>
<td>1:F:97:GLN:HG3</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:134:ARG:CB</td>
<td>1:A:135:PRO:HD3</td>
<td>2.36</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:288:VAL:O</td>
<td>1:B:289:GLY:O</td>
<td>2.29</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:4:LEU:HD21</td>
<td>1:C:192:PHE:CD2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:24:GLY:HA2</td>
<td>1:C:46:VAL:HG13</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:262:ASN:ND2</td>
<td>1:D:262:ASN:H</td>
<td>2.07</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:136:ALA:O</td>
<td>1:F:140:ILE:O</td>
<td>2.29</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:281:ARG:HB3</td>
<td>1:B:243:PHE:CD2</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:18:LYS:C</td>
<td>1:D:19:ILE:HD12</td>
<td>2.32</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:291:ILE:CD1</td>
<td>1:D:317:ILE:HD13</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:241:ALA:O</td>
<td>1:F:259:GLY:HA2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:264:PHE:CD1</td>
<td>1:F:264:PHE:N</td>
<td>2.78</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:19:ILE:CG2</td>
<td>1:A:21:PHE:CE1</td>
<td>2.88</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:141:LYS:HB2</td>
<td>3:B:404:UVW:H1M3</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:156:ALA:HA</td>
<td>1:E:160:GLU:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:165:ALA:HB1</td>
<td>1:B:181:ILE:CG2</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:173:PRO:HB2</td>
<td>1:B:178:LEU:HD22</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:235:GLY:O</td>
<td>1:B:236:GLU:HB3</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:312:TYR:HE2</td>
<td>1:B:316:LEU:HD11</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:47:ILE:HD12</td>
<td>1:C:108:PHE:HD1</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:94:THR:HG22</td>
<td>1:F:95:GLU:H</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:176:GLN:HG2</td>
<td>4:C:652:HOH:O</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:65:GLY:HA3</td>
<td>1:C:61:ASN:HD21</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:134:ARG:HB3</td>
<td>1:E:135:PRO:CD</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:262:ASN:N</td>
<td>1:E:262:ASN:ND2</td>
<td>2.60</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:18:LYS:C</td>
<td>1:F:19:ILE:HD12</td>
<td>2.32</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:298:PRO:HG2</td>
<td>1:F:322:ALA:HB2</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:12:VAL:HA</td>
<td>1:F:323:LEU:HD11</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:68:LYS:HD3</td>
<td>1:A:70:TYR:CE2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:227:LYS:O</td>
<td>1:C:229:PRO:HD3</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:4:LEU:HD21</td>
<td>1:F:192:PHE:CE2</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:33:VAL:HG22</td>
<td>1:F:44:PRO:HB2</td>
<td>1.92</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:104:ASP:OD1</td>
<td>1:C:106:ASN:N</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:136:ALA:O</td>
<td>1:E:140:ILE:O</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:134:ARG:HG2</td>
<td>1:F:134:ARG:HH11</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:152:VAL:HG11</td>
<td>1:D:293:GLN:NE2</td>
<td>2.28</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:194:ILE:O</td>
<td>1:D:196:PRO:HD3</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:219:ASP:O</td>
<td>1:E:223:ILE:HG13</td>
<td>2.12</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:47:ILE:HD12</td>
<td>1:D:108:PHE:HD1</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:72:PRO:HG3</td>
<td>1:D:108:PHE:CD1</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:231:LEU:CD1</td>
<td>1:F:233:LEU:HB3</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:154:ILE:HD12</td>
<td>1:C:154:ILE:N</td>
<td>2.28</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:134:ARG:HG2</td>
<td>1:D:134:ARG:HH11</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:15:LYS:O</td>
<td>1:D:16:ASP:OD2</td>
<td>2.30</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:230:GLU:H</td>
<td>1:D:230:GLU:CD</td>
<td>2.10</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:76:GLU:OE2</td>
<td>1:F:77:GLY:N</td>
<td>2.46</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:187:ASN:O</td>
<td>1:A:190:LYS:HB2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:63:THR:HG22</td>
<td>1:B:65:GLY:H</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:154:ILE:HD13</td>
<td>1:D:291:ILE:HD12</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:219:ASP:O</td>
<td>1:D:223:ILE:HG13</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:244:VAL:HG22</td>
<td>1:F:247:VAL:H</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:28:ARG:HH12</td>
<td>1:B:306:CYS:H</td>
<td>1.61</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:136:ALA:O</td>
<td>1:C:140:ILE:O</td>
<td>2.31</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:94:THR:CB</td>
<td>1:C:97:GLN:HG3</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:48:GLY:HA3</td>
<td>1:D:53:ILE:HD11</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:317:ILE:O</td>
<td>1:F:320:ALA:HB3</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:136:ALA:O</td>
<td>1:A:140:ILE:O</td>
<td>2.32</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:207:GLY:O</td>
<td>1:C:208:SER:C</td>
<td>2.51</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:94:THR:OG1</td>
<td>1:C:97:GLN:HG3</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:270:GLU:OE2</td>
<td>1:D:267:PRO:HB2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:68:LYS:HD3</td>
<td>1:E:70:TYR:CE2</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:134:ARG:HH11</td>
<td>1:B:134:ARG:HG2</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:262:ASN:N</td>
<td>1:F:262:ASN:ND2</td>
<td>2.61</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:7:THR:O</td>
<td>1:D:10:GLU:HB3</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:262:ASN:N</td>
<td>1:E:262:ASN:HD22</td>
<td>2.04</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:114:TYR:HA</td>
<td>1:E:297:MET:CE</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:1:MET:CE</td>
<td>1:D:288:VAL:HG23</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:4:LEU:HD11</td>
<td>1:D:154:ILE:HG21</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:152:VAL:HG23</td>
<td>1:A:153:PHE:N</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:262:ASN:C</td>
<td>1:B:262:ASN:HD22</td>
<td>2.17</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:233:LEU:C</td>
<td>1:A:233:LEU:HD12</td>
<td>2.34</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:303:SER:O</td>
<td>1:B:304:ARG:C</td>
<td>2.52</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:141:LYS:CB</td>
<td>3:B:404:UVW:H1M3</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:82:VAL:O</td>
<td>1:B:86:VAL:HG13</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:114:TYR:HA</td>
<td>1:E:297:MET:HE2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:114:TYR:HA</td>
<td>1:A:297:MET:CE</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:168:ALA:C</td>
<td>1:D:169:ILE:HD12</td>
<td>2.35</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:28:ARG:HG2</td>
<td>1:D:28:ARG:HH11</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:235:GLY:O</td>
<td>1:E:236:GLU:HB3</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:197:ARG:N</td>
<td>1:E:262:ASN:HD21</td>
<td>2.11</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:63:THR:HG22</td>
<td>1:E:65:GLY:N</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:47:ILE:HD13</td>
<td>1:F:70:TYR:HB2</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:81:LEU:HD22</td>
<td>1:C:111:MET:HB3</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:227:LYS:C</td>
<td>1:E:229:PRO:HD3</td>
<td>2.34</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:264:PHE:CD1</td>
<td>1:B:264:PHE:N</td>
<td>2.82</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:309:GLU:O</td>
<td>1:B:309:GLU:HG2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:274:ILE:O</td>
<td>1:D:278:ILE:HG13</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:281:ARG:HB3</td>
<td>1:D:243:PHE:CD2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:233:LEU:HD12</td>
