

Full wwPDB X-ray Structure Validation Report (i)

Nov 22, 2023 – 06:21 PM JST

:	7XCN
:	Crystal structure of the MttB-MttC complex at 2.7 A resolution
:	Li, J.; Chan, M.K.
:	2022-03-24
:	2.70 Å(reported)
	: : : :

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	2808 (2.70-2.70)
Clashscore	141614	3122 (2.70-2.70)
Ramachandran outliers	138981	3069 (2.70-2.70)
Sidechain outliers	138945	3069 (2.70-2.70)
RSRZ outliers	127900	2737 (2.70-2.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain						
1	А	503	% 54%	41%	••				
1	В	503	% • 69%	28%	••				
1	С	503	% • 69%	28%	•••				
1	D	503	% 57%	40%	•••				
1	Е	503	.% 7 0%	27%	••				
1	F	503	% 67%	30%	••				

Conti	Continuea from previous page								
Mol	Chain	Length	Quality of chain						
		22.4	.% ■						
2	M	224	48%	44%	• •				
			.% •						
2	N	224	42%	49%	• 5%				
			4%						
2	0	224	51%	40%	• •				
	_		<u>2</u> %						
2	Р	224	52%	41%	••				
	_		8%						
2	Q	224	33%	52%	9% 6%				
			<u>2%</u>						
2	R	224	50%	42%	• •				

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 33443 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	401	Total	С	Ν	Ο	\mathbf{S}	0	5	0
1	Л	491	3801	2424	633	722	22	0	5	0
1	р	404	Total	С	Ν	0	S	0	0	0
	D	494	3843	2446	641	734	22	0	0	0
1	C	404	Total	С	Ν	0	S	0	0	0
		494	3843	2446	641	734	22	0	0	0
1	П	401	Total	С	Ν	0	S	0	5	0
	D	491	3801	2424	633	722	22	0	5	0
1	F	404	Total	С	Ν	0	S	0	0	0
		494	3843	2446	641	734	22	0	0	0
1	Б	404	Total	С	Ν	Ο	S	0	0	0
	Г	494	3843	2446	641	734	22	U	0	

• Molecule 1 is a protein called Trimethylamine methyltransferase.

There are 48 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	496	GLY	-	expression tag	UNP A0A0E3QRM4
А	497	GLY	-	expression tag	UNP A0A0E3QRM4
А	498	HIS	-	expression tag	UNP A0A0E3QRM4
А	499	HIS	-	expression tag	UNP A0A0E3QRM4
А	500	HIS	-	expression tag	UNP A0A0E3QRM4
А	501	HIS	-	expression tag	UNP A0A0E3QRM4
А	502	HIS	-	expression tag	UNP A0A0E3QRM4
А	503	HIS	-	expression tag	UNP A0A0E3QRM4
В	496	GLY	-	expression tag	UNP A0A0E3QRM4
В	497	GLY	-	expression tag	UNP A0A0E3QRM4
В	498	HIS	-	expression tag	UNP A0A0E3QRM4
В	499	HIS	-	expression tag	UNP A0A0E3QRM4
В	500	HIS	-	expression tag	UNP A0A0E3QRM4
В	501	HIS	-	expression tag	UNP A0A0E3QRM4
В	502	HIS	-	expression tag	UNP A0A0E3QRM4
В	503	HIS	-	expression tag	UNP A0A0E3QRM4
С	496	GLY	-	expression tag	UNP A0A0E3QRM4

Chain	Residue	Modelled	Actual	Comment	Reference
С	497	GLY	-	expression tag	UNP A0A0E3QRM4
С	498	HIS	_	expression tag	UNP A0A0E3QRM4
С	499	HIS	-	expression tag	UNP A0A0E3QRM4
С	500	HIS	-	expression tag	UNP A0A0E3QRM4
С	501	HIS	-	expression tag	UNP A0A0E3QRM4
С	502	HIS	-	expression tag	UNP A0A0E3QRM4
С	503	HIS	-	expression tag	UNP A0A0E3QRM4
D	496	GLY	-	expression tag	UNP A0A0E3QRM4
D	497	GLY	-	expression tag	UNP A0A0E3QRM4
D	498	HIS	-	expression tag	UNP A0A0E3QRM4
D	499	HIS	-	expression tag	UNP A0A0E3QRM4
D	500	HIS	-	expression tag	UNP A0A0E3QRM4
D	501	HIS	-	expression tag	UNP A0A0E3QRM4
D	502	HIS	-	expression tag	UNP A0A0E3QRM4
D	503	HIS	_	expression tag	UNP A0A0E3QRM4
Е	496	GLY	-	expression tag	UNP A0A0E3QRM4
Е	497	GLY	_	expression tag	UNP A0A0E3QRM4
Е	498	HIS	-	expression tag	UNP A0A0E3QRM4
Е	499	HIS	_	expression tag	UNP A0A0E3QRM4
Е	500	HIS	-	expression tag	UNP A0A0E3QRM4
Е	501	HIS	-	expression tag	UNP A0A0E3QRM4
Е	502	HIS	-	expression tag	UNP A0A0E3QRM4
Е	503	HIS	-	expression tag	UNP A0A0E3QRM4
F	496	GLY	-	expression tag	UNP A0A0E3QRM4
F	497	GLY	-	expression tag	UNP A0A0E3QRM4
F	498	HIS	-	expression tag	UNP A0A0E3QRM4
F	499	HIS	_	expression tag	UNP A0A0E3QRM4
F	500	HIS	-	expression tag	UNP A0A0E3QRM4
F	501	HIS	-	expression tag	UNP A0A0E3QRM4
F	502	HIS	-	expression tag	UNP A0A0E3QRM4
F	503	HIS	-	expression tag	UNP A0A0E3QRM4

• Molecule 2 is a protein called Trimethylamine methyltransferase corrinoid protein.

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf	Trace
2	М	214	Total	С	Ν	0	S	0	0	0
	111	214	1595	1002	263	323	7	0	0	0
2	N	919	Total	С	Ν	0	S	0	0	0
	IN	212	1576	992	259	318	7	0	0	0
0	0	214	Total	С	Ν	0	S	0	0	0
	0	214	1595	1002	263	323	7	0	0	0
2	D	215	Total	С	Ν	0	S	0	0	0
	2 P	215	1600	1005	264	324	$\overline{7}$	0	0	U

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
0	0	911	Total	С	Ν	0	S	0	0	0
	Q	211	1571	989	258	317	7	0		
0	D	214	Total	С	Ν	0	S	0	0	0
	n	214	1595	1002	263	323	7	0	0	0

There are 42 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
М	218	GLY	-	expression tag	UNP A0A0E3QQC8
М	219	GLY	-	expression tag	UNP A0A0E3QQC8
М	220	HIS	-	expression tag	UNP A0A0E3QQC8
М	221	HIS	-	expression tag	UNP A0A0E3QQC8
М	222	HIS	-	expression tag	UNP A0A0E3QQC8
М	223	HIS	-	expression tag	UNP A0A0E3QQC8
М	224	HIS	-	expression tag	UNP A0A0E3QQC8
N	218	GLY	-	expression tag	UNP A0A0E3QQC8
N	219	GLY	-	expression tag	UNP A0A0E3QQC8
N	220	HIS	-	expression tag	UNP A0A0E3QQC8
N	221	HIS	-	expression tag	UNP A0A0E3QQC8
N	222	HIS	-	expression tag	UNP A0A0E3QQC8
N	223	HIS	-	expression tag	UNP A0A0E3QQC8
N	224	HIS	-	expression tag	UNP A0A0E3QQC8
0	218	GLY	-	expression tag	UNP A0A0E3QQC8
0	219	GLY	-	expression tag	UNP A0A0E3QQC8
0	220	HIS	-	expression tag	UNP A0A0E3QQC8
0	221	HIS	-	expression tag	UNP A0A0E3QQC8
0	222	HIS	-	expression tag	UNP A0A0E3QQC8
0	223	HIS	-	expression tag	UNP A0A0E3QQC8
0	224	HIS	-	expression tag	UNP A0A0E3QQC8
Р	218	GLY	-	expression tag	UNP A0A0E3QQC8
Р	219	GLY	-	expression tag	UNP A0A0E3QQC8
Р	220	HIS	-	expression tag	UNP A0A0E3QQC8
Р	221	HIS	-	expression tag	UNP A0A0E3QQC8
Р	222	HIS	-	expression tag	UNP A0A0E3QQC8
Р	223	HIS	-	expression tag	UNP A0A0E3QQC8
Р	224	HIS	-	expression tag	UNP A0A0E3QQC8
Q	218	GLY	-	expression tag	UNP A0A0E3QQC8
Q	219	GLY	-	expression tag	UNP A0A0E3QQC8
Q	220	HIS	-	expression tag	UNP A0A0E3QQC8
Q	221	HIS	-	expression tag	UNP A0A0E3QQC8
Q	222	HIS	-	expression tag	UNP A0A0E3QQC8
Q	223	HIS	-	expression tag	UNP A0A0E3QQC8

Chain	Residue	Modelled	Actual Comment		Reference
Q	224	HIS	-	expression tag	UNP A0A0E3QQC8
R	218	GLY	-	expression tag	UNP A0A0E3QQC8
R	219	GLY	-	expression tag	UNP A0A0E3QQC8
R	220	HIS	-	expression tag	UNP A0A0E3QQC8
R	221	HIS	-	expression tag	UNP A0A0E3QQC8
R	222	HIS	-	expression tag	UNP A0A0E3QQC8
R	223	HIS	-	expression tag	UNP A0A0E3QQC8
R	224	HIS	-	expression tag	UNP A0A0E3QQC8

• Molecule 3 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	F	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0

• Molecule 4 is 5-HYDROXYBENZIMIDAZOLYLCOBAMIDE (three-letter code: HCB) (formula: $C_{60}H_{84}CoN_{13}O_{15}P$).

Mol	Chain	Residues		1	Aton	ıs			ZeroOcc	AltConf							
4		1	Total	С	Co	Ν	0	Р	0	0							
4	IVI	1	90	60	1	13	15	1	0	0							
4	N	1	Total	С	Co	Ν	Ο	Р	0	0							
4	11	1	90	60	1	13	15	1	0	0							
4	4 O	0	0	\cap	\cap	0	0	4	1	Total	С	Co	Ν	Ο	Р	0	0
4		1	90	60	1	13	15	1	0	0							
4	D	1	Total	С	Со	Ν	Ο	Р	0	0							
4 Г	L	90	60	1	13	15	1	0	0								
4	0	1	Total	С	Co	Ν	Ο	Р	0	0							
	1	90	60	1	13	15	1	0	0								
4	В	1	Total	С	Co	Ν	Ο	Р	0	0							
4 R	n		90	60	1	13	15	1	U								

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	44	Total O 44 44	0	0
5	В	63	Total O 63 63	0	0
5	С	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0	0
5	D	62	$\begin{array}{cc} \text{Total} & \text{O} \\ 62 & 62 \end{array}$	0	0
5	Е	66	Total O 66 66	0	0
5	F	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	М	5	Total O 5 5	0	0
5	Ν	13	Total O 13 13	0	0
5	Ο	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0
5	Р	6	Total O 6 6	0	0
5	Q	11	Total O 11 11	0	0
5	R	4	Total O 4 4	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Trimethylamine methyltransferase

• Molecule 1: Trimethylamine methyltransferase

 Mixes
 Construction
 Yang
 Maile
 Maile

• Molecule 1: Trimethylamine methyltransferase

C170

185

L215 N216 VAL GLY GLY HIS HIS HIS HIS

D W I D E

• Molecule 2: Trimethylamine methyltransferase corrinoid protein

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	120.43Å 188.14Å 123.95Å	Deneiten
a, b, c, α , β , γ	90.00° 119.25° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	20.00 - 2.70	Depositor
Resolution (A)	19.93 - 2.69	EDS
% Data completeness	95.0 (20.00-2.70)	Depositor
(in resolution range)	94.1(19.93-2.69)	EDS
R_{merge}	0.08	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$3.01 (at 2.71 \text{\AA})$	Xtriage
Refinement program	CNS	Depositor
D D.	0.192 , 0.238	Depositor
Π, Π_{free}	0.190 , 0.194	DCC
R_{free} test set	6602 reflections $(5.27%)$	wwPDB-VP
Wilson B-factor ($Å^2$)	39.5	Xtriage
Anisotropy	0.062	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.29, 10.9	EDS
L-test for twinning ²	$< L > = 0.46, < L^2 > = 0.28$	Xtriage
	0.025 for l,k,-h-l	
	0.025 for -h-l,k,h	
Estimated twinning fraction	0.277 for h,-k,-h-l	Xtriage
	0.033 for l,-k,h	
	0.025 for -h-l,-k,l	
F_o, F_c correlation	0.94	EDS
Total number of atoms	33443	wwPDB-VP
Average B, all atoms $(Å^2)$	47.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.91% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HCB, GOL, PYL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
MIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.39	0/3858	0.63	1/5229~(0.0%)	
1	В	0.37	0/3902	0.60	0/5291	
1	С	0.36	0/3902	0.60	0/5291	
1	D	0.40	0/3858	0.65	1/5229~(0.0%)	
1	Ε	0.37	0/3902	0.60	0/5291	
1	F	0.35	0/3902	0.60	1/5291~(0.0%)	
2	М	0.31	0/1611	0.55	0/2174	
2	N	0.35	0/1591	0.56	0/2145	
2	0	0.29	0/1611	0.55	0/2174	
2	Р	0.31	0/1616	0.55	0/2181	
2	Q	0.33	0/1586	0.55	0/2138	
2	R	0.30	0/1611	0.55	0/2174	
All	All	0.36	0/32950	0.60	3/44608~(0.0%)	

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	D	289	TYR	N-CA-C	-6.01	94.78	111.00
1	А	89	GLY	N-CA-C	-5.25	99.97	113.10
1	F	289	TYR	N-CA-C	-5.21	96.92	111.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3801	0	3804	208	0
1	В	3843	0	3836	142	0
1	С	3843	0	3836	139	0
1	D	3801	0	3804	185	0
1	Е	3843	0	3836	135	0
1	F	3843	0	3836	142	0
2	М	1595	0	1622	115	0
2	Ν	1576	0	1605	103	0
2	0	1595	0	1622	100	0
2	Р	1600	0	1627	92	0
2	Q	1571	0	1600	162	0
2	R	1595	0	1622	104	0
3	А	6	0	8	0	0
3	С	6	0	8	0	0
3	Е	6	0	8	3	0
3	F	6	0	8	0	0
4	М	90	0	84	15	0
4	Ν	90	0	84	10	0
4	0	90	0	84	14	0
4	Р	90	0	84	15	0
4	Q	90	0	84	13	0
4	R	90	0	84	16	0
5	А	44	0	0	4	0
5	В	63	0	0	4	0
5	С	47	0	0	6	0
5	D	62	0	0	4	0
5	Е	66	0	0	8	0
5	F	47	0	0	2	0
5	М	5	0	0	0	0
5	Ν	13	0	0	3	0
5	0	5	0	0	0	0
5	Р	6	0	0	0	0
5	Q	11	0	0	2	0
5	R	4	0	0	0	0
All	All	33443	0	33186	1580	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 24.

All (1580) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
	1100m =	distance (Å)	overlap (Å)
2:P:37:PRO:HG2	2:P:90:GLN:HE22	1.13	1.12
1:F:473:ILE:HG21	1:F:481:MET:HE1	1.35	1.09
1:B:473:ILE:HG21	1:B:481:MET:HE1	1.36	1.08
2:Q:118:LEU:HD23	2:Q:208:VAL:HG22	1.37	1.07
2:R:94:LEU:HD12	2:R:95:GLY:H	1.11	1.06
1:E:473:ILE:HG21	1:E:481:MET:HE1	1.35	1.05
2:N:99:ILE:HD11	2:N:115:ALA:HB2	1.38	1.05
2:N:149:VAL:HG23	2:N:178:VAL:HG21	1.38	1.05
1:C:120[A]:ASP:HB3	1:C:122[A]:LYS:HE2	1.39	1.04
2:O:94:LEU:HD23	2:O:95:GLY:H	1.20	1.03
1:C:473:ILE:HG21	1:C:481:MET:HE1	1.35	1.02
2:Q:179:LYS:HD3	2:Q:199:ILE:HD11	1.42	1.02
1:D:186:VAL:HB	1:D:189:ASN:HD22	1.23	1.00
2:O:94:LEU:HD23	2:O:95:GLY:N	1.76	0.99
2:M:84:MET:HG2	2:M:85:GLU:H	1.26	0.99
1:D:176:THR:HG22	1:D:178:LYS:H	1.26	0.98
2:Q:99:ILE:HG22	2:Q:150:ALA:HB3	1.45	0.97
1:D:473:ILE:HG21	1:D:481:MET:HE1	1.47	0.96
2:Q:101:THR:HG23	2:Q:131:ASP:H	1.32	0.95
1:B:239:ARG:HD3	5:B:605:HOH:O	1.68	0.94
1:C:176:THR:HG22	1:C:178:LYS:H	1.32	0.94
2:N:142:LYS:HA	2:N:145:LYS:HE3	1.50	0.94
2:M:41:ILE:HD13	2:M:92:LYS:HE2	1.51	0.93
1:A:220:PRO:HD2	1:A:248:SER:HA	1.50	0.93
1:A:267:HIS:CE1	1:A:291:SER:HB2	2.03	0.93
2:Q:63:LEU:HD12	2:Q:63:LEU:H	1.33	0.93
1:A:217:LEU:HD23	1:A:218:LEU:N	1.84	0.92
1:B:176:THR:HG22	1:B:178:LYS:H	1.34	0.92
1:F:176:THR:HG22	1:F:178:LYS:H	1.32	0.92
1:E:176:THR:HG22	1:E:178:LYS:H	1.34	0.90
2:P:37:PRO:HG2	2:P:90:GLN:NE2	1.86	0.90
2:M:37:PRO:HG2	2:M:90:GLN:HE22	1.38	0.89
2:Q:212:LYS:HA	2:Q:215:LEU:HD13	1.55	0.88
1:A:176:THR:HG22	1:A:178:LYS:H	1.37	0.88
2:P:80:ILE:O	2:P:84:MET:HB2	1.73	0.88
2:P:92:LYS:HD2	2:P:124:LYS:HE2	1.56	0.88
1:C:239:ARG:HD3	5:C:715:HOH:O	1.73	0.87
1:A:368:MET:HG2	1:A:369:LEU:N	1.88	0.86
2:M:156:THR:HG23	4:M:301:HCB:H332	1.39	0.86
1:A:368:MET:HG2	1:A:369:LEU:H	1.39	0.86
2:M:10:LYS:HE3	2:M:22:LEU:HD11	1.55	0.86
1:A:60:VAL:HG22	1:A:67:VAL:HG22	1.57	0.86