<td>1:B:233:LEU:C</td>
<td>2.35</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:231:LEU:CD1</td>
<td>1:C:233:LEU:HB3</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:235:GLY:O</td>
<td>1:C:236:GLU:HB3</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:81:LEU:HD22</td>
<td>1:B:111:MET:HB3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:1:MET:CE</td>
<td>1:C:288:VAL:HG23</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:68:LYS:HB2</td>
<td>1:C:68:LYS:NZ</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:182:ALA:HA</td>
<td>1:D:265:VAL:HG21</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:262:ASN:HD22</td>
<td>1:A:262:ASN:H</td>
<td>1.61</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:304:ARG:HD3</td>
<td>3:B:419:UVW:O1P</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:154:ILE:CD1</td>
<td>1:C:154:ILE:N</td>
<td>2.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:72:PRO:HG3</td>
<td>1:D:108:PHE:CG</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:262:ASN:ND2</td>
<td>1:D:262:ASN:N</td>
<td>2.62</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:169:ILE:HD12</td>
<td>1:E:169:ILE:N</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:174:ASP:OD1</td>
<td>1:F:174:ASP:C</td>
<td>2.54</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:173:PRO:HB2</td>
<td>1:C:178:LEU:HD22</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:303:SER:C</td>
<td>1:B:304:ARG:O</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:312:TYR:HE2</td>
<td>1:E:316:LEU:HD11</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:140:ILE:HG22</td>
<td>1:F:296:ASN:HB2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:68:LYS:HD3</td>
<td>1:C:70:TYR:CE2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:240:ASP:HB3</td>
<td>1:D:247:VAL:HG11</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:27:GLU:HB3</td>
<td>1:D:60:LEU:HD11</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:12:VAL:HA</td>
<td>1:D:323:LEU:HD11</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:152:VAL:CG1</td>
<td>1:A:293:GLN:NE2</td>
<td>2.78</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:64:LEU:HD23</td>
<td>1:B:64:LEU:HA</td>
<td>1.72</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:166:ASP:HB3</td>
<td>4:C:673:HOH:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:171:ILE:N</td>
<td>1:C:171:ILE:HD12</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:64:LEU:HA</td>
<td>1:E:64:LEU:HD23</td>
<td>1.72</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:237:PHE:CE1</td>
<td>1:F:257:ILE:HB</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:68:LYS:HZ2</td>
<td>1:A:68:LYS:HB2</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:165:ALA:HB1</td>
<td>1:B:181:ILE:HG22</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:201:LEU:HD11</td>
<td>1:B:264:PHE:HB3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:307:ASN:HB2</td>
<td>1:D:310:ASP:OD2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:88:ARG:HA</td>
<td>4:B:607:HOH:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:169:ILE:N</td>
<td>1:B:169:ILE:HD12</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:33:VAL:HG22</td>
<td>1:D:44:PRO:HB2</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:227:LYS:O</td>
<td>1:B:229:PRO:HD3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:154:ILE:N</td>
<td>1:D:154:ILE:HD12</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:280:GLN:HG2</td>
<td>1:D:281:ARG:HD2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:95:GLU:HG2</td>
<td>1:F:99:ARG:HH22</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:47:ILE:HD12</td>
<td>1:A:108:PHE:HD1</td>
<td>1.79</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:231:LEU:HD12</td>
<td>1:C:233:LEU:CD2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:58:LYS:HD2</td>
<td>4:D:612:HOH:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:187:ASN:O</td>
<td>1:E:190:LYS:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:1:MET:HB3</td>
<td>1:B:286:GLU:OE1</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:243:PHE:CE1</td>
<td>1:B:282:LEU:HD21</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:314:LEU:HA</td>
<td>1:B:314:LEU:HD23</td>
<td>1.72</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:278:ILE:HG23</td>
<td>1:C:282:LEU:HD12</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:237:PHE:CE1</td>
<td>1:A:257:ILE:HB</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:49:ASN:HD21</td>
<td>1:D:51:ASN:HB2</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:291:ILE:CD1</td>
<td>1:E:317:ILE:HD13</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:94:THR:HB</td>
<td>1:B:97:GLN:HG3</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:204:SER:HB2</td>
<td>1:D:209:ALA:H</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:149:THR:HG23</td>
<td>1:F:293:GLN:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:83:GLN:O</td>
<td>1:F:86:VAL:HG22</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:205:THR:HA</td>
<td>1:A:236:GLU:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:134:ARG:HG2</td>
<td>1:C:134:ARG:HH11</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:95:GLU:HG2</td>
<td>1:C:99:ARG:HH22</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:314:LEU:HD23</td>
<td>1:E:314:LEU:HA</td>
<td>1.61</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:227:LYS:C</td>
<td>1:F:229:PRO:HD3</td>
<td>2.37</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:75:TYR:CE1</td>
<td>1:B:77:GLY:HA3</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:47:ILE:HD12</td>
<td>1:E:108:PHE:HD1</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:134:ARG:CB</td>
<td>1:E:135:PRO:CD</td>
<td>2.94</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:288:VAL:O</td>
<td>1:F:289:GLY:O</td>
<td>2.35</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:114:TYR:HA</td>
<td>1:F:297:MET:HE2</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:169:ILE:HG22</td>
<td>1:A:170:ASN:N</td>
<td>2.32</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:270:GLU:O</td>
<td>1:A:274:ILE:HG13</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:157:ARG:NH1</td>
<td>1:D:157:ARG:NH1</td>
<td>2.64</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:4:LEU:C</td>
<td>1:C:4:LEU:HD23</td>
<td>2.37</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:94:THR:HB</td>
<td>1:C:97:GLN:HG3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:94:THR:HG22</td>
<td>1:C:95:GLU:H</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:28:ARG:HG2</td>
<td>1:C:28:ARG:NH1</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>3:E:415:UVW:O2</td>
<td>3:E:415:UVW:C1M</td>
<td>2.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:94:THR:HB</td>
<td>1:E:97:GLN:HG3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:22:PRO:HD2</td>
<td>1:E:123:SER:HB2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:237:PHE:HE1</td>
<td>1:A:257:ILE:HB</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:281:ARG:HH11</td>
<td>1:A:281:ARG:HG3</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:107:TYR:CZ</td>
<td>1:D:135:PRO:HB3</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:266:PHE:CD2</td>
<td>1:E:272:GLY:HA2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:288:VAL:O</td>
<td>1:C:289:GLY:O</td>
<td>2.35</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:197:ARG:HB2</td>
<td>1:D:262:ASN:ND2</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:303:SER:C</td>
<td>1:D:304:ARG:O</td>
<td>2.54</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:283:GLY:HA2</td>
<td>1:C:283:GLY:HA2</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:314:LEU:HA</td>
<td>1:D:314:LEU:HD23</td>
<td>1.68</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:78:MET:O</td>
<td>1:D:82:VAL:HG23</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:68:LYS:HZ3</td>
<td>1:E:68:LYS:HB2</td>
<td>1.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:141:LYS:H</td>
<td>1:F:296:ASN:HD22</td>
<td>1.64</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:291:ILE:CD1</td>
<td>1:F:317:ILE:HD13</td>
<td>2.46</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:185:SER:HA</td>
<td>1:A:293:GLN:HE22</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:18:LYS:O</td>