7XCN

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:R:156:THR:HG23	4:R:301:HCB:H332	1.41	0.86
2:R:92:LYS:HD2	2:R:124:LYS:HE2	1.56	0.85
2:R:94:LEU:HD12	2:R:95:GLY:N	1.91	0.85
2:O:156:THR:HG23	4:O:301:HCB:H332	1.42	0.84
1:D:331:ALA:HB1	1:D:334:PYL:HE2	1.58	0.84
2:N:118:LEU:HD23	2:N:208:VAL:HG22	1.60	0.83
2:P:156:THR:HG23	4:P:301:HCB:H332	1.42	0.83
1:D:186:VAL:HB	1:D:189:ASN:ND2	1.93	0.83
2:O:149:VAL:HG23	2:O:178:VAL:HG21	1.61	0.82
2:M:149:VAL:HG23	2:M:178:VAL:HG21	1.62	0.82
1:A:218:LEU:HD21	1:A:234:ILE:HG13	1.62	0.81
2:P:149:VAL:HG23	2:P:178:VAL:HG21	1.62	0.81
2:Q:138:VAL:HG21	2:Q:168:GLN:HB3	1.63	0.81
1:A:424:THR:HA	1:F:258:VAL:HG21	1.63	0.81
2:O:26:VAL:HA	2:O:29:GLU:HG2	1.63	0.81
1:E:490:LYS:HD2	1:E:493:ARG:HH12	1.45	0.80
1:F:490:LYS:HD2	1:F:493:ARG:HH12	1.45	0.80
2:R:149:VAL:HG23	2:R:178:VAL:HG21	1.62	0.80
2:Q:102:ILE:H	2:Q:102:ILE:HD12	1.46	0.80
1:B:490:LYS:HD2	1:B:493:ARG:HH12	1.45	0.80
1:A:218:LEU:CD2	1:A:234:ILE:HG13	2.13	0.79
2:M:84:MET:HG2	2:M:85:GLU:HG3	1.63	0.79
1:C:490:LYS:HD2	1:C:493:ARG:HH12	1.46	0.79
2:R:87:ARG:HG3	2:R:88:LYS:H	1.46	0.79
1:F:120[B]:ASP:HB2	1:F:122[B]:LYS:HE3	1.64	0.79
2:Q:80:ILE:O	2:Q:84:MET:HG3	1.84	0.78
2:R:37:PRO:HB3	2:R:80:ILE:HD12	1.65	0.78
1:B:258:VAL:HG21	1:E:424:THR:HA	1.64	0.78
2:Q:169:LEU:HB3	2:Q:174:VAL:O	1.83	0.78
2:O:37:PRO:HB3	2:O:80:ILE:HD12	1.64	0.78
1:C:145:ASN:H	1:C:384:ASN:HD21	1.32	0.78
2:M:137:PHE:O	2:M:141:VAL:HG23	1.84	0.77
1:A:105:HIS:NE2	1:D:4:ASN:HB2	1.99	0.77
1:C:258:VAL:HG21	1:D:424:THR:HA	1.67	0.77
1:E:145:ASN:H	1:E:384:ASN:HD21	1.31	0.77
2:P:137:PHE:O	2:P:141:VAL:HG23	1.83	0.77
1:A:84:ARG:HG3	5:C:713:HOH:O	1.83	0.77
1:B:145:ASN:H	1:B:384:ASN:HD21	1.31	0.77
2:M:92:LYS:HD2	2:M:124:LYS:HE2	1.66	0.77
2:Q:137:PHE:O	2:Q:141:VAL:HB	1.84	0.77
2:M:118:LEU:HD23	2:M:208:VAL:HG22	1.67	0.76

7XCN

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:145:ASN:H	1:D:384:ASN:HD21	1.33	0.76
1:F:334:PYL:HD2	1:F:368:MET:HE1	1.67	0.76
1:F:145:ASN:H	1:F:384:ASN:HD21	1.30	0.76
1:F:490:LYS:HD2	1:F:493:ARG:NH1	2.00	0.76
1:C:490:LYS:HD2	1:C:493:ARG:NH1	2.01	0.76
1:D:171:THR:HB	1:D:172:PRO:HD3	1.66	0.76
2:P:118:LEU:HD23	2:P:208:VAL:HG22	1.67	0.76
2:R:137:PHE:O	2:R:141:VAL:HG23	1.84	0.76
2:Q:149:VAL:HG12	2:Q:150:ALA:H	1.49	0.76
2:O:137:PHE:O	2:O:141:VAL:HG23	1.85	0.75
1:B:490:LYS:HD2	1:B:493:ARG:NH1	2.00	0.75
1:E:425:ARG:HD3	2:N:68:ALA:HB2	1.67	0.75
1:E:490:LYS:HD2	1:E:493:ARG:NH1	2.00	0.75
2:O:118:LEU:HD23	2:O:208:VAL:HG22	1.66	0.75
2:Q:31:LEU:HG	2:Q:80:ILE:HG22	1.67	0.75
1:E:425:ARG:HD3	2:N:68:ALA:CB	2.17	0.75
2:N:96:THR:HG22	2:N:124:LYS:HB3	1.66	0.75
1:C:427:LEU:HD11	1:D:259:TYR:CZ	2.21	0.75
1:A:267:HIS:HE1	1:A:291:SER:HB2	1.49	0.75
2:M:8:ILE:HD13	2:M:43:LYS:HB3	1.69	0.75
2:N:2:ALA:HB1	2:N:6:GLU:OE1	1.87	0.75
1:E:117[B]:LYS:HB3	1:E:119[B]:GLN:HE21	1.51	0.74
1:A:145:ASN:H	1:A:384:ASN:HD21	1.33	0.74
1:D:267:HIS:HE1	1:D:291:SER:HB2	1.51	0.74
2:R:22:LEU:O	2:R:26:VAL:HG12	1.87	0.74
1:B:424:THR:HA	1:E:258:VAL:HG21	1.68	0.74
2:R:118:LEU:HD23	2:R:208:VAL:HG22	1.68	0.74
1:C:473:ILE:HG21	1:C:481:MET:CE	2.17	0.74
1:F:473:ILE:HG21	1:F:481:MET:CE	2.16	0.73
2:R:94:LEU:CD1	2:R:95:GLY:H	1.96	0.73
2:N:94:LEU:HD23	2:N:122:GLY:HA3	1.71	0.73
1:C:90:ARG:HG2	1:C:90:ARG:HH11	1.53	0.73
1:B:368:MET:HG2	1:B:369:LEU:N	2.03	0.73
1:B:90:ARG:HH11	1:B:90:ARG:HG2	1.53	0.73
2:M:165:ILE:O	2:M:169:LEU:HB2	1.89	0.73
1:E:334:PYL:HD2	1:E:368:MET:HE1	1.68	0.72
1:A:113:VAL:HG23	1:A:114:LYS:HG3	1.71	0.72
1:A:218:LEU:HD13	1:A:230:ALA:HB1	1.71	0.72
1:D:334:PYL:HD2	1:D:368:MET:HE1	1.72	0.72
2:N:149:VAL:HG23	2:N:178:VAL:CG2	2.19	0.72
1:D:387:PHE:O	1:D:391:LYS:HG3	1.89	0.72

7XCN	

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
2:Q:134:ILE:HG21	2:Q:164:GLN:HB2	1.70	0.72
2:P:82:PRO:O	2:P:86:LYS:HB3	1.90	0.72
1:A:266:THR:O	1:A:270:GLU:HG3	1.90	0.72
1:E:473:ILE:HG21	1:E:481:MET:CE	2.18	0.72
2:P:165:ILE:O	2:P:169:LEU:HB2	1.89	0.72
1:B:473:ILE:HG21	1:B:481:MET:CE	2.18	0.71
2:R:165:ILE:O	2:R:169:LEU:HB2	1.89	0.71
2:Q:179:LYS:O	2:Q:180:THR:HG23	1.90	0.71
1:C:368:MET:HG2	1:C:369:LEU:N	2.06	0.71
1:D:267:HIS:CE1	1:D:291:SER:HB2	2.25	0.71
2:O:4:LYS:HG3	2:O:35:ILE:HD12	1.72	0.71
1:A:249:MET:O	1:A:249:MET:HG3	1.89	0.71
1:D:221:THR:HB	1:D:225:GLU:HG3	1.72	0.71
1:E:90:ARG:HG2	1:E:90:ARG:HH11	1.54	0.71
1:A:170:LEU:HD22	1:A:485:VAL:HG21	1.72	0.71
1:F:368:MET:HG2	1:F:369:LEU:N	2.05	0.71
2:O:165:ILE:O	2:O:169:LEU:HB2	1.89	0.71
1:D:22:THR:OG1	1:D:25:GLU:HG3	1.91	0.71
1:A:87:LEU:HB3	1:A:179:HIS:CG	2.26	0.70
2:M:85:GLU:HG2	2:M:90:GLN:O	1.91	0.70
1:E:368:MET:HG2	1:E:369:LEU:N	2.06	0.70
2:P:215:LEU:HD12	2:P:216:ASN:N	2.06	0.70
2:R:215:LEU:HD12	2:R:216:ASN:N	2.07	0.70
1:A:419:LEU:HB3	2:R:67:LEU:HD13	1.72	0.70
2:O:215:LEU:HD12	2:O:216:ASN:N	2.06	0.70
2:Q:149:VAL:HG12	2:Q:150:ALA:N	2.07	0.70
1:A:259:TYR:CZ	1:F:427:LEU:HD11	2.27	0.70
2:O:84:MET:HA	2:O:90:GLN:OE1	1.92	0.69
1:D:109:PHE:HB2	1:D:365:GLY:HA2	1.73	0.69
1:D:222:SER:HB2	5:D:631:HOH:O	1.91	0.69
2:Q:154:LEU:O	2:Q:155:MET:HG3	1.92	0.69
1:D:118[B]:TYR:CE2	1:D:455:THR:HG22	2.27	0.69
1:A:10:PHE:CE1	1:F:24:ASP:HB3	2.28	0.69
1:D:218:LEU:CD2	1:D:234:ILE:HG13	2.23	0.69
2:M:37:PRO:HG2	2:M:90:GLN:NE2	2.08	0.69
1:B:171:THR:HB	1:B:172:PRO:HD3	1.74	0.69
2:Q:162:GLN:NE2	2:Q:182:VAL:HB	2.08	0.68
1:D:116:CYS:HA	1:D:125:THR:HG22	1.75	0.68
1:E:171:THR:HB	1:E:172:PRO:HD3	1.75	0.68
2:N:99:ILE:HG22	2:N:150:ALA:HB3	1.74	0.68
1:C:120[B]:ASP:H	1:C:122[B]:LYS:HD2	1.59	0.68

7XCN

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:90:ARG:HG2	1:F:90:ARG:HH11	1.59	0.68
2:M:215:LEU:HD12	2:M:216:ASN:N	2.08	0.68
1:D:146:ILE:O	1:D:178:LYS:HE2	1.92	0.68
1:E:117[B]:LYS:HB3	1:E:119[B]:GLN:NE2	2.07	0.68
1:F:171:THR:HB	1:F:172:PRO:HD3	1.76	0.68
1:A:245:ASN:HA	1:A:288:TRP:HB2	1.77	0.67
1:B:118[A]:TYR:HA	1:B:122[A]:LYS:O	1.95	0.67
1:D:245:ASN:HA	1:D:288:TRP:HB2	1.76	0.67
1:C:171:THR:HB	1:C:172:PRO:HD3	1.77	0.67
1:D:217:LEU:HD23	1:D:218:LEU:N	2.10	0.67
1:D:305:VAL:HG22	1:D:310:LEU:HD13	1.75	0.67
1:D:249:MET:O	1:D:249:MET:HG3	1.94	0.67
1:D:305:VAL:HG11	1:D:368:MET:HE1	1.76	0.67
2:N:46:THR:O	2:N:50:GLU:HG3	1.95	0.67
2:Q:102:ILE:HD13	2:Q:153:ALA:HB2	1.77	0.67
1:C:245:ASN:HA	1:C:288:TRP:HB2	1.76	0.67
4:M:301:HCB:H252	4:M:301:HCB:H601	1.77	0.67
2:O:31:LEU:HD21	2:O:80:ILE:HA	1.76	0.67
1:B:245:ASN:HA	1:B:288:TRP:HB2	1.77	0.67
1:F:217:LEU:HD23	1:F:218:LEU:N	2.10	0.66
2:O:155:MET:HA	4:O:301:HCB:H331	1.60	0.66
1:A:191:GLU:OE2	1:A:236:LYS:HE2	1.95	0.66
1:B:188:GLU:HG2	5:B:643:HOH:O	1.93	0.66
2:Q:63:LEU:H	2:Q:63:LEU:CD1	2.05	0.66
2:Q:92:LYS:HE3	5:Q:407:HOH:O	1.95	0.66
1:A:267:HIS:HE2	1:A:289:TYR:HE1	1.43	0.66
1:F:245:ASN:HA	1:F:288:TRP:HB2	1.78	0.66
2:M:155:MET:HA	4:M:301:HCB:H331	1.60	0.66
2:Q:114:VAL:O	2:Q:118:LEU:HG	1.95	0.66
1:C:217:LEU:HD23	1:C:218:LEU:N	2.10	0.66
1:B:118[B]:TYR:HB3	1:B:458:HIS:CD2	2.30	0.66
1:C:123[A]:TYR:OH	1:C:378:GLU:HG2	1.96	0.66
2:O:84:MET:HG2	2:O:85:GLU:H	1.60	0.66
2:R:10:LYS:HA	2:R:13:GLU:HG2	1.78	0.66
1:A:90:ARG:HH11	1:A:90:ARG:CB	2.09	0.66
2:Q:101:THR:HG22	2:Q:130:ARG:HA	1.76	0.66
1:A:385:ASP:OD2	1:A:437:LEU:HG	1.96	0.66
1:B:339:VAL:HG22	1:B:340:PRO:HD2	1.78	0.66
1:E:339:VAL:HG22	1:E:340:PRO:HD2	1.77	0.66
2:Q:156:THR:H	4:Q:301:HCB:H332	1.42	0.66
2:Q:141:VAL:O	2:Q:145:LYS:HA	1.96	0.65

7XCN

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:B:302:THR:HG21	1:E:439:ARG:O	1.97	0.65
4:N:301:HCB:H252	4:N:301:HCB:H601	1.78	0.65
2:R:26:VAL:HA	2:R:29:GLU:HG2	1.79	0.65
1:C:339:VAL:HG22	1:C:340:PRO:HD2	1.78	0.65
1:A:145:ASN:H	1:A:384:ASN:ND2	1.94	0.65
1:A:292:SER:OG	1:A:334:PYL:HA2	1.95	0.65
1:B:145:ASN:HB2	1:B:384:ASN:ND2	2.12	0.65
2:P:31:LEU:HD21	2:P:80:ILE:HG22	1.78	0.65
1:E:339:VAL:CG2	1:E:340:PRO:HD2	2.27	0.65
1:A:137:ALA:HB1	1:A:176:THR:OG1	1.96	0.65
1:D:73:LEU:HD13	1:D:280:LEU:HD11	1.79	0.65
1:B:425:ARG:HD3	2:Q:68:ALA:CB	2.27	0.65
1:B:478:PHE:HA	1:B:481:MET:HE2	1.79	0.65
2:N:107:HIS:HB3	2:N:154:LEU:HD22	1.77	0.65
4:Q:301:HCB:H252	4:Q:301:HCB:H601	1.79	0.65
1:A:332:GLY:HA3	1:A:363:ILE:CG2	2.27	0.65
2:M:20:ASP:O	2:M:24:GLU:HG3	1.97	0.64
1:E:182:HIS:HD2	1:E:184:ASP:H	1.46	0.64
2:R:155:MET:HA	4:R:301:HCB:H331	1.62	0.64
1:A:247:LEU:HD23	1:A:247:LEU:O	1.97	0.64
1:F:117[A]:LYS:O	1:F:123[A]:TYR:HA	1.98	0.64
1:F:145:ASN:HB2	1:F:384:ASN:ND2	2.13	0.64
2:Q:46:THR:O	2:Q:50:GLU:HG3	1.96	0.64
1:E:239:ARG:HD3	5:E:721:HOH:O	1.97	0.64
1:F:339:VAL:HG22	1:F:340:PRO:HD2	1.79	0.64
2:N:155:MET:HG2	4:N:301:HCB:H302	1.79	0.64
2:N:170:LYS:NZ	2:N:170:LYS:HB3	2.12	0.64
2:Q:36:ASP:OD1	2:Q:37:PRO:HD2	1.98	0.64
2:R:84:MET:HG2	2:R:90:GLN:OE1	1.97	0.64
2:R:87:ARG:CG	2:R:88:LYS:H	2.11	0.64
1:A:218:LEU:HD21	1:A:234:ILE:CG1	2.27	0.64
1:C:334:PYL:HD2	1:C:368:MET:HE1	1.79	0.64
4:P:301:HCB:H601	4:P:301:HCB:H252	1.78	0.64
1:B:339:VAL:CG2	1:B:340:PRO:HD2	2.27	0.64
1:D:248:SER:OG	1:D:267:HIS:ND1	2.30	0.64
1:D:162:GLY:HA3	1:D:489:ASP:OD1	1.98	0.64
1:D:190:VAL:HA	1:D:193:TYR:CD2	2.32	0.64
1:E:145:ASN:HB2	1:E:384:ASN:ND2	2.12	0.64
2:N:105:ASP:HA	4:N:301:HCB:H452	1.63	0.64
4:O:301:HCB:H252	4:O:301:HCB:H601	1.78	0.64
1:A:473:ILE:HD13	1:A:481:MET:HE3	1.80	0.64

7XCN

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:334:PYL:HD2	1:B:368:MET:HE1	1.79	0.64
2:P:155:MET:HA	4:P:301:HCB:H331	1.61	0.64
1:A:43:GLN:HB3	1:A:225:GLU:HB3	1.80	0.63
1:C:182:HIS:HD2	1:C:184:ASP:H	1.46	0.63
2:Q:138:VAL:HG21	2:Q:168:GLN:CB	2.27	0.63
1:C:339:VAL:CG2	1:C:340:PRO:HD2	2.28	0.63
2:R:66:VAL:HG13	2:R:120:ILE:HD12	1.80	0.63
2:N:81:THR:HA	2:N:84:MET:CE	2.27	0.63
1:A:453:LEU:HD23	1:F:342:ASP:HB3	1.81	0.63
2:R:19:ASP:OD2	2:R:21:GLU:HB2	1.98	0.63
1:C:259:TYR:CD1	1:D:403:THR:HG22	2.34	0.63
2:P:102:ILE:HG12	2:P:161:ASN:HB2	1.80	0.63
2:R:28:ASN:C	2:R:30:ALA:H	2.01	0.63
1:F:452:ASP:OD1	1:F:455:THR:HG23	1.99	0.63
2:Q:151:SER:O	4:Q:301:HCB:H4B	1.97	0.63
4:R:301:HCB:H252	4:R:301:HCB:H601	1.79	0.63
1:F:182:HIS:HD2	1:F:184:ASP:H	1.46	0.63
1:E:281:THR:HG22	1:E:282:VAL:HG23	1.81	0.62
1:A:473:ILE:HG21	1:A:481:MET:HE1	1.80	0.62
1:B:368:MET:HG2	1:B:369:LEU:H	1.63	0.62
1:C:267:HIS:CE1	1:C:291:SER:HB2	2.35	0.62
1:E:245:ASN:HA	1:E:288:TRP:HB2	1.79	0.62
2:Q:66:VAL:HG22	2:Q:120:ILE:HD13	1.81	0.62
1:E:452:ASP:OD1	1:E:455:THR:HG23	2.00	0.62
1:F:2:ALA:N	5:F:701:HOH:O	2.33	0.62
1:F:122[A]:LYS:HG3	1:F:123[A]:TYR:N	2.15	0.62
2:O:102:ILE:HG12	2:O:161:ASN:HB2	1.82	0.62
1:A:90:ARG:HH11	1:A:90:ARG:HB2	1.65	0.62
1:B:452:ASP:OD1	1:B:455:THR:HG23	1.99	0.62
1:F:42:ILE:HD12	1:F:273:SER:HB3	1.81	0.62
1:F:339:VAL:CG2	1:F:340:PRO:HD2	2.29	0.62
2:N:101:THR:HG21	2:N:107:HIS:O	1.99	0.62
4:O:301:HCB:H552	4:O:301:HCB:H531	1.81	0.62
1:A:302:THR:HG21	1:F:439:ARG:O	1.99	0.62
1:B:182:HIS:HD2	1:B:184:ASP:H	1.47	0.62
2:M:84:MET:HG2	2:M:85:GLU:N	2.08	0.62
2:M:42:GLU:HA	2:M:46:THR:OG1	2.00	0.62
1:A:427:LEU:HD11	1:F:259:TYR:CZ	2.34	0.62
1:A:439:ARG:O	1:F:302:THR:HG21	1.99	0.62
2:M:84:MET:CG	2:M:85:GLU:H	2.04	0.62
2:M:102:ILE:HG12	2:M:161:ASN:HB2	1.80	0.62

7XCN

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
4:P:301:HCB:H531	4:P:301:HCB:H552	1.82	0.62
1:C:124[B]:VAL:HG12	1:C:125:THR:N	2.15	0.61
1:C:259:TYR:CZ	1:D:427:LEU:HD11	2.35	0.61
2:Q:162:GLN:HB3	2:Q:182:VAL:HG11	1.81	0.61
2:R:92:LYS:HD2	2:R:124:LYS:CE	2.30	0.61
2:R:102:ILE:HG12	2:R:161:ASN:HB2	1.82	0.61
1:A:105:HIS:CE1	1:D:4:ASN:HD22	2.18	0.61
1:E:267:HIS:CE1	1:E:291:SER:HB2	2.35	0.61
2:P:155:MET:HA	4:P:301:HCB:N33	2.16	0.61
1:D:107:THR:HG23	1:D:364:TYR:CB	2.31	0.61
2:N:99:ILE:CD1	2:N:115:ALA:HB2	2.25	0.61
2:Q:63:LEU:HD12	2:Q:63:LEU:N	2.10	0.61
1:A:194:ARG:HG2	1:A:194:ARG:HH11	1.65	0.61
1:D:109:PHE:HZ	1:D:372:GLY:O	1.84	0.61
2:M:8:ILE:HG23	2:M:44:GLY:HA2	1.83	0.61
2:N:102:ILE:HG21	2:N:161:ASN:HB2	1.81	0.61
1:A:210:LYS:HG2	1:A:211:LYS:HG3	1.82	0.61
1:C:452:ASP:OD1	1:C:455:THR:HG23	2.01	0.61
1:F:267:HIS:CE1	1:F:291:SER:HB2	2.35	0.61
2:P:38:VAL:HG23	2:P:90:GLN:NE2	2.15	0.61
2:M:41:ILE:O	2:M:46:THR:HG23	2.00	0.61
2:N:11:ALA:HB2	2:N:26:VAL:HG11	1.83	0.61
1:A:332:GLY:HA3	1:A:363:ILE:HG23	1.83	0.61
1:A:348:LYS:HE3	1:A:379:GLN:CG	2.31	0.61
1:C:281:THR:HG22	1:C:282:VAL:HG23	1.82	0.61
1:D:406:VAL:O	1:D:410:GLN:HG3	2.01	0.61
2:O:155:MET:HA	4:O:301:HCB:N33	2.16	0.61
1:C:145:ASN:HB2	1:C:384:ASN:ND2	2.16	0.60
1:E:51:GLN:NE2	1:E:55:GLU:HG3	2.16	0.60
2:N:134:ILE:HD13	2:N:164:GLN:HB3	1.81	0.60
4:Q:301:HCB:H552	4:Q:301:HCB:H531	1.83	0.60
1:D:223:PRO:HB3	1:D:255:SER:O	2.00	0.60
2:O:155:MET:HG2	4:O:301:HCB:H302	1.83	0.60
2:R:36:ASP:HB3	2:R:39:GLU:HB2	1.83	0.60
1:A:88:TRP:CZ3	1:A:211:LYS:HD3	2.35	0.60
1:B:267:HIS:CE1	1:B:291:SER:HB2	2.36	0.60
1:D:492:PHE:HA	1:D:495:MET:CE	2.32	0.60
1:A:217:LEU:HD23	1:A:217:LEU:C	2.21	0.60
1:B:217:LEU:HD23	1:B:218:LEU:N	2.16	0.60
1:E:249:MET:HB2	3:E:601:GOL:O3	2.01	0.60
1:F:292:SER:OG	1:F:334:PYL:HA2	2.02	0.60

7XCN

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:R:174:VAL:HA	2:R:177:GLN:HG2	1.84	0.60
1:B:258:VAL:HG23	5:E:716:HOH:O	2.02	0.60
2:N:166:GLU:O	2:N:170:LYS:HG3	2.01	0.60
2:Q:178:VAL:HB	5:Q:408:HOH:O	2.02	0.60
2:R:87:ARG:HG3	2:R:88:LYS:N	2.17	0.60
2:M:155:MET:HA	4:M:301:HCB:N33	2.17	0.60
2:N:180:THR:O	2:N:198:ASP:HB2	2.00	0.60
1:C:478:PHE:HA	1:C:481:MET:HE2	1.84	0.60
1:D:50:ARG:HG2	1:D:60:VAL:HG11	1.84	0.60
4:M:301:HCB:H531	4:M:301:HCB:H552	1.83	0.60
2:Q:20:ASP:O	2:Q:24:GLU:HG3	2.02	0.60
1:E:248:SER:OG	1:E:267:HIS:ND1	2.24	0.60
2:N:207:ALA:O	2:N:211:VAL:HG23	2.00	0.60
2:M:97:VAL:HG13	2:M:148:VAL:HB	1.84	0.59
2:O:77:ILE:HG22	2:O:77:ILE:O	2.00	0.59
2:R:39:GLU:HG3	2:R:43:LYS:HD2	1.84	0.59
2:R:155:MET:HA	4:R:301:HCB:N33	2.17	0.59
2:O:31:LEU:HD11	2:O:79:VAL:HG12	1.83	0.59
2:Q:81:THR:HA	2:Q:84:MET:CE	2.33	0.59
1:C:218:LEU:HD22	1:C:234:ILE:HG13	1.85	0.59
1:B:113:VAL:HG23	1:B:114:LYS:HG3	1.84	0.59
1:D:218:LEU:HD22	1:D:234:ILE:HG13	1.84	0.59
1:E:217:LEU:HD23	1:E:218:LEU:N	2.17	0.59
1:E:350:MET:HE2	1:E:354:LEU:HD11	1.84	0.59
1:A:147:ASP:OD1	1:D:2:ALA:HB3	2.01	0.59
2:M:106:ILE:HG12	4:M:301:HCB:O44	2.02	0.59
1:C:194:ARG:HH11	1:C:194:ARG:HG2	1.67	0.59
1:E:218:LEU:HD22	1:E:234:ILE:HG13	1.84	0.59
2:N:135:ASN:O	2:N:139:GLU:HG2	2.03	0.59
2:R:92:LYS:HG2	2:R:93:SER:H	1.67	0.59
4:R:301:HCB:H531	4:R:301:HCB:H552	1.83	0.59
1:D:332:GLY:HA3	1:D:363:ILE:CG2	2.32	0.59
1:F:194:ARG:HG2	1:F:194:ARG:HH11	1.68	0.59
2:O:107:HIS:HB3	2:O:154:LEU:HD22	1.85	0.59
2:Q:4:LYS:O	2:Q:4:LYS:HD3	2.02	0.59
1:A:350:MET:HE3	1:F:353:LEU:HD21	1.83	0.59
1:D:18:LEU:C	1:D:18:LEU:HD23	2.22	0.59
1:D:151:LEU:HD13	1:D:152:PRO:HD2	1.85	0.59
1:F:113:VAL:HG23	1:F:114:LYS:HG3	1.85	0.59
1:F:478:PHE:HA	1:F:481:MET:HE2	1.85	0.59
2:P:166:GLU:O	2:P:170:LYS:HG3	2.03	0.59

7XCN	

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:277:LEU:HD22	1:A:277:LEU:O	2.03	0.59
1:C:84:ARG:HB3	1:C:99:GLU:HB2	1.85	0.59
1:C:302:THR:HG21	1:D:439:ARG:O	2.01	0.59
1:F:281:THR:HG22	1:F:282:VAL:HG23	1.84	0.59
2:P:155:MET:HG2	4:P:301:HCB:H302	1.84	0.58
1:B:439:ARG:O	1:E:302:THR:HG21	2.04	0.58
1:D:116:CYS:HB2	1:D:374:THR:HG21	1.85	0.58
2:Q:166:GLU:O	2:Q:170:LYS:HG3	2.03	0.58
1:B:281:THR:HG22	1:B:282:VAL:HG23	1.85	0.58
2:M:22:LEU:O	2:M:26:VAL:HG12	2.03	0.58
2:Q:25:GLU:HG2	2:Q:29:GLU:OE2	2.04	0.58
2:Q:38:VAL:HG13	2:Q:42:GLU:OE2	2.03	0.58
2:Q:126:VAL:HG12	2:Q:126:VAL:O	2.02	0.58
2:R:92:LYS:CG	2:R:93:SER:H	2.15	0.58
1:A:348:LYS:HE3	1:A:379:GLN:HG3	1.84	0.58
1:D:302:THR:HG23	1:D:304:PRO:HD3	1.85	0.58
2:M:166:GLU:O	2:M:170:LYS:HG3	2.03	0.58
2:O:19:ASP:HB3	2:O:22:LEU:HB3	1.85	0.58
2:O:133:PRO:HG2	2:O:136:THR:OG1	2.04	0.58
1:C:42:ILE:HD12	1:C:273:SER:HB3	1.84	0.58
2:M:133:PRO:HG2	2:M:136:THR:OG1	2.04	0.58
2:N:13:GLU:HG2	2:N:17:ASP:OD2	2.02	0.58
2:O:166:GLU:O	2:O:170:LYS:HG3	2.03	0.58
2:Q:114:VAL:HG22	2:Q:204:ALA:HA	1.85	0.58
2:O:85:GLU:HG2	2:O:90:GLN:O	2.04	0.58
1:D:305:VAL:CG2	1:D:310:LEU:HD13	2.34	0.58
2:P:26:VAL:HA	2:P:29:GLU:HG2	1.85	0.58
2:R:92:LYS:HG2	2:R:93:SER:N	2.18	0.58
1:F:218:LEU:HD22	1:F:234:ILE:HG13	1.86	0.58
4:O:301:HCB:H353	4:O:301:HCB:H311	1.86	0.58
1:B:218:LEU:HD22	1:B:234:ILE:HG13	1.86	0.57
2:O:81:THR:HB	2:O:82:PRO:HD3	1.85	0.57
1:B:51:GLN:NE2	1:B:55:GLU:HG3	2.18	0.57
1:B:249:MET:O	1:B:249:MET:HG3	2.03	0.57
2:M:81:THR:N	2:M:82:PRO:CD	2.66	0.57
2:M:155:MET:HG2	4:M:301:HCB:H302	1.86	0.57
2:R:166:GLU:O	2:R:170:LYS:HG3	2.03	0.57
1:C:430:TYR:HB3	1:C:431:PRO:HD3	1.86	0.57
1:D:109:PHE:CD1	1:D:110:GLY:N	2.73	0.57
2:Q:117:MET:HG3	2:Q:204:ALA:HB1	1.86	0.57
2:R:133:PRO:HG2	2:R:136:THR:OG1	2.04	0.57

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:O:97:VAL:HG13	2:O:148:VAL:HB	1.85	0.57
2:R:107:HIS:HB3	2:R:154:LEU:HD22	1.86	0.57
1:A:331:ALA:HB1	1:A:334:PYL:HE2	1.87	0.57
1:E:368:MET:HG2	1:E:369:LEU:H	1.68	0.57
1:F:368:MET:HG2	1:F:369:LEU:H	1.68	0.57
2:P:174:VAL:HA	2:P:177:GLN:HG2	1.85	0.57
1:C:51:GLN:NE2	1:C:55:GLU:HG3	2.20	0.57
1:F:249:MET:O	1:F:249:MET:HG3	2.04	0.57
2:Q:103:GLU:HB3	2:Q:133:PRO:HA	1.87	0.57
1:C:113:VAL:HG23	1:C:114:LYS:HG3	1.86	0.57
1:C:424:THR:HA	1:D:258:VAL:HG21	1.87	0.57
2:O:101:THR:HG22	2:O:105:ASP:HB3	1.86	0.57
2:P:106:ILE:HG12	4:P:301:HCB:O44	2.05	0.57
2:Q:155:MET:HG2	4:Q:301:HCB:H302	1.86	0.57
2:R:155:MET:HG2	4:R:301:HCB:H302	1.85	0.57
4:R:301:HCB:H311	4:R:301:HCB:H353	1.87	0.57
1:E:292:SER:OG	1:E:334:PYL:HA2	2.05	0.57
2:P:19:ASP:OD2	2:P:22:LEU:HB2	2.04	0.57
2:P:107:HIS:HB3	2:P:154:LEU:HD22	1.86	0.57
2:Q:134:ILE:O	2:Q:137:PHE:HB2	2.05	0.57
1:D:378:GLU:O	1:D:381:VAL:HG22	2.05	0.57
2:M:174:VAL:HA	2:M:177:GLN:HG2	1.86	0.57
4:M:301:HCB:H311	4:M:301:HCB:H353	1.87	0.57
1:A:339:VAL:HG23	1:A:340:PRO:HD2	1.85	0.57
1:E:194:ARG:HH11	1:E:194:ARG:HG2	1.70	0.57
1:F:430:TYR:HB3	1:F:431:PRO:HD3	1.87	0.57
2:Q:198:ASP:C	2:Q:199:ILE:HD12	2.26	0.57
2:R:63:LEU:HB2	2:R:64:PRO:HD3	1.87	0.57
1:B:425:ARG:HD3	2:Q:68:ALA:HB2	1.85	0.56
1:C:36:VAL:HA	1:C:39:ASP:O	2.05	0.56
1:C:190:VAL:HA	1:C:193:TYR:CD2	2.40	0.56
2:M:81:THR:HG22	2:M:86:LYS:HE3	1.87	0.56
2:P:92:LYS:CD	2:P:124:LYS:HE2	2.33	0.56
2:Q:33:ALA:HB3	2:Q:35:ILE:HG13	1.86	0.56
2:R:3:ASN:HD22	2:R:4:LYS:N	2.03	0.56
1:B:108:CYS:HA	1:B:366:ALA:HB3	1.87	0.56
1:B:350:MET:HE2	1:B:354:LEU:HD11	1.87	0.56
1:E:108:CYS:HA	1:E:366:ALA:HB3	1.87	0.56
1:E:430:TYR:HB3	1:E:431:PRO:HD3	1.87	0.56
2:P:92:LYS:HB2	2:P:124:LYS:HE2	1.88	0.56
2:Q:179:LYS:HD3	2:Q:199:ILE:CD1	2.25	0.56