<td>1:B:19:ILE:HD12</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:50:GLU:O</td>
<td>1:C:54:GLN:HB2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:156:ALA:HA</td>
<td>1:D:160:GLU:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:28:ARG:HG2</td>
<td>1:A:28:ARG:NH1</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:82:VAL:O</td>
<td>1:A:86:VAL:HG13</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:86:VAL:CG2</td>
<td>1:A:87:GLU:N</td>
<td>2.81</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:88:ARG:NH2</td>
<td>3:B:404:UVW:O3P</td>
<td>2.36</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:23:GLU:OE1</td>
<td>1:C:127:HIS:CD2</td>
<td>2.68</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:28:ARG:HH12</td>
<td>1:D:306:CYS:H</td>
<td>1.64</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:216:LYS:HE2</td>
<td>1:B:216:LYS:HB3</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:262:ASN:HD22</td>
<td>1:C:262:ASN:N</td>
<td>2.14</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:204:SER:HB2</td>
<td>1:E:209:ALA:H</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:4:LEU:HD21</td>
<td>1:B:192:PHE:CE2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:244:VAL:HG22</td>
<td>1:A:244:VAL:O</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:18:LYS:C</td>
<td>1:C:19:ILE:HD12</td>
<td>2.38</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:83:GLN:NE2</td>
<td>1:C:86:VAL:HG21</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:207:GLY:O</td>
<td>1:D:208:SER:C</td>
<td>2.56</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:217:VAL:O</td>
<td>1:D:221:VAL:HG23</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:204:SER:HB2</td>
<td>1:F:208:SER:CB</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:26:ASP:OD2</td>
<td>1:A:28:ARG:HB2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:303:SER:O</td>
<td>1:D:304:ARG:C</td>
<td>2.56</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:207:GLY:O</td>
<td>1:E:208:SER:C</td>
<td>2.57</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:244:VAL:HG22</td>
<td>1:F:247:VAL:HG23</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:76:GLU:OE2</td>
<td>1:F:76:GLU:CA</td>
<td>2.65</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:262:ASN:HD22</td>
<td>1:A:262:ASN:C</td>
<td>2.22</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:134:ARG:HB3</td>
<td>1:C:135:PRO:CD</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:227:LYS:C</td>
<td>1:C:229:PRO:HD3</td>
<td>2.37</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:264:PHE:CD1</td>
<td>1:D:264:PHE:N</td>
<td>2.85</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:204:SER:HB2</td>
<td>1:B:209:ALA:H</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:156:ALA:HA</td>
<td>1:C:160:GLU:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:237:PHE:CE1</td>
<td>1:C:257:ILE:HB</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:291:ILE:HD13</td>
<td>1:D:317:ILE:HD13</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:240:ASP:CB</td>
<td>1:E:247:VAL:HG11</td>
<td>2.45</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:28:ARG:NH1</td>
<td>1:E:28:ARG:HG2</td>
<td>2.31</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:68:LYS:HD3</td>
<td>1:B:70:TYR:CZ</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:152:VAL:HG11</td>
<td>1:C:293:GLN:NE2</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:288:VAL:HG12</td>
<td>1:D:288:VAL:O</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:262:ASN:ND2</td>
<td>1:E:263:VAL:HG23</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:28:ARG:HG2</td>
<td>1:F:28:ARG:NH1</td>
<td>2.31</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:222:LYS:O</td>
<td>1:A:226:GLU:HB2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:64:LEU:HA</td>
<td>1:A:64:LEU:HD23</td>
<td>1.74</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:149:THR:HG23</td>
<td>1:B:293:GLN:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:1:MET:HB3</td>
<td>1:D:286:GLU:OE1</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:1:MET:HE2</td>
<td>1:D:288:VAL:HG23</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:171:ILE:CD1</td>
<td>1:B:171:ILE:HD12</td>
<td>2.30</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:49:ASN:HD21</td>
<td>1:B:51:ASN:HB2</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:249:GLU:O</td>
<td>1:C:253:PRO:HD3</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:171:ILE:N</td>
<td>1:E:171:ILE:HD12</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:219:ASP:O</td>
<td>1:F:223:ILE:HG13</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:163:VAL:HG21</td>
<td>1:A:189:ALA:HB2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:3:ASP:OD1</td>
<td>1:D:246:SER:OG</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:152:VAL:CG1</td>
<td>1:D:293:GLN:NE2</td>
<td>2.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:4:LEU:HD21</td>
<td>1:D:192:PHE:CE2</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:4:LEU:HD11</td>
<td>1:C:154:ILE:HG21</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:16:ASP:HB2</td>
<td>1:C:43:ASN:ND2</td>
<td>2.33</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:177:ASP:O</td>
<td>1:E:181:ILE:HG13</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:303:SER:O</td>
<td>1:F:304:ARG:C</td>
<td>2.56</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:235:GLY:O</td>
<td>1:A:236:GLU:HB3</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:278:ILE:O</td>
<td>1:A:282:LEU:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:36:LEU:HD23</td>
<td>1:A:312:TYR:CE1</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:68:LYS:HD3</td>
<td>1:B:70:TYR:CE2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:167:CYS:HB3</td>
<td>1:C:272:GLY:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:221:VAL:HG21</td>
<td>1:C:235:GLY:CA</td>
<td>2.46</td>
<td>0.43</td>
</tr>
<tr>
<td>3:D:410:UVW:CIM</td>
<td>3:D:410:UVW:O2</td>
<td>2.46</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:61:ASN:O</td>
<td>1:D:63:THR:HB</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:134:ARG:CB</td>
<td>1:F:135:PRO:CD</td>
<td>2.96</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:251:LYS:O</td>
<td>1:F:252:ALA:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:217:VAL:O</td>
<td>1:A:220:ALA:HB3</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:47:ILE:HD12</td>
<td>1:B:108:PHE:CD1</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:232:THR:HG23</td>
<td>1:E:256:GLU:HB3</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:317:ILE:O</td>
<td>1:C:320:ALA:HB3</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:64:LEU:HD23</td>
<td>1:C:64:LEU:HA</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:136:ALA:O</td>
<td>1:D:140:ILE:O</td>
<td>2.37</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:95:GLU:HG2</td>
<td>1:A:99:ARG:HH22</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:206:LYS:HD3</td>
<td>1:B:252:ALA:HB1</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:75:TYR:OH</td>
<td>1:B:117:LEU:HD22</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:94:THR:HG22</td>
<td>1:D:95:GLU:H</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:207:GLY:O</td>
<td>1:F:208:SER:C</td>
<td>2.57</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:188:THR:OG1</td>
<td>1:B:293:GLN:NE2</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:1:MET:HB3</td>
<td>1:C:286:GLU:OE1</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:266:PHE:CD2</td>
<td>1:A:272:GLY:HA2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:154:ILE:HD12</td>
<td>1:B:154:ILE:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:312:TYR:CE2</td>
<td>1:B:316:LEU:HD11</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:240:ASP:CE</td>
<td>1:D:247:VAL:HG11</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:1:MET:HE1</td>
<td>1:E:288:VAL:HG23</td>
<td>1.97</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:189:ALA:O</td>
<td>1:A:194:ILE:HB</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:219:ASP:O</td>
<td>1:C:223:ILE:HG13</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:240:ASP:HB3</td>
<td>1:C:247:VAL:HG11</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:134:ARG:HB3</td>