7XCN	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:42:ILE:HD12	1:B:273:SER:HB3	1.86	0.56
1:B:430:TYR:HB3	1:B:431:PRO:HD3	1.87	0.56
1:F:51:GLN:NE2	1:F:55:GLU:HG3	2.19	0.56
2:M:107:HIS:HB3	2:M:154:LEU:HD22	1.85	0.56
2:M:156:THR:HG23	4:M:301:HCB:N33	2.16	0.56
2:N:81:THR:HA	2:N:84:MET:HE3	1.87	0.56
2:O:81:THR:HG22	2:O:86:LYS:CD	2.36	0.56
2:P:133:PRO:HG2	2:P:136:THR:OG1	2.06	0.56
4:R:301:HCB:H362	4:R:301:HCB:H351	1.88	0.56
1:A:245:ASN:C	1:A:245:ASN:HD22	2.09	0.56
2:Q:134:ILE:HD12	2:Q:164:GLN:HB3	1.86	0.56
1:A:264:LEU:HD11	1:F:397:ILE:HD13	1.87	0.56
1:E:334:PYL:HD2	1:E:368:MET:CE	2.35	0.56
2:N:82:PRO:O	2:N:85:GLU:HB2	2.06	0.56
2:O:166:GLU:HG3	2:O:195:ILE:HG12	1.88	0.56
2:O:174:VAL:HA	2:O:177:GLN:HG2	1.86	0.56
2:P:80:ILE:O	2:P:84:MET:CB	2.52	0.56
1:C:248:SER:OG	1:C:267:HIS:ND1	2.28	0.56
1:D:493:ARG:C	1:D:495:MET:H	2.09	0.56
2:N:134:ILE:HD11	2:N:164:GLN:OE1	2.06	0.56
1:D:173:LEU:HD22	1:D:213:ILE:HD12	1.88	0.56
1:E:113:VAL:HG23	1:E:114:LYS:HG3	1.86	0.56
1:F:473:ILE:HD13	1:F:481:MET:HE1	1.86	0.56
1:B:194:ARG:HG2	1:B:194:ARG:HH11	1.70	0.56
1:D:46:ASP:OD1	1:D:48:GLU:HB3	2.06	0.56
1:F:108:CYS:HA	1:F:366:ALA:HB3	1.88	0.56
2:N:155:MET:HA	4:N:301:HCB:H331	1.70	0.56
2:R:66:VAL:HG13	2:R:120:ILE:CD1	2.35	0.56
1:C:368:MET:HG2	1:C:369:LEU:H	1.69	0.56
1:D:218:LEU:HD21	1:D:234:ILE:HG13	1.86	0.56
2:N:80:ILE:O	2:N:84:MET:HG3	2.06	0.56
4:P:301:HCB:H311	4:P:301:HCB:H353	1.86	0.56
4:Q:301:HCB:H362	4:Q:301:HCB:H351	1.86	0.56
2:R:101:THR:HG22	2:R:105:ASP:HB3	1.87	0.56
1:D:141:ASP:OD1	1:D:176:THR:HG23	2.06	0.56
1:F:84:ARG:HB3	1:F:99:GLU:HB2	1.87	0.56
1:A:88:TRP:HA	1:A:95:ASN:OD1	2.06	0.55
1:B:123[B]:TYR:CE2	1:E:442:PHE:HE2	2.24	0.55
1:F:190:VAL:HA	1:F:193:TYR:CD2	2.41	0.55
2:M:166:GLU:HG3	2:M:195:ILE:HG12	1.88	0.55
2:N:163:ILE:HG12	2:N:195:ILE:CG2	2.36	0.55

7XCN

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:O:80:ILE:O	2:O:84:MET:HB2	2.06	0.55
2:P:88:LYS:HB3	2:P:90:GLN:HG3	1.88	0.55
2:Q:118:LEU:HB2	2:Q:125:VAL:HG21	1.87	0.55
1:A:403:THR:HG22	1:F:259:TYR:CD1	2.41	0.55
1:F:118[B]:TYR:OH	1:F:455:THR:HG22	2.06	0.55
2:O:92:LYS:HZ2	2:O:92:LYS:HB3	1.71	0.55
2:Q:204:ALA:O	2:Q:208:VAL:HG23	2.05	0.55
1:E:478:PHE:HA	1:E:481:MET:HE2	1.87	0.55
2:Q:81:THR:HA	2:Q:84:MET:HE3	1.88	0.55
2:Q:134:ILE:HG13	2:Q:135:ASN:N	2.21	0.55
1:B:128:SER:O	1:B:156:ARG:HB2	2.06	0.55
1:C:108:CYS:HA	1:C:366:ALA:HB3	1.88	0.55
2:M:24:GLU:HA	2:M:79:VAL:HG21	1.88	0.55
2:0:10:LYS:NZ	2:O:10:LYS:HB3	2.21	0.55
2:Q:118:LEU:HB2	2:Q:125:VAL:CG2	2.35	0.55
1:A:118[A]:TYR:OH	1:A:455:THR:HG22	2.05	0.55
1:B:259:TYR:CZ	1:E:427:LEU:HD11	2.40	0.55
1:C:120[B]:ASP:N	1:C:122[B]:LYS:HD2	2.21	0.55
4:M:301:HCB:H362	4:M:301:HCB:H351	1.89	0.55
2:P:101:THR:HG22	2:P:105:ASP:HB3	1.88	0.55
2:R:19:ASP:OD2	2:R:22:LEU:HG	2.06	0.55
1:E:42:ILE:HD12	1:E:273:SER:HB3	1.87	0.55
2:O:106:ILE:HG12	4:O:301:HCB:O44	2.06	0.55
4:O:301:HCB:H362	4:O:301:HCB:H351	1.88	0.55
2:Q:31:LEU:CG	2:Q:80:ILE:HG22	2.34	0.55
1:F:350:MET:HE2	1:F:354:LEU:HD11	1.89	0.55
2:N:109:ILE:O	2:N:113:ILE:HG13	2.06	0.55
2:P:92:LYS:HB2	2:P:124:LYS:CE	2.36	0.55
2:R:106:ILE:HG12	4:R:301:HCB:O44	2.07	0.55
1:B:357:LEU:HA	5:B:654:HOH:O	2.06	0.55
2:M:10:LYS:HG2	2:M:26:VAL:HB	1.88	0.55
2:M:101:THR:HG22	2:M:105:ASP:HB3	1.87	0.55
2:N:63:LEU:HD13	2:N:113:ILE:HD13	1.89	0.55
2:Q:148:VAL:N	2:Q:178:VAL:HG11	2.21	0.55
1:D:104:VAL:HG22	1:D:360:ALA:O	2.07	0.55
1:D:412:VAL:HG11	1:D:418:PHE:CE1	2.42	0.55
2:P:166:GLU:HG3	2:P:195:ILE:HG12	1.87	0.55
1:A:327:PRO:HA	1:A:361:ASN:OD1	2.06	0.55
1:B:122[A]:LYS:HG2	1:B:124[A]:VAL:HG13	1.89	0.55
1:C:117[A]:LYS:O	1:C:123[A]:TYR:HA	2.07	0.55
1:C:316:ALA:HB2	1:D:397:ILE:HD12	1.88	0.54

7XCN	

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:2:ALA:N	5:E:702:HOH:O	2.39	0.54
1:E:473:ILE:HD13	1:E:481:MET:HE1	1.89	0.54
1:F:374:THR:HG22	1:F:375:PHE:N	2.22	0.54
2:R:10:LYS:HE2	2:R:26:VAL:HB	1.89	0.54
2:R:166:GLU:HG3	2:R:195:ILE:HG12	1.88	0.54
1:A:114:LYS:HB2	1:A:374:THR:HG23	1.89	0.54
1:A:210:LYS:HE2	1:A:211:LYS:HE2	1.90	0.54
1:A:478:PHE:HA	1:A:481:MET:HE2	1.90	0.54
1:C:249:MET:HG3	1:C:249:MET:O	2.07	0.54
1:D:158:ILE:O	1:D:158:ILE:HG22	2.08	0.54
1:D:217:LEU:HD23	1:D:217:LEU:C	2.28	0.54
2:0:75:SER:O	2:O:78:LYS:HB3	2.06	0.54
2:Q:62:PHE:HB2	2:Q:64:PRO:HD2	1.89	0.54
1:A:439:ARG:HD3	1:F:304:PRO:HB3	1.88	0.54
1:C:350:MET:HE2	1:C:354:LEU:HD11	1.89	0.54
1:B:36:VAL:HA	1:B:39:ASP:O	2.08	0.54
1:C:374:THR:HG22	1:C:375:PHE:N	2.23	0.54
2:Q:167:GLU:O	2:Q:171:GLU:HG2	2.08	0.54
1:A:217:LEU:HD23	1:A:218:LEU:CA	2.37	0.54
2:M:46:THR:HA	2:M:49:MET:HB2	1.88	0.54
2:N:27:ALA:HB1	2:N:80:ILE:HG23	1.89	0.54
2:Q:106:ILE:HG22	2:Q:106:ILE:O	2.07	0.54
2:Q:141:VAL:HG23	2:Q:146:PRO:HG3	1.89	0.54
1:A:109:PHE:CD1	1:A:110:GLY:N	2.76	0.54
1:A:316:ALA:HB2	1:F:397:ILE:HD12	1.89	0.54
1:B:374:THR:HG22	1:B:375:PHE:N	2.23	0.54
2:O:94:LEU:CD2	2:O:95:GLY:N	2.63	0.54
1:A:422:LYS:HA	1:A:425:ARG:CZ	2.37	0.54
1:C:305:VAL:HG23	1:C:310:LEU:HD13	1.90	0.54
1:C:420:ALA:HB1	2:P:68:ALA:HA	1.90	0.54
1:D:319:LYS:HE2	1:D:358:ALA:HB1	1.90	0.54
1:E:374:THR:HG22	1:E:375:PHE:N	2.22	0.54
2:M:39:GLU:HG2	2:M:43:LYS:NZ	2.22	0.54
1:A:158:ILE:HG22	1:A:158:ILE:O	2.08	0.54
1:C:397:ILE:HD12	1:D:316:ALA:HB2	1.88	0.54
1:D:105:HIS:HB3	1:D:147:ASP:OD2	2.08	0.54
2:Q:97:VAL:O	2:Q:99:ILE:HG23	2.07	0.54
2:Q:159:MET:HG3	2:Q:187:VAL:HG22	1.90	0.54
1:B:190:VAL:HA	1:B:193:TYR:CD2	2.42	0.53
1:E:36:VAL:HA	1:E:39:ASP:O	2.08	0.53
1:F:36:VAL:HA	1:F:39:ASP:O	2.08	0.53

7V	CN
(Λ)	UN.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:473:ILE:CD1	1:A:481:MET:HE3	2.37	0.53
1:E:42:ILE:CD1	1:E:273:SER:HB3	2.38	0.53
1:A:422:LYS:O	1:A:426:GLN:HG3	2.08	0.53
1:D:74:VAL:O	1:D:78:LEU:HG	2.08	0.53
2:M:92:LYS:CD	2:M:124:LYS:HE2	2.36	0.53
2:Q:135:ASN:O	2:Q:139:GLU:HG3	2.09	0.53
1:B:332:GLY:HA3	1:B:363:ILE:CG2	2.39	0.53
2:M:25:GLU:O	2:M:28:ASN:HB2	2.08	0.53
2:Q:108:SER:CB	2:Q:130:ARG:HD2	2.38	0.53
1:D:305:VAL:HG13	1:D:334:PYL:HB2	1.91	0.53
2:Q:99:ILE:HD12	2:Q:100:GLY:N	2.24	0.53
1:B:84:ARG:HB3	1:B:99:GLU:HB2	1.89	0.53
1:B:111:THR:HG22	1:B:151:LEU:O	2.08	0.53
1:C:473:ILE:HD13	1:C:481:MET:HE1	1.91	0.53
4:P:301:HCB:H351	4:P:301:HCB:H362	1.89	0.53
2:Q:165:ILE:O	2:Q:169:LEU:HG	2.09	0.53
1:A:93:LYS:HE3	1:A:94:PHE:CZ	2.44	0.53
2:O:84:MET:HG2	2:O:85:GLU:N	2.23	0.53
1:D:145:ASN:H	1:D:384:ASN:ND2	2.02	0.53
2:Q:141:VAL:HG23	2:Q:146:PRO:CG	2.39	0.53
1:D:167:HIS:HE1	1:D:489:ASP:OD2	1.91	0.53
4:N:301:HCB:H552	4:N:301:HCB:H531	1.91	0.53
2:Q:16:THR:HG21	2:Q:51:GLU:OE1	2.09	0.53
2:Q:108:SER:HB3	2:Q:130:ARG:HD2	1.90	0.53
2:Q:189:GLN:OE1	2:Q:200:TYR:HB3	2.09	0.53
1:A:190:VAL:HA	1:A:193:TYR:CD2	2.43	0.53
1:E:190:VAL:HA	1:E:193:TYR:CD2	2.44	0.53
2:M:63:LEU:HB2	2:M:64:PRO:HD3	1.90	0.53
2:R:134:ILE:HD13	2:R:164:GLN:CB	2.39	0.53
1:A:109:PHE:CG	1:A:110:GLY:N	2.77	0.52
2:Q:101:THR:HG23	2:Q:131:ASP:N	2.14	0.52
1:E:219:CYS:SG	3:E:601:GOL:H32	2.48	0.52
1:E:111:THR:HG22	1:E:151:LEU:O	2.09	0.52
2:N:163:ILE:HG12	2:N:195:ILE:HG22	1.92	0.52
2:R:4:LYS:HB2	2:R:35:ILE:HD11	1.92	0.52
1:E:84:ARG:HB3	1:E:99:GLU:HB2	1.90	0.52
1:B:42:ILE:CD1	1:B:273:SER:HB3	2.40	0.52
1:C:128:SER:O	1:C:156:ARG:HB2	2.09	0.52
1:C:226:LEU:HA	5:C:702:HOH:O	2.08	0.52
2:O:82:PRO:HA	2:O:86:LYS:HD3	1.91	0.52
2:P:195:ILE:HG23	2:P:197:ALA:H	1.74	0.52

7XCN

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:252:SER:HB2	1:D:295:THR:OG1	2.10	0.52
1:C:42:ILE:CD1	1:C:273:SER:HB3	2.39	0.52
2:P:156:THR:HG23	4:P:301:HCB:N33	2.20	0.52
1:D:377:MET:O	1:D:381:VAL:HG13	2.10	0.52
1:F:289:TYR:HE1	1:F:317:VAL:HG13	1.75	0.52
2:O:134:ILE:HD13	2:O:164:GLN:CB	2.40	0.52
2:Q:102:ILE:HG22	2:Q:103:GLU:H	1.74	0.52
1:A:220:PRO:HD2	1:A:248:SER:CA	2.31	0.52
1:B:334:PYL:HD2	1:B:368:MET:CE	2.39	0.52
1:C:118[B]:TYR:HB3	1:C:458:HIS:CD2	2.44	0.52
1:D:42:ILE:CD1	1:D:273:SER:HB3	2.40	0.52
1:D:416:ASN:N	1:D:416:ASN:ND2	2.57	0.52
2:Q:102:ILE:HG22	2:Q:103:GLU:N	2.25	0.52
1:A:209:ARG:NH2	1:A:239:ARG:O	2.43	0.51
1:A:370:GLU:C	1:A:371:LEU:HD12	2.30	0.51
1:A:380:LEU:HD13	1:A:380:LEU:C	2.30	0.51
1:F:111:THR:HG21	1:F:151:LEU:HD12	1.92	0.51
2:N:142:LYS:HG2	2:N:174:VAL:HG11	1.92	0.51
2:Q:141:VAL:O	2:Q:146:PRO:HD2	2.09	0.51
2:R:156:THR:HG23	4:R:301:HCB:N33	2.18	0.51
1:E:111:THR:HG21	1:E:151:LEU:HD12	1.93	0.51
1:F:192:TYR:O	1:F:196:ILE:HG13	2.11	0.51
2:N:81:THR:HA	2:N:84:MET:HE2	1.92	0.51
2:Q:83:GLU:O	2:Q:87:ARG:HG2	2.10	0.51
1:F:289:TYR:CE1	1:F:317:VAL:HG13	2.45	0.51
1:A:50:ARG:HD2	1:A:62:GLU:OE2	2.10	0.51
1:A:190:VAL:HB	1:A:236:LYS:HD3	1.92	0.51
1:B:417:ASN:HB3	2:Q:109:ILE:HD11	1.93	0.51
1:C:331:ALA:HB1	1:C:334:PYL:HE2	1.93	0.51
1:C:332:GLY:HA3	1:C:363:ILE:CG2	2.41	0.51
1:C:393:ALA:HB2	1:D:350:MET:HE2	1.93	0.51
2:N:81:THR:N	2:N:82:PRO:HD2	2.26	0.51
1:A:51:GLN:O	1:A:55:GLU:HG3	2.11	0.51
1:A:305:VAL:HG11	1:A:368:MET:HE1	1.93	0.51
1:D:292:SER:OG	1:D:334:PYL:HA2	2.11	0.51
1:F:116:CYS:HA	1:F:124[A]:VAL:O	2.11	0.51
2:O:61:LEU:HD22	2:O:65:HIS:CD2	2.45	0.51
2:P:134:ILE:HD13	2:P:164:GLN:CB	2.40	0.51
2:Q:3:ASN:HA	2:Q:6:GLU:OE1	2.10	0.51
1:A:294:THR:OG1	1:A:295:THR:N	2.42	0.51
1:D:141:ASP:OD2	1:D:468:HIS:HE1	1.93	0.51