<td>1:D:135:PRO:CD</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:288:VAL:HG12</td>
<td>1:B:288:VAL:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:63:THR:HB</td>
<td>1:C:61:ASN:C</td>
<td>2.39</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:253:PRO:O</td>
<td>1:D:254:ASP:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:133:VAL:HG22</td>
<td>1:B:133:VAL:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:110:THR:HG23</td>
<td>1:B:140:ILE:CD1</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:49:ASN:ND2</td>
<td>1:F:49:ASN:C</td>
<td>2.73</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:163:VAL:O</td>
<td>1:B:164:PHE:HD2</td>
<td>2.03</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:183:ALA:O</td>
<td>1:C:194:ILE:HB</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:63:THR:HB</td>
<td>1:F:61:ASN:HA</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:304:ARG:H</td>
<td>1:F:304:ARG:HD3</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:95:GLU:HG2</td>
<td>1:F:99:ARG:NH2</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:207:GLY:O</td>
<td>1:A:208:SER:C</td>
<td>2.58</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:165:ALA:HB1</td>
<td>1:C:181:ILE:CG2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:12:VAL:HA</td>
<td>1:C:323:LEU:HD11</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:154:ILE:HG12</td>
<td>1:E:192:PHE:CZ</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:240:ASP:HB2</td>
<td>1:A:247:VAL:HG11</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:195:GLU:OE2</td>
<td>1:C:196:PRO:HD2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:36:LEU:HD23</td>
<td>1:C:312:TYR:CE1</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:64:LEU:HD23</td>
<td>1:D:64:LEU:HA</td>
<td>1.87</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:253:PRO:O</td>
<td>1:C:254:ASP:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:217:VAL:O</td>
<td>1:E:220:ALA:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:292:LEU:HG</td>
<td>4:E:627:HOH:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:63:THR:HG22</td>
<td>1:C:61:ASN:OD1</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:85:PHE:CE2</td>
<td>1:C:89:ARG:HG3</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:262:ASN:HD22</td>
<td>1:D:262:ASN:N</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:186:ALA:HB1</td>
<td>1:B:231:LEU:HD21</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:246:SER:O</td>
<td>1:B:249:GLU:HG2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:22:PRO:HA</td>
<td>1:C:47:ILE:HB</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:152:VAL:HG23</td>
<td>1:E:153:PHE:N</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:1:MET:O</td>
<td>1:F:2:ALA:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:154:ILE:HD12</td>
<td>1:A:154:ILE:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:174:ASP:C</td>
<td>1:D:174:ASP:OD1</td>
<td>2.59</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:196:PRO:O</td>
<td>1:D:197:ARG:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:153:PHE:CE2</td>
<td>1:E:276:TYR:CZ</td>
<td>3.08</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:291:ILE:HD11</td>
<td>1:E:317:ILE:HD13</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:186:ALA:HB1</td>
<td>1:A:231:LEU:HD21</td>
<td>2.00</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:194:ILE:O</td>
<td>1:B:196:PRO:HD3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:63:THR:CG2</td>
<td>1:C:61:ASN:OD1</td>
<td>2.69</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:288:VAL:O</td>
<td>1:C:288:VAL:HG12</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:28:ARG:HH12</td>
<td>1:C:306:CYS:N</td>
<td>2.17</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:177:ASP:O</td>
<td>1:A:181:ILE:HG13</td>
<td>2.20</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:227:LYS:C</td>
<td>1:B:229:PRO:HD3</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:267:PRO:HB2</td>
<td>1:D:270:GLU:OE2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:86:VAL:HG12</td>
<td>1:D:98:ALA:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:5:PHE:HZ</td>
<td>1:E:288:VAL:CG2</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:83:GLN:NE2</td>
<td>1:F:86:VAL:HG21</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:49:ASN:ND2</td>
<td>1:A:52:GLU:H</td>
<td>2.13</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:165:ALA:HB1</td>
<td>1:D:181:ILE:HG22</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:33:VAL:HG22</td>
<td>1:E:44:PRO:CB</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:104:ASP:OD1</td>
<td>1:C:106:ASN:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:194:ILE:O</td>
<td>1:C:196:PRO:HD3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:204:SER:HB2</td>
<td>1:C:209:ALA:H</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:231:LEU:HD13</td>
<td>1:C:233:LEU:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:134:ARG:CB</td>
<td>1:D:135:PRO:CD</td>
<td>2.99</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:64:LEU:HA</td>
<td>1:F:64:LEU:HD23</td>
<td>1.81</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:191:MET:HE3</td>
<td>1:A:317:ILE:HG23</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:266:PHE:CD2</td>
<td>1:B:272:GLY:HA2</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:244:VAL:O</td>
<td>1:C:244:VAL:HG22</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:251:LYS:O</td>
<td>1:C:252:ALA:HB2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:95:GLU:HG2</td>
<td>1:D:99:ARG:HH22</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:1:MET:O</td>
<td>1:F:4:LEU:HB3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:195:GLU:HA</td>
<td>1:A:196:PRO:HD3</td>
<td>1.91</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:121:LEU:HD23</td>
<td>1:B:122:VAL:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:243:PHE:HD2</td>
<td>1:B:281:ARG:HB3</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:58:LYS:HD2</td>
<td>4:B:649:HOH:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:61:ASN:HD21</td>
<td>1:C:65:GLY:HA3</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:49:ASN:ND2</td>
<td>1:D:52:GLU:H</td>
<td>2.04</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:26:ASP:OD2</td>
<td>1:E:28:ARG:HB2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:262:ASN:HD22</td>
<td>1:A:262:ASN:N</td>
<td>2.17</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:47:ILE:CD1</td>
<td>1:B:70:TYR:HB2</td>
<td>2.48</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:195:GLU:HA</td>
<td>1:E:196:PRO:HD3</td>
<td>1.92</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:19:ILE:CG2</td>
<td>1:E:21:PHE:CE1</td>
<td>2.98</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:174:ASP:OD1</td>
<td>1:A:174:ASP:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:176:GLN:NE2</td>
<td>1:D:223:ILE:HD13</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:222:LYS:O</td>
<td>1:D:226:GLU:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:312:TYR:HE2</td>
<td>1:D:316:LEU:HD11</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:163:VAL:HG21</td>
<td>1:E:189:ALA:CB</td>
<td>2.48</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:244:VAL:HA</td>
<td>1:E:245:PRO:HD3</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:198:VAL:HB</td>
<td>1:B:233:LEU:CB</td>
<td>2.37</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:262:ASN:C</td>
<td>1:B:262:ASN:ND2</td>
<td>2.75</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:75:TYR:OH</td>
<td>1:B:117:LEU:CD2</td>
<td>2.69</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:173:PRO:HB2</td>
<td>1:D:178:LEU:HD22</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:5:PHE:HZ</td>
<td>1:E:288:VAL:HG22</td>
<td>1.87</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:149:THR:CG2</td>
<td>1:F:293:GLN:O</td>
<td>2.69</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:244:VAL:HA</td>
<td>1:C:245:PRO:HD3</td>
<td>1.92</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:113:VAL:O</td>
<td>1:E:297:MET:HE2</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:159:GLU:HA</td>
<td>1:E:159:GLU:OE2</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:171:ILE:H</td>
<td>1:F:171:ILE:CD1</td>
<td>2.31</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:113:VAL:O</td>