7XCN

A + a 1	Atom 0	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:422:LYS:O	1:D:426:GLN:HG3	2.11	0.51
2:N:133:PRO:HG2	2:N:136:THR:OG1	2.11	0.51
2:O:81:THR:HG22	2:O:86:LYS:HG3	1.92	0.51
1:A:156:ARG:O	1:A:159:ALA:HB3	2.10	0.51
1:C:119[A]:GLN:C	1:C:121[A]:GLY:H	2.14	0.51
1:F:118[B]:TYR:HB3	1:F:458:HIS:CD2	2.45	0.51
1:F:128:SER:O	1:F:156:ARG:HB2	2.10	0.51
2:M:134:ILE:HD13	2:M:164:GLN:CB	2.41	0.51
2:N:102:ILE:HG22	2:N:103:GLU:N	2.25	0.51
2:N:105:ASP:HA	4:N:301:HCB:N45	2.26	0.51
1:D:169:THR:O	1:D:172:PRO:HD2	2.11	0.51
1:E:420:ALA:HB2	2:N:67:LEU:HB3	1.92	0.51
2:N:123:PHE:H	2:N:123:PHE:HD1	1.59	0.51
2:N:141:VAL:HG22	2:N:149:VAL:HG21	1.91	0.51
2:Q:179:LYS:CD	2:Q:199:ILE:HD11	2.28	0.51
1:D:107:THR:HG23	1:D:364:TYR:HB2	1.93	0.50
2:M:195:ILE:HG23	2:M:197:ALA:H	1.75	0.50
2:N:92:LYS:O	2:N:92:LYS:HG3	2.11	0.50
2:N:134:ILE:HD13	2:N:164:GLN:CB	2.40	0.50
1:E:6:ALA:HA	5:E:754:HOH:O	2.10	0.50
2:O:4:LYS:HG3	2:O:35:ILE:CD1	2.40	0.50
2:Q:78:LYS:HA	2:Q:81:THR:OG1	2.10	0.50
2:Q:178:VAL:HG12	2:Q:179:LYS:N	2.26	0.50
1:A:36:VAL:HA	1:A:39:ASP:O	2.11	0.50
1:A:113:VAL:HG23	1:A:114:LYS:CG	2.41	0.50
1:F:42:ILE:CD1	1:F:273:SER:HB3	2.41	0.50
2:M:19:ASP:OD2	2:M:22:LEU:HB2	2.11	0.50
2:N:138:VAL:HG13	2:N:169:LEU:HD23	1.94	0.50
1:C:343:GLN:HG3	1:D:437:LEU:HD22	1.92	0.50
1:A:46:ASP:OD1	1:A:48:GLU:N	2.45	0.50
1:A:100:CYS:SG	1:A:325:GLY:HA2	2.51	0.50
1:A:122[A]:LYS:HD2	1:A:122[A]:LYS:N	2.25	0.50
1:B:51:GLN:HE21	1:B:55:GLU:CG	2.24	0.50
1:C:292:SER:OG	1:C:334:PYL:HA2	2.12	0.50
1:D:149:PHE:CZ	1:D:152:PRO:HD3	2.47	0.50
1:E:51:GLN:HE21	1:E:55:GLU:CG	2.24	0.50
2:O:195:ILE:HG23	2:O:197:ALA:H	1.77	0.50
2:P:46:THR:O	2:P:50:GLU:HG3	2.12	0.50
2:Q:93:SER:C	2:Q:94:LEU:HD12	2.32	0.50
1:D:416:ASN:N	1:D:416:ASN:HD22	2.09	0.50
1:E:332:GLY:HA3	1:E:363:ILE:CG2	2.42	0.50

7XCN

A + a 1	A t ama 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:M:10:LYS:CD	2:M:26:VAL:HB	2.42	0.50
2:O:156:THR:HG23	4:O:301:HCB:N33	2.20	0.50
2:O:156:THR:H	4:O:301:HCB:H332	1.60	0.50
2:Q:149:VAL:CG1	2:Q:150:ALA:H	2.22	0.50
1:A:268:ASN:ND2	1:A:289:TYR:OH	2.45	0.50
2:M:85:GLU:O	2:M:89:SER:HA	2.11	0.50
1:D:139:LEU:HD22	1:D:377:MET:HB3	1.93	0.50
1:D:305:VAL:HG11	1:D:368:MET:CE	2.40	0.50
1:F:90:ARG:HG2	5:F:723:HOH:O	2.11	0.50
1:F:420:ALA:HB1	2:M:68:ALA:HA	1.94	0.50
1:B:111:THR:HG21	1:B:151:LEU:HD12	1.93	0.49
1:D:475:ALA:O	1:D:479:LYS:HG3	2.11	0.49
1:E:331:ALA:HB1	1:E:334:PYL:HE2	1.94	0.49
2:M:107:HIS:CB	2:M:154:LEU:HD22	2.42	0.49
2:N:148:VAL:HA	2:N:178:VAL:CG2	2.42	0.49
2:O:107:HIS:CB	2:O:154:LEU:HD22	2.41	0.49
2:P:85:GLU:O	2:P:87:ARG:N	2.45	0.49
2:R:134:ILE:HD13	2:R:164:GLN:HB2	1.94	0.49
1:A:473:ILE:HD13	1:A:481:MET:CE	2.42	0.49
1:D:452:ASP:OD1	1:D:455:THR:HG23	2.12	0.49
2:M:4:LYS:HZ3	2:M:39:GLU:CD	2.15	0.49
1:B:248:SER:OG	1:B:267:HIS:ND1	2.28	0.49
1:D:200:TYR:HA	1:D:477:ILE:CG2	2.42	0.49
2:M:10:LYS:HE3	2:M:22:LEU:CD1	2.35	0.49
2:M:31:LEU:HD21	2:M:80:ILE:HG22	1.95	0.49
2:R:107:HIS:CB	2:R:154:LEU:HD22	2.42	0.49
1:A:306:GLY:HA2	1:A:351:THR:HG21	1.95	0.49
1:D:91:ASP:OD1	1:D:93:LYS:HG2	2.12	0.49
2:M:156:THR:H	4:M:301:HCB:H332	1.59	0.49
2:N:173:GLY:HA2	5:N:404:HOH:O	2.12	0.49
2:O:208:VAL:O	2:O:212:LYS:HG2	2.12	0.49
2:Q:36:ASP:HA	2:Q:87:ARG:NH2	2.26	0.49
2:Q:113:ILE:HD12	4:Q:301:HCB:C3P	2.42	0.49
2:R:195:ILE:HG23	2:R:197:ALA:H	1.77	0.49
2:R:208:VAL:O	2:R:212:LYS:HG2	2.13	0.49
1:A:22:THR:OG1	1:A:25:GLU:HG3	2.11	0.49
1:A:123[A]:TYR:OH	1:A:340:PRO:HG3	2.11	0.49
1:B:305:VAL:HG23	1:B:310:LEU:HD13	1.95	0.49
1:D:289:TYR:CE1	1:D:317:VAL:HG13	2.48	0.49
1:D:353:LEU:HD13	1:D:390:VAL:HG22	1.95	0.49
1:D:478:PHE:HA	1:D:481:MET:HE2	1.94	0.49

7XCN

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:N:153:ALA:C	2:N:154:LEU:HD12	2.33	0.49
2:O:13:GLU:HA	2:O:16:THR:OG1	2.13	0.49
2:P:26:VAL:HA	2:P:29:GLU:CG	2.43	0.49
1:A:118[A]:TYR:HB2	1:A:123[A]:TYR:CE1	2.48	0.49
1:B:473:ILE:HD13	1:B:481:MET:HE1	1.94	0.49
1:E:293:THR:HG22	1:E:313:ILE:HD13	1.93	0.49
2:N:138:VAL:C	2:N:140:LYS:H	2.16	0.49
2:P:49:MET:HE1	2:P:70:ALA:N	2.27	0.49
2:Q:102:ILE:CD1	2:Q:151:SER:HB2	2.42	0.49
4:Q:301:HCB:H363	4:Q:301:HCB:H421	1.95	0.49
2:N:153:ALA:O	2:N:184:GLY:HA3	2.12	0.49
1:C:90:ARG:HG3	1:C:200:TYR:CZ	2.48	0.49
1:C:111:THR:HG21	1:C:151:LEU:HD12	1.95	0.49
2:N:49:MET:CE	2:N:70:ALA:HA	2.42	0.49
2:Q:180:THR:O	2:Q:199:ILE:HD13	2.13	0.49
1:A:133:ILE:HD11	1:A:153:VAL:O	2.12	0.49
1:B:119[A]:GLN:O	1:B:122[A]:LYS:HD3	2.12	0.49
1:B:192:TYR:O	1:B:196:ILE:HG13	2.12	0.49
1:B:422:LYS:HA	1:B:425:ARG:CZ	2.43	0.49
1:C:90:ARG:HG2	1:C:90:ARG:NH1	2.26	0.49
1:F:221:THR:HB	1:F:225:GLU:HG3	1.95	0.49
2:P:134:ILE:HD13	2:P:164:GLN:HB2	1.95	0.49
2:Q:81:THR:N	2:Q:82:PRO:HD2	2.27	0.49
2:Q:163:ILE:HG12	2:Q:195:ILE:CG1	2.43	0.49
1:B:427:LEU:HD11	1:E:259:TYR:CZ	2.48	0.49
1:C:221:THR:CG2	2:O:106:ILE:HD12	2.43	0.49
1:D:223:PRO:HD3	1:D:255:SER:HB2	1.94	0.49
1:D:331:ALA:CB	1:D:334:PYL:HE2	2.36	0.49
1:D:466:LYS:O	1:D:466:LYS:HD3	2.12	0.49
1:E:111:THR:CG2	1:E:151:LEU:HD12	2.42	0.49
2:P:162:GLN:C	2:P:195:ILE:HD11	2.33	0.49
1:A:111:THR:HG22	1:A:151:LEU:O	2.13	0.48
1:B:293:THR:HG22	1:B:313:ILE:HD13	1.95	0.48
1:D:374:THR:HG22	1:D:375:PHE:N	2.27	0.48
2:M:162:GLN:C	2:M:195:ILE:HD11	2.34	0.48
2:N:82:PRO:HA	2:N:85:GLU:OE2	2.13	0.48
2:P:170:LYS:HG2	2:P:175:ARG:HG2	1.95	0.48
1:A:187:GLY:O	1:A:190:VAL:HG23	2.12	0.48
1:B:291:SER:CB	1:B:317:VAL:HG21	2.43	0.48
2:M:208:VAL:O	2:M:212:LYS:HG2	2.12	0.48
2:O:162:GLN:C	2:O:195:ILE:HD11	2.34	0.48

7XCN

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:Q:134:ILE:HG21	2:Q:164:GLN:CB	2.42	0.48
1:A:248:SER:OG	1:A:267:HIS:ND1	2.47	0.48
1:C:111:THR:HG22	1:C:151:LEU:O	2.13	0.48
1:D:109:PHE:CZ	1:D:372:GLY:O	2.64	0.48
1:F:43:GLN:HB3	1:F:225:GLU:HB2	1.96	0.48
1:F:51:GLN:HE21	1:F:55:GLU:CG	2.26	0.48
2:P:73:MET:O	2:P:77:ILE:HG13	2.14	0.48
2:R:162:GLN:C	2:R:195:ILE:HD11	2.33	0.48
1:B:268:ASN:ND2	1:B:289:TYR:OH	2.46	0.48
1:C:158:ILE:HG22	1:C:158:ILE:O	2.13	0.48
1:D:380:LEU:C	1:D:380:LEU:HD13	2.34	0.48
1:F:111:THR:CG2	1:F:151:LEU:HD12	2.42	0.48
1:F:332:GLY:HA3	1:F:363:ILE:CG2	2.44	0.48
1:F:422:LYS:HA	1:F:425:ARG:CZ	2.44	0.48
2:P:163:ILE:HG12	2:P:195:ILE:HG13	1.95	0.48
1:A:300:LYS:HB2	1:A:302:THR:HG22	1.95	0.48
1:A:338:LYS:N	1:A:338:LYS:HD3	2.29	0.48
1:D:109:PHE:CG	1:D:110:GLY:N	2.81	0.48
1:D:139:LEU:CD2	1:D:377:MET:HB3	2.43	0.48
1:D:192:TYR:O	1:D:196:ILE:HG13	2.14	0.48
1:D:194:ARG:HG2	1:D:194:ARG:HH11	1.78	0.48
1:D:199:ALA:HB3	1:D:481:MET:HG2	1.95	0.48
1:E:103:LYS:HB3	1:F:4:ASN:ND2	2.28	0.48
1:E:128:SER:O	1:E:156:ARG:HB2	2.14	0.48
2:M:80:ILE:O	2:M:84:MET:HB2	2.14	0.48
2:M:94:LEU:HD13	2:M:122:GLY:HA3	1.95	0.48
2:O:30:ALA:HA	2:O:33:ALA:HB3	1.95	0.48
2:P:208:VAL:O	2:P:212:LYS:HG2	2.13	0.48
2:Q:164:GLN:C	2:Q:166:GLU:H	2.17	0.48
2:R:38:VAL:HG22	2:R:90:GLN:HG3	1.96	0.48
2:R:102:ILE:CD1	2:R:165:ILE:HD11	2.44	0.48
2:P:83:GLU:OE2	2:P:88:LYS:HE3	2.14	0.48
2:Q:102:ILE:HG13	2:Q:151:SER:HB2	1.96	0.48
2:Q:195:ILE:HG22	2:Q:197:ALA:H	1.79	0.48
1:B:118[B]:TYR:CE2	1:B:121[B]:GLY:HA2	2.49	0.48
1:C:51:GLN:HE21	1:C:55:GLU:CG	2.27	0.48
1:D:26:LEU:HD13	1:D:323:PHE:CD1	2.48	0.48
1:D:118[B]:TYR:CZ	1:D:455:THR:HG22	2.48	0.48
1:E:119[A]:GLN:O	1:E:122[A]:LYS:HG2	2.12	0.48
2:M:39:GLU:HG2	2:M:43:LYS:HZ1	1.79	0.48
2:Q:46:THR:O	2:Q:46:THR:HG22	2.14	0.48

7XCN	

Atom-1	Atom-2	Interatomic	Clash
0.0.160.CI N.IIE00		distance (A)	$\frac{\text{overlap}(\mathbf{A})}{0.48}$
2:Q:102:GLN:HE22	2:Q:187:VAL:HG21	1.79	0.48
1:D:331:ALA:ПБ1	1:D:334:PYL:HE2	1.95	0.48
1:0:120[A]:ASP:HB3	I:U:IZZ[A]:LYS:UE	2.25	0.48
1:E:90:ARG:HG2	5:E:720:HOH:O	2.13	0.48
1:F:305:VAL:HG23	1:F:310:LEU:HD13	1.96	0.48
2:0:134:1LE:HD13	2:0:164:GLN:HB2	1.96	0.48
2:P:63:LEU:HB2	2:P:64:PRO:HD3	1.96	0.48
2:Q:11:ALA:HA	2:Q:26:VAL:HG11	1.96	0.48
1:A:97:VAL:HG12	1:A:98:GLN:N	2.29	0.48
1:A:130:GLU:HB2	1:A:155:ALA:HB1	1.94	0.48
1:A:245:ASN:C	1:A:245:ASN:ND2	2.67	0.48
1:B:289:TYR:CE1	1:B:317:VAL:HG13	2.49	0.48
1:B:289:TYR:HE1	1:B:317:VAL:HG13	1.79	0.48
1:B:422:LYS:HE2	1:B:426:GLN:NE2	2.29	0.48
1:D:151:LEU:HD21	1:D:168:GLU:O	2.13	0.48
1:E:192:TYR:O	1:E:196:ILE:HG13	2.14	0.48
1:E:422:LYS:HA	1:E:425:ARG:CZ	2.43	0.48
2:M:149:VAL:HG23	2:M:178:VAL:CG2	2.41	0.48
4:Q:301:HCB:H353	4:Q:301:HCB:H311	1.96	0.48
2:R:19:ASP:CG	2:R:21:GLU:HB2	2.34	0.48
1:A:18:LEU:C	1:A:18:LEU:HD23	2.34	0.48
1:A:289:TYR:CE1	1:A:317:VAL:HG13	2.49	0.48
1:D:46:ASP:HB2	1:D:228:VAL:HA	1.96	0.48
1:E:249:MET:HG3	1:E:249:MET:O	2.13	0.48
1:E:289:TYR:HE1	1:E:317:VAL:HG13	1.79	0.48
2:M:134:ILE:HD13	2:M:164:GLN:HB2	1.95	0.48
2:N:98:ALA:HB1	2:N:128:LEU:HD21	1.96	0.48
2:Q:56:PHE:HD1	2:Q:61:LEU:O	1.97	0.48
2:Q:89:SER:C	2:Q:92:LYS:N	2.67	0.48
2:Q:140:LYS:O	2:Q:140:LYS:HG2	2.13	0.48
2:R:135:ASN:O	2:R:139:GLU:HG2	2.14	0.48
1:A:348:LYS:O	1:A:352:THR:HG22	2.13	0.47
1:B:275:ILE:HD13	1:B:326:LEU:HD13	1.96	0.47
2:M:63:LEU:HD12	2:M:63:LEU:H	1.78	0.47
2:N:162:GLN:NE2	2:N:182:VAL:HB	2.29	0.47
2:N:165:ILE:O	2:N:169:LEU:HG	2.14	0.47
2:Q:108:SER:O	2:Q:110:GLY:N	2.48	0.47
2:Q:147:GLN:O	2:Q:148:VAL:HB	2.14	0.47
1:A:84:ARG:HB2	1:A:99:GLU:HB3	1.95	0.47
1:B:349:THR:HA	1:B:352:THR:HG22	1.96	0.47
1:C:268:ASN:ND2	1:C:289:TYR:OH	2.48	0.47

7XCN

A 4 1	A 4 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:118[B]:TYR:HB3	1:D:458:HIS:CD2	2.49	0.47
1:E:90:ARG:HG3	1:E:200:TYR:CZ	2.49	0.47
1:E:221:THR:HB	1:E:225:GLU:HG3	1.96	0.47
1:F:349:THR:HA	1:F:352:THR:HG22	1.95	0.47
2:O:87:ARG:C	2:O:89:SER:H	2.18	0.47
2:R:31:LEU:HD11	2:R:80:ILE:HG22	1.95	0.47
1:B:397:ILE:HD12	1:E:316:ALA:HB2	1.96	0.47
1:C:111:THR:CG2	1:C:151:LEU:HD12	2.44	0.47
1:C:118[A]:TYR:HA	1:C:122[A]:LYS:O	2.14	0.47
1:C:291:SER:CB	1:C:317:VAL:HG21	2.44	0.47
1:D:371:LEU:HD12	1:D:371:LEU:N	2.29	0.47
1:E:289:TYR:CE1	1:E:317:VAL:HG13	2.49	0.47
2:M:163:ILE:HG12	2:M:195:ILE:HG13	1.97	0.47
2:0:87:ARG:0	2:O:89:SER:N	2.47	0.47
2:P:102:ILE:CD1	2:P:165:ILE:HD11	2.44	0.47
2:Q:138:VAL:O	2:Q:141:VAL:HG12	2.14	0.47
1:A:106:TRP:HZ3	1:A:391:LYS:HE2	1.80	0.47
1:A:118[B]:TYR:HD2	1:A:123[B]:TYR:CD1	2.32	0.47
1:B:111:THR:CG2	1:B:151:LEU:HD12	2.44	0.47
1:E:305:VAL:HG23	1:E:310:LEU:HD13	1.96	0.47
2:N:102:ILE:HG13	2:N:151:SER:HB2	1.96	0.47
2:P:107:HIS:CB	2:P:154:LEU:HD22	2.44	0.47
2:Q:37:PRO:HB2	2:Q:84:MET:HG2	1.96	0.47
2:Q:123:PHE:HD1	2:Q:123:PHE:H	1.60	0.47
2:Q:179:LYS:HD3	2:Q:198:ASP:HB3	1.97	0.47
2:Q:185:ALA:HB3	2:Q:186:PRO:HD3	1.96	0.47
2:R:10:LYS:HE3	2:R:22:LEU:HD22	1.95	0.47
1:A:145:ASN:ND2	1:A:384:ASN:O	2.42	0.47
1:A:252:SER:HB2	1:A:295:THR:HA	1.96	0.47
1:B:119[A]:GLN:HA	1:B:119[A]:GLN:NE2	2.29	0.47
1:D:385:ASP:OD2	1:D:437:LEU:HG	2.14	0.47
1:F:268:ASN:ND2	1:F:289:TYR:OH	2.48	0.47
1:F:275:ILE:HD13	1:F:326:LEU:HD13	1.96	0.47
1:F:373:MET:CE	2:R:185:ALA:HB1	2.43	0.47
2:M:75:SER:O	2:M:79:VAL:HG23	2.14	0.47
2:M:156:THR:N	4:M:301:HCB:H332	2.12	0.47
2:P:84:MET:HG2	2:P:85:GLU:N	2.29	0.47
1:A:386:ILE:O	1:A:390:VAL:HG23	2.15	0.47
1:C:289:TYR:CE1	1:C:317:VAL:HG13	2.49	0.47
1:E:392:LYS:NZ	1:E:395:GLN:HE22	2.12	0.47
1:F:90:ARG:HG3	1:F:200:TYR:CZ	2.48	0.47

7XCN	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:M:102:ILE:HG13	2:M:103:GLU:N	2.30	0.47
2:N:148:VAL:HG23	2:N:179:LYS:O	2.15	0.47
4:N:301:HCB:H362	4:N:301:HCB:H351	1.95	0.47
2:Q:149:VAL:CG1	2:Q:150:ALA:N	2.77	0.47
1:A:58:CYS:SG	1:A:73:LEU:HD12	2.54	0.47
1:A:90:ARG:N	1:A:177:ALA:O	2.43	0.47
1:A:349:THR:HA	1:A:352:THR:HG22	1.97	0.47
1:A:353:LEU:O	1:A:357:LEU:HG	2.15	0.47
1:B:90:ARG:HG3	1:B:200:TYR:CZ	2.49	0.47
1:B:118[B]:TYR:CE2	1:B:455:THR:HG22	2.50	0.47
1:B:267:HIS:HE2	1:B:289:TYR:HE1	1.61	0.47
1:D:268:ASN:ND2	1:D:289:TYR:OH	2.47	0.47
1:D:380:LEU:HD13	1:D:380:LEU:O	2.14	0.47
1:F:267:HIS:HE2	1:F:289:TYR:HE1	1.62	0.47
2:N:33:ALA:HB3	2:N:35:ILE:HG13	1.96	0.47
2:N:210:LYS:O	2:N:213:ALA:HB3	2.14	0.47
2:O:37:PRO:HD2	2:O:90:GLN:OE1	2.14	0.47
2:O:156:THR:N	4:O:301:HCB:H332	2.13	0.47
2:Q:14:ALA:HA	2:Q:22:LEU:HD23	1.96	0.47
2:Q:113:ILE:O	2:Q:117:MET:HB2	2.15	0.47
2:R:3:ASN:HB3	2:R:6:GLU:OE1	2.14	0.47
1:A:110:GLY:HA2	1:A:111:THR:HA	1.66	0.47
1:A:126:VAL:HG23	1:A:126:VAL:O	2.14	0.47
1:A:298:LEU:O	2:M:63:LEU:HD13	2.15	0.47
1:A:320:LEU:O	1:A:323:PHE:HB3	2.15	0.47
1:A:330:VAL:O	1:A:363:ILE:HA	2.15	0.47
1:C:334:PYL:HD2	1:C:368:MET:CE	2.45	0.47
1:D:87:LEU:HB3	1:D:179:HIS:CG	2.49	0.47
1:D:118[B]:TYR:HE2	1:D:455:THR:HG22	1.80	0.47
1:E:286:LYS:HE3	5:E:760:HOH:O	2.14	0.47
2:O:102:ILE:CD1	2:O:165:ILE:HD11	2.44	0.47
1:C:192:TYR:O	1:C:196:ILE:HG13	2.15	0.47
1:D:370:GLU:C	1:D:371:LEU:HD12	2.35	0.47
2:M:41:ILE:CD1	2:M:92:LYS:HE2	2.34	0.47
2:N:134:ILE:O	2:N:137:PHE:HB2	2.15	0.47
2:O:27:ALA:HB1	2:O:80:ILE:HG23	1.97	0.47
2:R:28:ASN:C	2:R:30:ALA:N	2.68	0.47
1:A:91:ASP:HB3	1:A:93:LYS:HG2	1.97	0.47
1:A:149:PHE:CZ	1:A:152:PRO:HD3	2.49	0.47
1:A:251:MET:HB3	1:A:296:PHE:HB2	1.96	0.47
1:A:392:LYS:HG2	1:A:432:SER:HB3	1.95	0.47

7XCN	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:268:ASN:ND2	1:E:289:TYR:OH	2.47	0.47
2:O:40:LEU:HD23	2:O:80:ILE:HD13	1.97	0.47
2:0:135:ASN:O	2:O:139:GLU:HG2	2.15	0.47
2:Q:87:ARG:HG2	2:Q:87:ARG:H	1.47	0.47
1:A:194:ARG:NH1	1:A:195:ASP:OD1	2.48	0.46
1:D:220:PRO:HD2	1:D:248:SER:HA	1.97	0.46
1:E:291:SER:CB	1:E:317:VAL:HG21	2.45	0.46
2:O:84:MET:CG	2:O:85:GLU:H	2.21	0.46
1:A:305:VAL:HG22	1:A:334:PYL:HD3	1.97	0.46
1:A:455:THR:O	1:A:459:GLU:HG3	2.14	0.46
2:M:135:ASN:O	2:M:139:GLU:HG2	2.15	0.46
2:N:42:GLU:HG2	2:N:92:LYS:HE2	1.96	0.46
2:O:170:LYS:HG2	2:O:175:ARG:HG2	1.97	0.46
1:A:145:ASN:HB2	1:A:384:ASN:ND2	2.30	0.46
1:A:310:LEU:HD11	1:A:331:ALA:HB3	1.97	0.46
1:C:349:THR:HA	1:C:352:THR:HG22	1.96	0.46
1:D:3:LYS:O	1:D:4:ASN:O	2.33	0.46
1:D:492:PHE:HA	1:D:495:MET:HE2	1.98	0.46
2:N:181:MET:HG3	2:N:199:ILE:O	2.16	0.46
2:O:3:ASN:O	2:O:7:ILE:HG13	2.14	0.46
2:O:163:ILE:HG12	2:O:195:ILE:HG13	1.96	0.46
2:P:181:MET:HE3	2:P:199:ILE:HG21	1.96	0.46
2:Q:81:THR:HG22	2:Q:85:GLU:OE2	2.15	0.46
2:R:7:ILE:HD13	2:R:29:GLU:O	2.15	0.46
2:R:153:ALA:O	2:R:184:GLY:HA3	2.15	0.46
1:C:122[A]:LYS:HD3	1:C:122[A]:LYS:N	2.31	0.46
1:C:217:LEU:HD23	1:C:217:LEU:C	2.36	0.46
1:D:42:ILE:HD12	1:D:273:SER:HB3	1.95	0.46
1:D:151:LEU:HD21	1:D:168:GLU:HB3	1.98	0.46
1:F:189:ASN:HB3	1:F:192:TYR:HD2	1.80	0.46
1:F:422:LYS:HE2	1:F:426:GLN:NE2	2.31	0.46
2:O:12:LYS:HG3	2:O:48:GLY:N	2.30	0.46
2:P:94:LEU:HD12	2:P:95:GLY:N	2.30	0.46
2:Q:164:GLN:C	2:Q:166:GLU:N	2.69	0.46
1:A:43:GLN:HB3	1:A:225:GLU:CB	2.46	0.46
1:A:150:SER:HB3	1:A:183:ILE:HD11	1.98	0.46
1:B:6:ALA:HB2	1:C:391:LYS:HG2	1.96	0.46
1:C:235:ILE:O	1:C:239:ARG:HG3	2.16	0.46
1:D:100:CYS:SG	1:D:325:GLY:HA2	2.55	0.46
1:D:422:LYS:HE2	1:D:426:GLN:NE2	2.30	0.46
1:E:217:LEU:HD23	1:E:217:LEU:C	2.36	0.46

7XCN

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:331:ALA:HB1	1:F:334:PYL:HE2	1.97	0.46
2:M:84:MET:O	2:M:86:LYS:N	2.49	0.46
2:P:135:ASN:O	2:P:139:GLU:HG2	2.16	0.46
2:Q:12:LYS:HG3	2:Q:48:GLY:N	2.30	0.46
1:A:167:HIS:HE1	1:A:489:ASP:OD2	1.98	0.46
1:B:90:ARG:HG2	1:B:90:ARG:NH1	2.27	0.46
1:C:348:LYS:O	1:C:352:THR:HG22	2.16	0.46
1:E:349:THR:HA	1:E:352:THR:HG22	1.95	0.46
1:E:350:MET:CE	1:E:354:LEU:HD11	2.44	0.46
2:M:31:LEU:CG	2:M:80:ILE:HG22	2.45	0.46
2:0:88:LYS:HB2	2:O:90:GLN:HG2	1.97	0.46
2:P:8:ILE:HG23	2:P:44:GLY:HA2	1.97	0.46
2:Q:107:HIS:HB3	2:Q:154:LEU:HD23	1.98	0.46
1:A:222:SER:HA	1:A:223:PRO:HA	1.69	0.46
1:B:90:ARG:N	1:B:177:ALA:O	2.49	0.46
1:B:221:THR:HB	1:B:225:GLU:HG3	1.98	0.46
1:C:48:GLU:O	1:C:52:ILE:HG13	2.15	0.46
1:D:339:VAL:CG2	1:D:340:PRO:HD2	2.45	0.46
1:D:367:GLY:HA3	1:D:380:LEU:HD23	1.97	0.46
1:F:119[B]:GLN:HG3	1:F:124[B]:VAL:HG21	1.98	0.46
1:F:332:GLY:O	1:F:365:GLY:HA3	2.16	0.46
2:O:92:LYS:HZ2	2:O:92:LYS:CB	2.29	0.46
2:Q:155:MET:O	2:Q:159:MET:HB2	2.16	0.46
1:A:454:ALA:O	1:A:457:ALA:HB3	2.16	0.46
1:B:90:ARG:HH11	1:B:90:ARG:CG	2.26	0.46
1:B:123[B]:TYR:HE2	1:E:442:PHE:HE2	1.64	0.46
1:C:189:ASN:HB3	1:C:192:TYR:HD2	1.80	0.46
1:F:110:GLY:HA3	1:F:151:LEU:O	2.16	0.46
1:F:158:ILE:HG22	1:F:158:ILE:O	2.15	0.46
2:N:88:LYS:HD2	2:N:88:LYS:N	2.31	0.46
2:R:156:THR:H	4:R:301:HCB:H332	1.62	0.46
2:R:170:LYS:HG2	2:R:175:ARG:HG2	1.97	0.46
1:A:419:LEU:HD13	2:R:67:LEU:CD1	2.46	0.46
1:C:422:LYS:HA	1:C:425:ARG:CZ	2.46	0.46
1:C:422:LYS:HE2	1:C:426:GLN:NE2	2.31	0.46
1:E:189:ASN:HB3	1:E:192:TYR:HD2	1.81	0.46
1:E:275:ILE:HD13	1:E:326:LEU:HD13	1.98	0.46
2:M:10:LYS:HE2	2:M:25:GLU:OE1	2.16	0.46
2:P:81:THR:HB	2:P:82:PRO:HD3	1.98	0.46
2:Q:99:ILE:HD12	2:Q:99:ILE:C	2.37	0.46
1:A:90:ARG:NH2	1:A:473:ILE:HG13	2.31	0.46

7XCN

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:307:SER:HB2	1:A:308:PRO:HD2	1.98	0.46
1:B:118[B]:TYR:OH	1:B:455:THR:HG22	2.16	0.46
1:C:294:THR:HB	1:C:310:LEU:HD12	1.98	0.46
1:E:249:MET:HE3	1:E:293:THR:HA	1.98	0.46
2:N:102:ILE:CG2	2:N:103:GLU:N	2.79	0.46
2:N:148:VAL:HA	2:N:178:VAL:HG23	1.98	0.46
2:O:181:MET:HE3	2:O:199:ILE:HG21	1.97	0.46
2:Q:43:LYS:O	2:Q:43:LYS:HG2	2.15	0.46
1:A:329:TYR:HE1	1:A:364:TYR:CD1	2.34	0.45
1:A:419:LEU:CB	2:R:67:LEU:HD13	2.43	0.45
1:B:109:PHE:CB	1:B:365:GLY:HA2	2.45	0.45
1:C:332:GLY:O	1:C:365:GLY:HA3	2.16	0.45
1:D:96:THR:HG23	1:D:105:HIS:CD2	2.51	0.45
1:F:121[A]:GLY:O	1:F:122[A]:LYS:HB3	2.16	0.45
2:M:61:LEU:HD22	2:M:65:HIS:CD2	2.50	0.45
2:0:211:VAL:O	2:O:215:LEU:HG	2.15	0.45
2:P:149:VAL:HG23	2:P:178:VAL:CG2	2.41	0.45
2:P:191:TRP:O	2:P:195:ILE:HG22	2.16	0.45
2:Q:191:TRP:O	2:Q:195:ILE:HB	2.15	0.45
1:A:427:LEU:O	1:A:431:PRO:HD3	2.15	0.45
1:D:50:ARG:HG2	1:D:60:VAL:CG1	2.46	0.45
1:F:111:THR:HG22	1:F:151:LEU:O	2.16	0.45
1:F:223:PRO:HB3	1:F:255:SER:O	2.15	0.45
2:N:102:ILE:HD12	2:N:162:GLN:HG2	1.97	0.45
2:R:191:TRP:O	2:R:195:ILE:HG22	2.16	0.45
1:A:200:TYR:HA	1:A:477:ILE:CG2	2.46	0.45
1:A:409:ILE:HD11	1:F:257:PRO:CG	2.46	0.45
1:E:73:LEU:HD23	1:E:73:LEU:HA	1.83	0.45
1:E:118[B]:TYR:HD1	1:E:118[B]:TYR:O	1.98	0.45
1:F:100:CYS:SG	1:F:325:GLY:HA2	2.57	0.45
2:Q:128:LEU:N	2:Q:128:LEU:HD22	2.32	0.45
2:R:181:MET:HE3	2:R:199:ILE:HG21	1.97	0.45
1:D:197:VAL:HG12	1:D:208:ALA:HB1	1.98	0.45
4:N:301:HCB:H561	5:N:409:HOH:O	2.16	0.45
2:P:55:LYS:HB3	2:P:61:LEU:HG	1.98	0.45
1:A:87:LEU:HB3	1:A:179:HIS:ND1	2.31	0.45
1:D:118[B]:TYR:HB3	1:D:458:HIS:HD2	1.81	0.45
1:D:353:LEU:O	1:D:357:LEU:HG	2.17	0.45
1:F:221:THR:HB	1:F:225:GLU:CG	2.47	0.45
2:N:102:ILE:CD1	2:N:162:GLN:HG2	2.47	0.45
2:O:102:ILE:HG13	2:O:103:GLU:N	2.31	0.45

7XCN

A + a 1	A t ama 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:P:36:ASP:O	2:P:39:GLU:HB3	2.16	0.45
2:P:102:ILE:HG13	2:P:103:GLU:N	2.31	0.45
2:P:156:THR:H	4:P:301:HCB:H332	1.65	0.45
2:R:163:ILE:HG12	2:R:195:ILE:HG13	1.97	0.45
2:R:211:VAL:O	2:R:215:LEU:HG	2.17	0.45
1:D:267:HIS:NE2	1:D:289:TYR:HE1	2.15	0.45
1:E:332:GLY:O	1:E:365:GLY:HA3	2.17	0.45
1:F:334:PYL:HD2	1:F:368:MET:CE	2.39	0.45
2:P:207:ALA:O	2:P:211:VAL:HG23	2.17	0.45
1:C:419:LEU:HB3	2:P:67:LEU:HD13	1.98	0.45
1:F:332:GLY:HA3	1:F:363:ILE:HG23	1.99	0.45
1:A:232:GLN:O	1:A:236:LYS:HB2	2.17	0.45
1:A:424:THR:HA	1:F:258:VAL:CG2	2.41	0.45
1:B:48:GLU:O	1:B:52:ILE:HG13	2.17	0.45
1:C:227:SER:N	5:C:702:HOH:O	2.34	0.45
1:D:201:TYR:CD2	1:D:208:ALA:HA	2.51	0.45
2:N:202:GLU:HB3	2:N:206:ASP:OD2	2.17	0.45
2:O:191:TRP:O	2:O:195:ILE:HG22	2.17	0.45
2:P:154:LEU:HD21	4:P:301:HCB:O4	2.17	0.45
1:A:387:PHE:O	1:A:391:LYS:HG3	2.17	0.45
1:C:289:TYR:HE1	1:C:317:VAL:HG13	1.80	0.45
1:D:477:ILE:HG22	1:D:481:MET:CE	2.47	0.45
1:E:422:LYS:HE2	1:E:426:GLN:NE2	2.32	0.45
1:F:293:THR:HG22	1:F:313:ILE:HD13	1.99	0.45
2:M:102:ILE:CD1	2:M:165:ILE:HD11	2.46	0.45
2:N:114:VAL:O	2:N:118:LEU:HG	2.17	0.45
2:N:172:ALA:O	2:N:174:VAL:HG13	2.17	0.45
2:O:147:GLN:O	2:O:178:VAL:HG23	2.16	0.45
2:P:147:GLN:O	2:P:178:VAL:HG23	2.17	0.45
2:R:81:THR:HB	2:R:82:PRO:HD3	1.99	0.45
2:R:83:GLU:OE2	2:R:87:ARG:HD2	2.15	0.45
1:A:221:THR:HB	1:A:225:GLU:HG3	1.98	0.45
1:B:100:CYS:SG	1:B:325:GLY:HA2	2.57	0.45
1:B:223:PRO:HB3	1:B:255:SER:O	2.18	0.45
1:B:473:ILE:HD13	1:B:481:MET:CE	2.47	0.45
1:E:223:PRO:HB3	1:E:255:SER:O	2.17	0.45
1:F:51:GLN:NE2	1:F:55:GLU:CG	2.80	0.45
1:F:88:TRP:CD1	1:F:211:LYS:HA	2.52	0.45
2:M:22:LEU:HD12	2:M:25:GLU:OE2	2.17	0.45
2:P:39:GLU:OE1	2:P:39:GLU:HA	2.17	0.45
2:Q:156:THR:HG23	4:Q:301:HCB:H332	1.81	0.45