<td>1:F:297:MET:HE2</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:244:VAL:CG2</td>
<td>1:C:247:VAL:HG23</td>
<td>2.52</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:291:ILE:HD13</td>
<td>1:C:317:ILE:HG21</td>
<td>2.04</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:95:GLU:HG2</td>
<td>1:D:99:ARG:NH2</td>
<td>2.35</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:312:TYR:CE2</td>
<td>1:E:316:LEU:HD11</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:240:ASP:CB</td>
<td>1:C:247:VAL:HG11</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:303:SER:C</td>
<td>1:F:304:ARG:O</td>
<td>2.57</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:312:TYR:O</td>
<td>1:B:315:ALA:HB3</td>
<td>2.22</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>322/329 (98%)</td>
<td>292 (91%)</td>
<td>20 (6%)</td>
<td>10 (3%)</td>
<td>4 16</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>322/329 (98%)</td>
<td>283 (88%)</td>
<td>31 (10%)</td>
<td>8 (2%)</td>
<td>6 20</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>321/329 (98%)</td>
<td>289 (90%)</td>
<td>22 (7%)</td>
<td>10 (3%)</td>
<td>4 16</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>323/329 (98%)</td>
<td>288 (89%)</td>
<td>26 (8%)</td>
<td>9 (3%)</td>
<td>5 18</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>323/329 (98%)</td>
<td>284 (88%)</td>
<td>30 (9%)</td>
<td>9 (3%)</td>
<td>5 18</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>321/329 (98%)</td>
<td>280 (87%)</td>
<td>28 (9%)</td>
<td>13 (4%)</td>
<td>3 10</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>1932/1974 (98%)</td>
<td>1716 (89%)</td>
<td>157 (8%)</td>
<td>59 (3%)</td>
<td>4</td>
</tr>
</tbody>
</table>

All (59) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>65</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 A</td>
<td>144</td>
<td>GLU</td>
<td></td>
</tr>
<tr>
<td>1 A</td>
<td>289</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>65</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>144</td>
<td>GLU</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>208</td>
<td>SER</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>289</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>65</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>143</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>144</td>
<td>GLU</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>206</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>208</td>
<td>SER</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>289</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>65</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>144</td>
<td>GLU</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>208</td>
<td>SER</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>289</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>90</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>144</td>
<td>GLU</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>206</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>208</td>
<td>SER</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>289</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 F</td>
<td>65</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 F</td>
<td>144</td>
<td>GLU</td>
<td></td>
</tr>
<tr>
<td>1 F</td>
<td>206</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 F</td>
<td>208</td>
<td>SER</td>
<td></td>
</tr>
<tr>
<td>1 F</td>
<td>289</td>
<td>GLY</td>
<td></td>
</tr>
<tr>
<td>1 A</td>
<td>90</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 A</td>
<td>143</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 A</td>
<td>206</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 A</td>
<td>208</td>
<td>SER</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>143</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>206</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>236</td>
<td>GLU</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>143</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>206</td>
<td>LYS</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>65</td>
<td>GLY</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>257/257 (100%)</td>
<td>238 (93%)</td>
<td>19 (7%)</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>257/257 (100%)</td>
<td>237 (92%)</td>
<td>20 (8%)</td>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>257/257 (100%)</td>
<td>236 (92%)</td>
<td>21 (8%)</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>257/257 (100%)</td>
<td>240 (93%)</td>
<td>17 (7%)</td>
<td>18</td>
<td>43</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>258/257 (100%)</td>
<td>236 (92%)</td>
<td>22 (8%)</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>257/257 (100%)</td>
<td>234 (91%)</td>
<td>23 (9%)</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1543/1542 (100%)</td>
<td>1421 (92%)</td>
<td>122 (8%)</td>
<td>13</td>
<td>34</td>
</tr>
</tbody>
</table>
All (122) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>18</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>25</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>28</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>117</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>134</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>149</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>152</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>159</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>230</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>233</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>244</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>254</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>264</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>276</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>281</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>297</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>304</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>314</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>18</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>25</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>28</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>78</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>80</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>134</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>149</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>159</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>215</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>226</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>230</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>233</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>244</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>254</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>276</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>281</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>297</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>304</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>314</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>18</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>25</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>27</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>28</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>117</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>134</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>149</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>152</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>159</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>167</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>230</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>233</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>244</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>254</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>276</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>281</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>297</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>304</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>314</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