7XCN

	A + a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:64:THR:O	1:A:65:ASN:HB2	2.17	0.44
1:A:334:PYL:HD2	1:A:368:MET:CE	2.46	0.44
1:B:350:MET:CE	1:B:354:LEU:HD11	2.48	0.44
1:C:275:ILE:HD13	1:C:326:LEU:HD13	1.98	0.44
1:C:332:GLY:HA3	1:C:363:ILE:HG23	1.98	0.44
1:C:385:ASP:OD2	1:C:437:LEU:HG	2.17	0.44
1:D:266:THR:O	1:D:270:GLU:HG3	2.17	0.44
1:E:118[B]:TYR:CD1	1:E:118[B]:TYR:C	2.90	0.44
1:F:348:LYS:O	1:F:352:THR:HG22	2.18	0.44
2:M:41:ILE:HG21	2:M:92:LYS:HD3	1.99	0.44
2:P:154:LEU:HD12	2:P:154:LEU:N	2.32	0.44
2:Q:138:VAL:HG22	2:Q:169:LEU:HD23	1.99	0.44
2:Q:163:ILE:HG12	2:Q:195:ILE:HG12	1.99	0.44
1:A:94:PHE:HB3	1:A:178:LYS:HG2	1.98	0.44
1:A:339:VAL:CG2	1:A:340:PRO:HD2	2.47	0.44
1:C:88:TRP:CD1	1:C:211:LYS:HA	2.52	0.44
1:C:109:PHE:CB	1:C:365:GLY:HA2	2.48	0.44
1:C:221:THR:HB	1:C:225:GLU:HG3	1.99	0.44
1:F:380:LEU:HD13	1:F:380:LEU:C	2.38	0.44
2:M:191:TRP:O	2:M:195:ILE:HG22	2.17	0.44
2:Q:192:ALA:CB	2:Q:200:TYR:HB2	2.48	0.44
2:R:61:LEU:HB3	2:R:65:HIS:CG	2.53	0.44
1:B:217:LEU:HD23	1:B:217:LEU:C	2.37	0.44
2:M:170:LYS:HG2	2:M:175:ARG:HG2	1.98	0.44
2:O:15:ILE:HD12	2:O:45:PHE:O	2.17	0.44
2:R:156:THR:N	4:R:301:HCB:H332	2.14	0.44
1:A:16:VAL:HG13	1:F:20:LEU:CD2	2.47	0.44
1:A:239:ARG:HD3	5:A:726:HOH:O	2.17	0.44
1:A:334:PYL:HD2	1:A:368:MET:HE1	1.99	0.44
1:A:415:GLY:C	1:A:416:ASN:HD22	2.20	0.44
1:B:90:ARG:HG2	5:B:622:HOH:O	2.17	0.44
1:B:189:ASN:HB3	1:B:192:TYR:HD2	1.82	0.44
1:D:452:ASP:OD2	1:D:454:ALA:HB3	2.17	0.44
2:M:61:LEU:HB3	2:M:65:HIS:CG	2.53	0.44
1:A:142:TRP:HZ3	1:A:381:VAL:HG12	1.82	0.44
1:A:316:ALA:HB2	1:F:397:ILE:CD1	2.47	0.44
1:B:118[B]:TYR:HB3	1:B:458:HIS:HD2	1.80	0.44
1:B:119[A]:GLN:C	1:B:121[A]:GLY:H	2.21	0.44
1:D:242:ILE:O	1:D:244:VAL:HG23	2.17	0.44
1:D:419:LEU:HD13	2:O:67:LEU:HD22	1.98	0.44
1:D:430:TYR:HB3	1:D:431:PRO:HD3	1.99	0.44

7XCN

Atom-1	Atom-2	Interatomic	Clash
	7100m 2	distance (Å)	overlap (Å)
1:D:473:ILE:HD13	1:D:481:MET:CE	2.47	0.44
1:E:43:GLN:HB3	1:E:225:GLU:HB2	1.99	0.44
1:E:218:LEU:CD2	1:E:234:ILE:HG13	2.48	0.44
1:E:249:MET:SD	3:E:601:GOL:O3	2.76	0.44
1:F:104:VAL:HG22	1:F:360:ALA:O	2.17	0.44
1:F:194:ARG:HG2	1:F:194:ARG:NH1	2.32	0.44
1:F:235:ILE:O	1:F:239:ARG:HG3	2.18	0.44
1:F:291:SER:CB	1:F:317:VAL:HG21	2.48	0.44
2:N:94:LEU:H	2:N:94:LEU:HD22	1.82	0.44
2:N:96:THR:CG2	2:N:124:LYS:HB3	2.40	0.44
2:N:170:LYS:HB3	2:N:170:LYS:HZ2	1.81	0.44
2:P:66:VAL:HG11	2:P:117:MET:SD	2.58	0.44
2:P:211:VAL:O	2:P:215:LEU:HG	2.17	0.44
2:Q:207:ALA:O	2:Q:211:VAL:HG23	2.18	0.44
1:D:27:LYS:HE2	5:D:662:HOH:O	2.16	0.44
1:D:415:GLY:C	1:D:416:ASN:HD22	2.21	0.44
1:E:294:THR:HB	1:E:310:LEU:HD12	2.00	0.44
1:F:392:LYS:NZ	1:F:395:GLN:HE22	2.16	0.44
2:M:81:THR:CG2	2:M:86:LYS:HE3	2.47	0.44
2:0:94:LEU:O	2:0:95:GLY:0	2.36	0.44
2:P:15:ILE:HD12	2:P:45:PHE:HA	2.00	0.44
2:P:147:GLN:C	2:P:178:VAL:HG23	2.38	0.44
2:R:37:PRO:HD3	2:R:88:LYS:NZ	2.33	0.44
2:R:80:ILE:O	2:R:84:MET:HG3	2.17	0.44
1:A:421:LEU:HD23	1:A:421:LEU:HA	1.81	0.44
1:A:430:TYR:HB3	1:A:431:PRO:HD3	2.00	0.44
1:C:293:THR:HG22	1:C:313:ILE:HD13	2.00	0.44
1:E:51:GLN:NE2	1:E:55:GLU:CG	2.79	0.44
1:F:294:THR:HB	1:F:310:LEU:HD12	1.99	0.44
2:M:10:LYS:HD3	2:M:26:VAL:HB	1.98	0.44
2:M:211:VAL:O	2:M:215:LEU:HG	2.18	0.44
2:N:55:LYS:HB3	2:N:61:LEU:HG	1.99	0.44
2:N:63:LEU:HD22	2:N:113:ILE:HG23	2.00	0.44
1:A:16:VAL:HG13	1:F:20:LEU:HD23	1.99	0.44
1:B:353:LEU:HD23	1:E:353:LEU:HD23	1.99	0.44
1:D:43:GLN:HB3	1:D:225:GLU:HB3	1.99	0.44
1:D:148:TYR:OH	1:D:362:THR:HG21	2.18	0.44
1:D:344:ALA:O	1:D:348:LYS:HG2	2.18	0.44
1:D:368:MET:HG2	1:D:369:LEU:H	1.83	0.44
1:A:107:THR:HG23	1:A:364:TYR:CB	2.46	0.44
1:B:370:GLU:OE2	1:E:442:PHE:HB2	2.17	0.44

7XCN

A + a 1	Atom 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:110:GLY:HA2	1:E:111:THR:HA	1.69	0.44
2:O:153:ALA:O	2:O:184:GLY:HA3	2.17	0.44
1:A:256:SER:HB2	1:A:257:PRO:HD2	1.99	0.43
1:A:342:ASP:HB3	1:F:453:LEU:HD23	2.00	0.43
1:B:88:TRP:CD1	1:B:211:LYS:HA	2.53	0.43
1:B:294:THR:HB	1:B:310:LEU:HD12	2.00	0.43
1:B:305:VAL:HG11	1:B:368:MET:HE1	2.00	0.43
1:C:176:THR:HG22	1:C:178:LYS:N	2.15	0.43
1:C:194:ARG:HG2	1:C:194:ARG:NH1	2.31	0.43
1:D:492:PHE:HA	1:D:495:MET:HE3	1.99	0.43
1:F:90:ARG:HH11	1:F:90:ARG:CG	2.30	0.43
2:N:130:ARG:O	2:N:131:ASP:HB3	2.18	0.43
2:O:36:ASP:OD1	2:O:90:GLN:NE2	2.50	0.43
2:P:153:ALA:O	2:P:184:GLY:HA3	2.18	0.43
2:Q:111:LYS:HE3	2:Q:111:LYS:HB3	1.91	0.43
2:R:147:GLN:C	2:R:178:VAL:HG23	2.38	0.43
1:A:53:PHE:CZ	1:A:277:LEU:HB2	2.53	0.43
1:A:126:VAL:O	1:A:127:ASP:C	2.57	0.43
1:B:332:GLY:O	1:B:365:GLY:HA3	2.19	0.43
1:C:43:GLN:HB3	1:C:225:GLU:HB2	2.00	0.43
1:E:158:ILE:HG22	1:E:158:ILE:O	2.18	0.43
2:M:3:ASN:O	2:M:6:GLU:N	2.48	0.43
2:M:12:LYS:HG2	2:M:47:ALA:HB3	2.00	0.43
2:Q:70:ALA:O	2:Q:74:ASN:ND2	2.51	0.43
1:A:168:GLU:O	1:A:172:PRO:HG2	2.17	0.43
1:A:217:LEU:HD11	1:A:247:LEU:HD22	1.99	0.43
1:B:104:VAL:HG22	1:B:360:ALA:O	2.18	0.43
1:B:392:LYS:NZ	1:B:395:GLN:HE22	2.17	0.43
1:D:392:LYS:HD2	1:D:395:GLN:NE2	2.33	0.43
1:D:477:ILE:HG22	1:D:481:MET:HE2	2.00	0.43
1:E:194:ARG:HG2	1:E:194:ARG:NH1	2.33	0.43
1:E:348:LYS:O	1:E:352:THR:HG22	2.18	0.43
1:F:109:PHE:CB	1:F:365:GLY:HA2	2.48	0.43
1:F:217:LEU:HD23	1:F:217:LEU:C	2.37	0.43
1:F:473:ILE:HD13	1:F:481:MET:CE	2.49	0.43
2:M:94:LEU:HD13	2:M:122:GLY:C	2.39	0.43
2:Q:19:ASP:OD1	2:Q:21:GLU:HB3	2.18	0.43
2:Q:164:GLN:O	2:Q:166:GLU:N	2.51	0.43
2:Q:192:ALA:HB2	2:Q:200:TYR:HB2	2.00	0.43
1:A:328:SER:O	1:A:361:ASN:HB2	2.18	0.43
1:C:90:ARG:HH11	1:C:90:ARG:CG	2.26	0.43

7V	CN
(Λ)	UN.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:119[A]:GLN:C	1:C:121[A]:GLY:N	2.71	0.43
1:D:87:LEU:HD13	1:D:179:HIS:CD2	2.53	0.43
1:E:104:VAL:HG22	1:E:360:ALA:O	2.18	0.43
1:E:109:PHE:CB	1:E:365:GLY:HA2	2.49	0.43
1:E:305:VAL:HG11	1:E:368:MET:HE1	2.00	0.43
2:M:147:GLN:C	2:M:178:VAL:HG23	2.38	0.43
2:M:154:LEU:HD12	2:M:154:LEU:N	2.34	0.43
2:M:156:THR:N	4:M:301:HCB:N33	2.67	0.43
2:N:199:ILE:HG21	2:N:210:LYS:HB3	2.00	0.43
2:O:207:ALA:O	2:O:211:VAL:HG23	2.17	0.43
2:Q:198:ASP:CB	2:Q:199:ILE:HD12	2.48	0.43
2:R:147:GLN:O	2:R:178:VAL:HG23	2.17	0.43
2:R:207:ALA:O	2:R:211:VAL:HG23	2.19	0.43
1:B:138:LYS:HE3	1:B:468:HIS:O	2.19	0.43
1:C:51:GLN:NE2	1:C:55:GLU:CG	2.82	0.43
1:C:380:LEU:HD13	1:C:380:LEU:C	2.39	0.43
1:D:77:ALA:CB	1:D:276:VAL:HG22	2.48	0.43
1:E:110:GLY:HA3	1:E:151:LEU:O	2.19	0.43
1:E:116:CYS:HA	1:E:124[B]:VAL:O	2.18	0.43
1:F:176:THR:HG22	1:F:178:LYS:N	2.15	0.43
2:O:26:VAL:HG13	2:O:27:ALA:N	2.34	0.43
2:O:147:GLN:C	2:O:178:VAL:HG23	2.38	0.43
2:O:154:LEU:N	2:O:154:LEU:HD12	2.33	0.43
2:Q:211:VAL:HG12	2:Q:211:VAL:O	2.19	0.43
1:A:111:THR:HG21	1:A:151:LEU:HD13	2.01	0.43
1:A:150:SER:O	1:A:151:LEU:C	2.57	0.43
1:B:119[A]:GLN:HA	1:B:119[A]:GLN:HE21	1.84	0.43
1:B:158:ILE:O	1:B:158:ILE:HG22	2.18	0.43
1:C:419:LEU:HD13	2:P:67:LEU:HD13	2.01	0.43
1:E:235:ILE:O	1:E:239:ARG:HG3	2.19	0.43
2:M:101:THR:CG2	2:M:105:ASP:HB3	2.49	0.43
2:N:194:LYS:C	2:N:196:GLY:H	2.22	0.43
2:O:156:THR:N	4:O:301:HCB:N33	2.67	0.43
2:Q:178:VAL:HG12	2:Q:179:LYS:H	1.84	0.43
2:Q:199:ILE:HD12	2:Q:199:ILE:N	2.34	0.43
2:R:39:GLU:O	2:R:43:LYS:HB2	2.18	0.43
1:B:176:THR:HG22	1:B:178:LYS:N	2.17	0.43
1:B:332:GLY:HA3	1:B:363:ILE:HG23	1.99	0.43
2:N:62:PHE:CD1	2:N:62:PHE:N	2.86	0.43
2:P:95:GLY:HA2	2:P:147:GLN:HE21	1.83	0.43
2:R:102:ILE:HG13	2:R:103:GLU:N	2.34	0.43

7XCN

A + a 1	A t ama 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:124[A]:VAL:HG22	1:A:125:THR:N	2.33	0.43
1:B:229:ASN:O	1:B:233:VAL:HG23	2.19	0.43
1:D:457:ALA:O	1:D:461:VAL:HG23	2.19	0.43
1:E:6:ALA:HB2	1:F:391:LYS:HG2	2.00	0.43
2:M:10:LYS:CG	2:M:26:VAL:HB	2.48	0.43
2:P:39:GLU:CD	2:P:43:LYS:HD2	2.38	0.43
2:P:101:THR:CG2	2:P:105:ASP:HB3	2.49	0.43
2:Q:63:LEU:N	2:Q:64:PRO:CD	2.81	0.43
2:R:3:ASN:ND2	2:R:5:GLU:H	2.17	0.43
2:R:26:VAL:HG13	2:R:27:ALA:N	2.33	0.43
2:R:154:LEU:HD12	2:R:154:LEU:N	2.33	0.43
1:A:90:ARG:NH2	1:A:473:ILE:CG1	2.82	0.43
1:A:218:LEU:HD22	1:A:234:ILE:HG13	1.96	0.43
1:C:73:LEU:HD23	1:C:73:LEU:HA	1.86	0.43
1:D:141:ASP:HA	1:D:178:LYS:NZ	2.34	0.43
2:M:153:ALA:O	2:M:184:GLY:HA3	2.19	0.43
1:B:430:TYR:HE2	5:E:763:HOH:O	2.02	0.43
1:D:44:VAL:O	1:D:50:ARG:HD3	2.19	0.43
1:D:51:GLN:NE2	1:D:55:GLU:HG3	2.33	0.43
1:D:222:SER:HA	1:D:223:PRO:HA	1.77	0.43
1:D:427:LEU:O	1:D:431:PRO:HD3	2.18	0.43
1:E:48:GLU:O	1:E:52:ILE:HG13	2.19	0.43
1:E:221:THR:HB	1:E:225:GLU:CG	2.49	0.43
1:F:90:ARG:N	1:F:177:ALA:O	2.52	0.43
2:P:99:ILE:HG13	2:P:150:ALA:HB3	2.00	0.43
2:Q:101:THR:CG2	2:Q:131:ASP:H	2.17	0.43
2:Q:179:LYS:CD	2:Q:198:ASP:HB3	2.48	0.43
2:R:99:ILE:HG12	2:R:100:GLY:N	2.34	0.43
1:B:221:THR:HB	1:B:225:GLU:CG	2.49	0.42
1:C:110:GLY:HA3	1:C:151:LEU:O	2.19	0.42
1:E:88:TRP:CD1	1:E:211:LYS:HA	2.54	0.42
1:F:385:ASP:OD2	1:F:437:LEU:HG	2.19	0.42
2:N:93:SER:C	2:N:95:GLY:N	2.72	0.42
2:P:101:THR:HB	2:P:130:ARG:HA	2.01	0.42
2:P:153:ALA:C	2:P:154:LEU:HD12	2.40	0.42
2:Q:189:GLN:NE2	2:Q:193:ASP:OD1	2.47	0.42
4:R:301:HCB:H482	4:R:301:HCB:H533	2.01	0.42
1:A:397:ILE:CD1	1:F:316:ALA:HB2	2.49	0.42
1:A:409:ILE:HD11	1:F:257:PRO:HG2	2.01	0.42
1:B:43:GLN:HB3	1:B:225:GLU:HB2	2.00	0.42
1:E:149:PHE:CZ	1:E:152:PRO:HD3	2.54	0.42