>18</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>25</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>28</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>33</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>134</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>149</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>150</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>215</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>230</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>233</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>244</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>254</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>276</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>297</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>304</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>314</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>18</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>25</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>27</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>28</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>33</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>78</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>104</td>
<td>ASP</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (48) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>117</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>134</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>149</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>152</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>230</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>233</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>244</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>254</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>264</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>276</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>281</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>297</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>304</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>314</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>3</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>18</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>25</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>27</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>28</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>33</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>49</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>76</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>117</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>134</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>149</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>152</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>230</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>233</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>244</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>254</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>264</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>276</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>281</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>297</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>304</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>314</td>
<td>LEU</td>
</tr>
<tr>
<td>Mol</td>
<td>Chain</td>
<td>Res</td>
<td>Type</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>43</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>49</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>127</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>293</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>43</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>49</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>106</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>127</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>280</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>293</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>43</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>49</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>127</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>293</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>43</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>49</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>127</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>176</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>280</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>293</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>43</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>49</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>83</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>127</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>284</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>293</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>43</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>49</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>83</td>
<td>GLN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>127</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>161</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>262</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>293</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>296</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

26 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>401</td>
<td>-</td>
<td>6,7,7</td>
<td>3.15</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>402</td>
<td>-</td>
<td>6,7,7</td>
<td>3.17</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>406</td>
<td>-</td>
<td>6,7,7</td>
<td>2.91</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>418</td>
<td>-</td>
<td>6,7,7</td>
<td>3.47</td>
</tr>
<tr>
<td>2</td>
<td>SO4</td>
<td>A</td>
<td>501</td>
<td>-</td>
<td>4,4,4</td>
<td>2.26</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>403</td>
<td>-</td>
<td>6,7,7</td>
<td>2.97</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>404</td>
<td>-</td>
<td>6,7,7</td>
<td>3.39</td>
</tr>
</tbody>
</table>
Bond lengths

| Mol | Type | Chain | Res | Link | Counts | RMSZ | \(|Z| > 2\) |
|-----|------|-------|-----|------|--------|------|------------|
| 3 | UVW | B | 405 | - | 6,7,7 | 3.14 | 2 (33%) |
| 3 | UVW | B | 419 | - | 6,7,7 | 3.36 | 3 (50%) |
| 3 | UVW | C | 407 | - | 6,7,7 | 3.28 | 3 (50%) |
| 3 | UVW | C | 408 | - | 6,7,7 | 3.05 | 3 (50%) |
| 3 | UVW | C | 412 | - | 6,7,7 | 3.22 | 3 (50%) |
| 3 | UVW | C | 420 | - | 6,7,7 | 3.07 | 3 (50%) |
| 2 | SO4 | C | 502 | - | 4,4,4 | 2.30 | 1 (25%) |
| 3 | UVW | D | 409 | - | 6,7,7 | 3.17 | 3 (50%) |
| 3 | UVW | D | 410 | - | 6,7,7 | 3.05 | 3 (50%) |
| 3 | UVW | D | 411 | - | 6,7,7 | 3.33 | 3 (50%) |
| 3 | UVW | D | 421 | - | 6,7,7 | 3.34 | 3 (50%) |
| 3 | UVW | E | 413 | - | 6,7,7 | 3.05 | 3 (50%) |
| 3 | UVW | E | 414 | - | 6,7,7 | 3.29 | 2 (33%) |
| 3 | UVW | E | 415 | - | 6,7,7 | 3.14 | 3 (50%) |
| 3 | UVW | E | 422 | - | 6,7,7 | 3.34 | 4 (66%) |
| 2 | SO4 | E | 503 | - | 4,4,4 | 2.28 | 1 (25%) |
| 3 | UVW | F | 416 | - | 6,7,7 | 3.12 | 3 (50%) |
| 3 | UVW | F | 417 | - | 6,7,7 | 3.28 | 3 (50%) |
| 3 | UVW | F | 423 | - | 6,7,7 | 3.27 | 3 (50%) |

Bond angles

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>401</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>402</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>406</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>418</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>SO4</td>
<td>A</td>
<td>501</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>403</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>404</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>405</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>419</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>C</td>
<td>407</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>C</td>
<td>408</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>C</td>
<td>412</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

Continued on next page...
Mol Type Chain Res Link Chirals Torsions Rings

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>UVW</td>
<td>C</td>
<td>420</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>SO4</td>
<td>C</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>D</td>
<td>409</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>D</td>
<td>410</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>D</td>
<td>411</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>D</td>
<td>421</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>E</td>
<td>413</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>E</td>
<td>414</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>E</td>
<td>415</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>E</td>
<td>422</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>SO4</td>
<td>E</td>
<td>503</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>F</td>
<td>416</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>F</td>
<td>417</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>F</td>
<td>423</td>
<td>-</td>
<td>-</td>
<td>0/3/5/5</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

All (71) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>404</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.73</td>
<td>1.26</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>411</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.60</td>
<td>1.26</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>401</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.58</td>
<td>1.26</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>417</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.57</td>
<td>1.26</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>423</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.51</td>
<td>1.26</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>414</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.47</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>405</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.45</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>415</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.43</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>410</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.40</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>413</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.34</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>408</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.34</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>421</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.33</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>409</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.30</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>407</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.25</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>402</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.23</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>403</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.21</td>
<td>1.27</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>412</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.18</td>
<td>1.28</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>419</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.14</td>
<td>1.28</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>418</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-6.04</td>
<td>1.28</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>416</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-5.99</td>
<td>1.28</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>420</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-5.99</td>
<td>1.28</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>416</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-5.89</td>
<td>1.29</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>422</td>
<td>UVW</td>
<td>C1M-C1</td>
<td>-5.80</td>
<td>1.29</td>
<td>1.49</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>418</td>
<td>UVW</td>
<td>P-O2</td>
<td>-4.93</td>
<td>1.51</td>
<td>1.59</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>419</td>
<td>UVW</td>
<td>P-O2</td>
<td>-4.00</td>
<td>1.52</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>422</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.99</td>
<td>1.52</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>407</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.94</td>
<td>1.52</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>404</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.68</td>
<td>1.53</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>414</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.61</td>
<td>1.53</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>421</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.60</td>
<td>1.53</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>412</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.56</td>
<td>1.53</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>419</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.41</td>
<td>1.53</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>416</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.36</td>
<td>1.53</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>402</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.20</td>
<td>1.53</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>417</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.17</td>
<td>1.54</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>409</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.12</td>
<td>1.54</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>420</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.03</td>
<td>1.54</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>423</td>
<td>UVW</td>
<td>P-O2</td>
<td>-3.01</td>
<td>1.54</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>405</td>
<td>UVW</td>
<td>P-O2</td>
<td>-2.74</td>
<td>1.54</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>401</td>
<td>UVW</td>
<td>P-O2</td>
<td>-2.74</td>
<td>1.54</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>415</td>
<td>UVW</td>
<td>P-O2</td>
<td>-2.60</td>
<td>1.55</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>419</td>
<td>UVW</td>
<td>P-O2P</td>
<td>-2.60</td>
<td>1.44</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>422</td>
<td>UVW</td>
<td>P-O1P</td>
<td>-2.59</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>421</td>
<td>UVW</td>
<td>P-O2P</td>
<td>-2.55</td>
<td>1.44</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>422</td>
<td>UVW</td>
<td>P-O2P</td>
<td>-2.50</td>
<td>1.44</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>411</td>
<td>UVW</td>
<td>P-O2P</td>
<td>-2.41</td>
<td>1.45</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>413</td>
<td>UVW</td>
<td>P-O2</td>
<td>-2.23</td>
<td>1.55</td>
<td>1.59</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>423</td>
<td>UVW</td>
<td>P-O2P</td>
<td>-2.22</td>
<td>1.45</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>418</td>
<td>UVW</td>
<td>P-O2P</td>
<td>-2.14</td>
<td>1.46</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>420</td>
<td>UVW</td>
<td>P-O2P</td>
<td>-2.10</td>
<td>1.46</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>410</td>
<td>UVW</td>
<td>P-O3P</td>
<td>2.04</td>
<td>1.63</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>415</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.12</td>
<td>1.28</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>401</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.15</td>
<td>1.28</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>407</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.17</td>
<td>1.28</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>413</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.17</td>
<td>1.28</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>409</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.20</td>
<td>1.29</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>402</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.23</td>
<td>1.29</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>412</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.24</td>
<td>1.29</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>404</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.25</td>
<td>1.29</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>408</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.31</td>
<td>1.29</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>406</td>
<td>UVW</td>
<td>P-O3P</td>
<td>2.33</td>
<td>1.64</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>410</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.36</td>
<td>1.29</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>417</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.38</td>
<td>1.29</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>403</td>
<td>UVW</td>
<td>P-O3P</td>
<td>2.43</td>
<td>1.64</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>408</td>
<td>UVW</td>
<td>P-O3P</td>
<td>2.45</td>
<td>1.64</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>416</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.47</td>
<td>1.30</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>406</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.48</td>
<td>1.30</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>403</td>
<td>UVW</td>
<td>O1-C1</td>
<td>2.73</td>
<td>1.30</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>503</td>
<td>SO4</td>
<td>O1-S</td>
<td>4.24</td>
<td>1.68</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>SO4</td>
<td>O1-S</td>
<td>4.27</td>
<td>1.68</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>502</td>
<td>SO4</td>
<td>O1-S</td>
<td>4.32</td>
<td>1.68</td>
<td>1.45</td>
</tr>
</tbody>
</table>

All (23) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>E</td>
<td>413</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>2.86</td>
<td>114.68</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>418</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>2.97</td>
<td>115.05</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>402</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.18</td>
<td>115.73</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>410</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.21</td>
<td>115.80</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>401</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.22</td>
<td>115.86</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>416</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.27</td>
<td>116.00</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>408</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.37</td>
<td>116.33</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>411</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.38</td>
<td>116.36</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>415</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.39</td>
<td>116.40</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>409</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.42</td>
<td>116.51</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>414</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.51</td>
<td>116.78</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>407</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.51</td>
<td>116.78</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>404</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.55</td>
<td>116.93</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>403</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.65</td>
<td>117.23</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>412</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.74</td>
<td>117.51</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>406</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.78</td>
<td>117.66</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>405</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.79</td>
<td>117.70</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>423</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.80</td>
<td>117.70</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>417</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.82</td>
<td>117.79</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>421</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.93</td>
<td>118.14</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>422</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>3.96</td>
<td>118.24</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>419</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>4.01</td>
<td>118.41</td>
<td>105.47</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>420</td>
<td>UVW</td>
<td>O3P-P-O2</td>
<td>4.36</td>
<td>119.52</td>
<td>105.47</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

12 monomers are involved in 27 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>401</td>
<td>UVW</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>403</td>
<td>UVW</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>404</td>
<td>UVW</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>419</td>
<td>UVW</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>407</td>
<td>UVW</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>420</td>
<td>UVW</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>410</td>
<td>UVW</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>421</td>
<td>UVW</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>413</td>
<td>UVW</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>415</td>
<td>UVW</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>422</td>
<td>UVW</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>416</td>
<td>UVW</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>324/329 (98%)</td>
<td>-0.48</td>
<td>1 (0%)</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13, 37, 67, 89</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>324/329 (98%)</td>
<td>-0.31</td>
<td>2 (0%)</td>
<td>89</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19, 43, 74, 97</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>323/329 (98%)</td>
<td>-0.47</td>
<td>0 (100%)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9, 37, 71, 95</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>325/329 (98%)</td>
<td>-0.29</td>
<td>2 (0%)</td>
<td>89</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15, 43, 78, 105</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>324/329 (98%)</td>
<td>-0.37</td>
<td>1 (0%)</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12, 39, 72, 93</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>323/329 (98%)</td>
<td>0.18</td>
<td>8 (2%)</td>
<td>57</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24, 65, 95, 108</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1943/1974 (98%)</td>
<td>-0.29</td>
<td>14 (0%)</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9, 43, 82, 108</td>
<td>0</td>
</tr>
</tbody>
</table>

All (14) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>254</td>
<td>ASP</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>227</td>
<td>LYS</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>254</td>
<td>ASP</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>228</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>209</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>16</td>
<td>ASP</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>230</td>
<td>GLU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>16</td>
<td>ASP</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>254</td>
<td>ASP</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>176</td>
<td>GLN</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>230</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>263</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>323</td>
<td>LEU</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>307</td>
<td>ASN</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>UVW</td>
<td>C</td>
<td>420</td>
<td>8/8</td>
<td>0.78</td>
<td>0.27</td>
<td>40,50,62,75</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>F</td>
<td>423</td>
<td>8/8</td>
<td>0.83</td>
<td>0.26</td>
<td>19,36,49,57</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>E</td>
<td>413</td>
<td>8/8</td>
<td>0.87</td>
<td>0.30</td>
<td>28,48,58,60</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>D</td>
<td>421</td>
<td>8/8</td>
<td>0.87</td>
<td>0.26</td>
<td>8,39,47,54</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>419</td>
<td>8/8</td>
<td>0.87</td>
<td>0.23</td>
<td>27,45,49,55</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>E</td>
<td>422</td>
<td>8/8</td>
<td>0.89</td>
<td>0.24</td>
<td>34,43,58,58</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>F</td>
<td>417</td>
<td>8/8</td>
<td>0.90</td>
<td>0.19</td>
<td>17,29,43,45</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>E</td>
<td>415</td>
<td>8/8</td>
<td>0.90</td>
<td>0.22</td>
<td>15,33,45,52</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>418</td>
<td>8/8</td>
<td>0.91</td>
<td>0.21</td>
<td>37,44,55,63</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>406</td>
<td>8/8</td>
<td>0.91</td>
<td>0.21</td>
<td>25,42,52,57</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>E</td>
<td>414</td>
<td>8/8</td>
<td>0.92</td>
<td>0.27</td>
<td>21,32,49,50</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>404</td>
<td>8/8</td>
<td>0.92</td>
<td>0.23</td>
<td>36,41,49,50</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>D</td>
<td>409</td>
<td>8/8</td>
<td>0.93</td>
<td>0.17</td>
<td>27,36,46,49</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>D</td>
<td>411</td>
<td>8/8</td>
<td>0.93</td>
<td>0.26</td>
<td>28,35,43,44</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>F</td>
<td>416</td>
<td>8/8</td>
<td>0.93</td>
<td>0.21</td>
<td>39,44,49,51</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>405</td>
<td>8/8</td>
<td>0.93</td>
<td>0.26</td>
<td>17,33,49,50</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>401</td>
<td>8/8</td>
<td>0.94</td>
<td>0.23</td>
<td>37,42,47,50</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>SO4</td>
<td>C</td>
<td>502</td>
<td>5/5</td>
<td>0.94</td>
<td>0.24</td>
<td>42,45,47,49</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>C</td>
<td>412</td>
<td>8/8</td>
<td>0.94</td>
<td>0.19</td>
<td>22,35,41,50</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>A</td>
<td>402</td>
<td>8/8</td>
<td>0.94</td>
<td>0.20</td>
<td>24,37,40,46</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>SO4</td>
<td>E</td>
<td>503</td>
<td>5/5</td>
<td>0.94</td>
<td>0.19</td>
<td>33,34,46,53</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>B</td>
<td>403</td>
<td>8/8</td>
<td>0.94</td>
<td>0.19</td>
<td>38,52,58,68</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>C</td>
<td>408</td>
<td>8/8</td>
<td>0.94</td>
<td>0.20</td>
<td>33,43,53,55</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>D</td>
<td>410</td>
<td>8/8</td>
<td>0.95</td>
<td>0.27</td>
<td>31,41,48,48</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>SO4</td>
<td>E</td>
<td>501</td>
<td>5/5</td>
<td>0.95</td>
<td>0.21</td>
<td>39,39,48,51</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>UVW</td>
<td>C</td>
<td>407</td>
<td>8/8</td>
<td>0.96</td>
<td>0.16</td>
<td>23,35,41,46</td>
<td>8</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.