(AUN

	h i a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:267:HIS:HE1	1:F:291:SER:HB2	1.84	0.42
2:M:46:THR:HA	2:M:49:MET:CB	2.49	0.42
2:M:115:ALA:O	2:M:125:VAL:HG21	2.20	0.42
2:M:185:ALA:HB3	2:M:186:PRO:HD3	2.00	0.42
2:N:93:SER:C	2:N:95:GLY:H	2.23	0.42
2:Q:43:LYS:HB2	2:Q:43:LYS:NZ	2.34	0.42
2:Q:114:VAL:HG23	4:Q:301:HCB:O8R	2.18	0.42
2:Q:179:LYS:HG2	2:Q:198:ASP:OD2	2.19	0.42
1:A:135:ASP:O	1:A:138:LYS:N	2.53	0.42
1:A:141:ASP:OD2	1:A:468:HIS:HE1	2.02	0.42
1:A:218:LEU:HD12	1:A:218:LEU:C	2.38	0.42
1:B:109:PHE:HB2	1:B:365:GLY:HA2	2.01	0.42
1:C:223:PRO:HB3	1:C:255:SER:O	2.19	0.42
1:C:305:VAL:CG2	1:C:310:LEU:HD13	2.49	0.42
1:F:201:TYR:CD2	1:F:208:ALA:HA	2.55	0.42
2:O:15:ILE:HD12	2:O:45:PHE:HA	2.02	0.42
2:O:37:PRO:CB	2:O:80:ILE:HD12	2.44	0.42
2:P:185:ALA:HB3	2:P:186:PRO:HD3	2.01	0.42
2:R:101:THR:HB	2:R:130:ARG:HA	2.01	0.42
1:A:333:SER:HA	1:A:348:LYS:O	2.19	0.42
1:B:316:ALA:HB2	1:E:397:ILE:HD12	2.01	0.42
1:C:64:THR:O	1:C:65:ASN:HB2	2.19	0.42
1:C:90:ARG:N	1:C:177:ALA:O	2.51	0.42
1:D:282:VAL:O	1:D:283:PRO:C	2.57	0.42
1:F:110:GLY:HA2	1:F:111:THR:HA	1.68	0.42
2:N:5:GLU:HA	2:N:5:GLU:OE1	2.19	0.42
2:N:102:ILE:HG21	2:N:161:ASN:CB	2.47	0.42
2:O:101:THR:CG2	2:O:105:ASP:HB3	2.48	0.42
2:Q:81:THR:HA	2:Q:84:MET:HE2	2.01	0.42
2:R:3:ASN:HD22	2:R:3:ASN:C	2.22	0.42
2:R:153:ALA:C	2:R:154:LEU:HD12	2.40	0.42
1:A:210:LYS:HG2	1:A:211:LYS:CG	2.47	0.42
1:C:104:VAL:HG22	1:C:360:ALA:O	2.19	0.42
1:C:221:THR:HB	1:C:225:GLU:CG	2.50	0.42
1:C:439:ARG:O	1:D:302:THR:HG21	2.19	0.42
2:N:63:LEU:O	2:N:64:PRO:C	2.57	0.42
2:N:101:THR:HG22	2:N:152:SER:HB3	2.02	0.42
2:O:163:ILE:HA	2:O:195:ILE:HD11	2.02	0.42
2:P:156:THR:N	4:P:301:HCB:H332	2.16	0.42
2:R:35:ILE:HG22	2:R:36:ASP:O	2.19	0.42
2:R:49:MET:HG3	2:R:73:MET:SD	2.60	0.42

7XCN

A + a 1	A t ama 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:97:VAL:CG1	1:A:98:GLN:N	2.82	0.42
1:A:156:ARG:CG	1:A:156:ARG:HH11	2.32	0.42
1:A:229:ASN:O	1:A:233:VAL:HG23	2.19	0.42
1:C:138:LYS:HE3	1:C:468:HIS:O	2.20	0.42
1:C:386:ILE:HG23	1:D:346:HIS:CE1	2.55	0.42
1:E:90:ARG:HG2	1:E:90:ARG:NH1	2.28	0.42
1:F:220:PRO:HD2	1:F:248:SER:HA	2.01	0.42
2:N:126:VAL:HG11	2:N:144:LEU:CD1	2.50	0.42
2:O:87:ARG:C	2:O:89:SER:N	2.73	0.42
2:P:15:ILE:HD11	2:P:45:PHE:HB3	2.01	0.42
2:Q:20:ASP:OD1	2:Q:72:ALA:HA	2.19	0.42
2:Q:180:THR:O	2:Q:181:MET:HB2	2.20	0.42
2:R:154:LEU:HD21	4:R:301:HCB:O4	2.20	0.42
1:B:275:ILE:HD13	1:B:326:LEU:CD1	2.49	0.42
1:B:294:THR:OG1	1:B:295:THR:N	2.52	0.42
1:B:321:ALA:CB	1:B:328:SER:HB3	2.50	0.42
1:B:348:LYS:O	1:B:352:THR:HG22	2.19	0.42
1:C:473:ILE:HD13	1:C:481:MET:CE	2.48	0.42
1:D:281:THR:HG22	1:D:282:VAL:HG23	2.01	0.42
1:F:122[A]:LYS:HG3	1:F:123[A]:TYR:H	1.83	0.42
2:N:142:LYS:CA	2:N:145:LYS:HE3	2.34	0.42
2:N:156:THR:H	4:N:301:HCB:H332	1.64	0.42
2:N:185:ALA:N	2:N:186:PRO:HD2	2.34	0.42
2:R:13:GLU:HG3	2:R:14:ALA:N	2.35	0.42
2:R:87:ARG:CG	2:R:88:LYS:N	2.79	0.42
1:C:94:PHE:CG	1:C:178:LYS:HG2	2.55	0.42
1:D:293:THR:HG22	1:D:313:ILE:HD13	2.02	0.42
1:D:381:VAL:HG11	1:D:461:VAL:HG22	2.01	0.42
1:E:84:ARG:HB2	1:E:99:GLU:HB3	2.02	0.42
1:E:116:CYS:O	1:E:117[A]:LYS:HG3	2.20	0.42
1:E:221:THR:HG21	2:Q:106:ILE:HG21	2.00	0.42
1:E:380:LEU:HD13	1:E:380:LEU:C	2.39	0.42
1:F:321:ALA:CB	1:F:328:SER:HB3	2.49	0.42
2:M:147:GLN:O	2:M:178:VAL:HG23	2.18	0.42
2:P:115:ALA:O	2:P:125:VAL:HG21	2.20	0.42
1:A:183:ILE:O	1:A:183:ILE:HG22	2.20	0.42
1:B:51:GLN:NE2	1:B:55:GLU:CG	2.79	0.42
1:B:341:ASP:HB2	5:E:743:HOH:O	2.19	0.42
1:F:138:LYS:HE3	1:F:468:HIS:O	2.20	0.42
2:M:94:LEU:HD13	2:M:122:GLY:O	2.19	0.42
2:M:207:ALA:O	2:M:211:VAL:HG23	2.20	0.42

7XCN

A + a 1	A t a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:N:10:LYS:HD3	2:N:26:VAL:HG22	2.02	0.42
2:N:22:LEU:O	2:N:26:VAL:HG23	2.19	0.42
2:P:15:ILE:HD12	2:P:45:PHE:O	2.20	0.42
1:B:122[A]:LYS:HD3	1:B:122[A]:LYS:N	2.34	0.42
1:C:392:LYS:NZ	1:C:395:GLN:HE22	2.18	0.42
1:E:173:LEU:HD22	1:E:213:ILE:HD12	2.01	0.42
2:P:163:ILE:HA	2:P:195:ILE:HD11	2.02	0.42
2:Q:49:MET:HG3	2:Q:120:ILE:HG13	2.02	0.42
2:Q:87:ARG:HB2	2:Q:88:LYS:H	1.71	0.42
2:R:163:ILE:HA	2:R:195:ILE:HD11	2.01	0.42
1:A:281:THR:HG22	1:A:282:VAL:HG23	2.01	0.41
1:A:409:ILE:HD12	1:F:266:THR:OG1	2.20	0.41
1:A:483:ALA:O	1:A:486:ASP:HB2	2.20	0.41
1:B:149:PHE:CZ	1:B:152:PRO:HD3	2.54	0.41
1:B:380:LEU:C	1:B:380:LEU:HD13	2.41	0.41
1:D:473:ILE:HD13	1:D:481:MET:HE1	2.02	0.41
2:M:49:MET:HG3	2:M:120:ILE:HA	2.00	0.41
2:P:81:THR:N	2:P:82:PRO:CD	2.83	0.41
2:P:85:GLU:HG3	2:P:86:LYS:N	2.35	0.41
2:P:212:LYS:O	2:P:216:ASN:N	2.53	0.41
2:Q:174:VAL:O	2:Q:174:VAL:HG23	2.20	0.41
2:R:90:GLN:HE21	2:R:90:GLN:HB3	1.51	0.41
1:C:119[B]:GLN:HB2	1:C:122[B]:LYS:HD2	2.02	0.41
1:C:392:LYS:HB3	1:D:308:PRO:HG3	2.02	0.41
1:D:107:THR:O	1:D:364:TYR:HA	2.20	0.41
1:D:176:THR:HG22	1:D:177:ALA:N	2.34	0.41
1:E:118[A]:TYR:CE2	1:E:121[A]:GLY:HA2	2.55	0.41
2:M:101:THR:HB	2:M:130:ARG:HA	2.02	0.41
2:O:153:ALA:C	2:O:154:LEU:HD12	2.41	0.41
4:O:301:HCB:H482	4:O:301:HCB:H533	2.02	0.41
2:Q:185:ALA:HB3	2:Q:186:PRO:CD	2.50	0.41
4:Q:301:HCB:H3P1	4:Q:301:HCB:H5R2	2.02	0.41
2:R:156:THR:N	4:R:301:HCB:N33	2.68	0.41
1:A:81:ALA:CB	1:A:326:LEU:HD21	2.49	0.41
1:B:200:TYR:HA	1:B:477:ILE:CG2	2.51	0.41
1:B:201:TYR:CD2	1:B:208:ALA:HA	2.54	0.41
1:C:149:PHE:CZ	1:C:152:PRO:HD3	2.55	0.41
1:D:248:SER:HB3	1:D:271:VAL:HG23	2.01	0.41
1:E:294:THR:OG1	1:E:295:THR:N	2.51	0.41
2:Q:146:PRO:HA	2:Q:147:GLN:OE1	2.20	0.41
1:A:37:LEU:HD23	1:A:37:LEU:HA	1.82	0.41

7XCN

	A + a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:332:GLY:O	1:A:333:SER:C	2.58	0.41
1:C:201:TYR:CD2	1:C:208:ALA:HA	2.54	0.41
1:D:334:PYL:HD2	1:D:368:MET:CE	2.48	0.41
1:E:145:ASN:HB2	1:E:384:ASN:HD22	1.85	0.41
1:F:109:PHE:HB2	1:F:365:GLY:HA2	2.02	0.41
1:F:124[A]:VAL:HG12	1:F:125:THR:N	2.35	0.41
1:A:319:LYS:NZ	5:A:704:HOH:O	2.46	0.41
1:B:245:ASN:C	1:B:245:ASN:HD22	2.23	0.41
1:E:385:ASP:OD2	1:E:437:LEU:HG	2.21	0.41
2:M:46:THR:O	2:M:50:GLU:HG3	2.20	0.41
2:O:115:ALA:O	2:O:125:VAL:HG21	2.21	0.41
4:P:301:HCB:H531	4:P:301:HCB:C55	2.50	0.41
4:P:301:HCB:H482	4:P:301:HCB:H533	2.03	0.41
2:Q:10:LYS:HB3	2:Q:26:VAL:CG2	2.50	0.41
2:Q:40:LEU:HD23	2:Q:80:ILE:HD13	2.03	0.41
2:R:101:THR:CG2	2:R:105:ASP:HB3	2.50	0.41
1:A:24:ASP:HB3	1:F:10:PHE:CE2	2.56	0.41
1:A:156:ARG:NH2	2:M:156:THR:HG22	2.34	0.41
1:D:171:THR:CB	1:D:172:PRO:HD3	2.43	0.41
1:F:229:ASN:O	1:F:233:VAL:HG23	2.20	0.41
2:N:170:LYS:HB3	2:N:170:LYS:HZ3	1.84	0.41
2:O:29:GLU:HG3	2:0:29:GLU:0	2.20	0.41
2:Q:118:LEU:CD2	2:Q:208:VAL:HG22	2.28	0.41
2:R:168:GLN:HA	2:R:171:GLU:HG2	2.03	0.41
1:B:94:PHE:CG	1:B:178:LYS:HG2	2.56	0.41
1:C:176:THR:CG2	1:C:178:LYS:HB2	2.51	0.41
1:C:294:THR:OG1	1:C:295:THR:N	2.52	0.41
1:C:331:ALA:HB1	1:C:334:PYL:CE	2.51	0.41
1:F:48:GLU:O	1:F:52:ILE:HG13	2.21	0.41
2:M:212:LYS:O	2:M:216:ASN:N	2.54	0.41
2:N:21:GLU:N	2:N:21:GLU:OE1	2.53	0.41
2:P:85:GLU:C	2:P:87:ARG:N	2.74	0.41
1:B:292:SER:OG	1:B:334:PYL:HA2	2.21	0.41
1:C:245:ASN:C	1:C:245:ASN:HD22	2.23	0.41
1:C:350:MET:CE	1:C:354:LEU:HD11	2.49	0.41
1:E:201:TYR:CD2	1:E:208:ALA:HA	2.55	0.41
1:E:473:ILE:HD13	1:E:481:MET:CE	2.48	0.41
2:M:63:LEU:HD23	2:M:113:ILE:HD13	2.01	0.41
2:M:181:MET:HE3	2:M:199:ILE:HG21	2.02	0.41
2:O:101:THR:HB	2:O:130:ARG:HA	2.03	0.41
2:O:141:VAL:HG22	2:O:149:VAL:HG21	2.03	0.41

7XCN

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:86:VAL:HG12	1:A:87:LEU:O	2.20	0.41
1:A:348:LYS:HG3	1:A:379:GLN:NE2	2.36	0.41
1:A:354:LEU:HB2	1:A:355:PRO:CD	2.51	0.41
1:A:457:ALA:O	1:A:461:VAL:HG23	2.21	0.41
1:B:84:ARG:HB2	1:B:99:GLU:HB3	2.03	0.41
1:B:249:MET:HG2	5:N:413:HOH:O	2.21	0.41
1:C:430:TYR:HE2	5:D:659:HOH:O	2.04	0.41
1:D:103:LYS:O	1:D:361:ASN:HA	2.21	0.41
1:D:118[B]:TYR:CD1	1:D:118[B]:TYR:C	2.94	0.41
1:D:129:VAL:O	1:D:130:GLU:C	2.59	0.41
1:E:100:CYS:SG	1:E:325:GLY:HA2	2.60	0.41
1:E:200:TYR:HA	1:E:477:ILE:CG2	2.51	0.41
1:F:176:THR:CG2	1:F:178:LYS:HB2	2.51	0.41
1:F:218:LEU:CD2	1:F:234:ILE:HG13	2.51	0.41
1:F:392:LYS:HG2	1:F:432:SER:HB3	2.03	0.41
2:N:140:LYS:HD3	2:N:140:LYS:HA	1.91	0.41
2:O:11:ALA:HB1	2:O:45:PHE:CD1	2.56	0.41
2:O:15:ILE:HD12	2:O:45:PHE:CA	2.51	0.41
2:O:81:THR:HG22	2:O:86:LYS:CG	2.51	0.41
2:0:88:LYS:0	2:0:89:SER:C	2.58	0.41
2:O:99:ILE:HG12	2:O:100:GLY:N	2.36	0.41
2:0:212:LYS:O	2:O:216:ASN:N	2.53	0.41
2:P:31:LEU:CD2	2:P:80:ILE:HG22	2.47	0.41
2:Q:148:VAL:HG12	2:Q:148:VAL:O	2.21	0.41
2:Q:153:ALA:C	2:Q:154:LEU:HD13	2.42	0.41
2:R:141:VAL:HG22	2:R:149:VAL:HG21	2.02	0.41
4:R:301:HCB:H531	4:R:301:HCB:C55	2.51	0.41
1:B:198:LYS:HE3	1:B:205:GLU:HB2	2.03	0.41
1:C:305:VAL:HG11	1:C:368:MET:HE1	2.02	0.41
1:D:165:ASP:OD2	1:D:189:ASN:ND2	2.54	0.41
1:D:267:HIS:NE2	1:D:289:TYR:CE1	2.89	0.41
1:D:320:LEU:O	1:D:323:PHE:HB3	2.21	0.41
2:M:95:GLY:HA2	2:M:147:GLN:HE21	1.85	0.41
2:Q:10:LYS:HB3	2:Q:26:VAL:HG21	2.03	0.41
2:Q:97:VAL:HG11	2:Q:118:LEU:HD13	2.02	0.41
2:Q:111:LYS:HD2	2:Q:112:ASP:N	2.35	0.41
2:Q:169:LEU:HB2	2:Q:175:ARG:HD2	2.03	0.41
2:R:62:PHE:CD1	2:R:62:PHE:N	2.88	0.41
1:A:217:LEU:C	1:A:217:LEU:CD2	2.89	0.40
1:A:442:PHE:HB2	1:F:370:GLU:OE2	2.22	0.40
1:B:46:ASP:OD1	1:B:48:GLU:HB3	2.21	0.40

7XCN

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:188:GLU:HG2	5:C:733:HOH:O	2.21	0.40
1:C:227:SER:HB3	5:C:712:HOH:O	2.20	0.40
1:D:229:ASN:O	1:D:233:VAL:HG23	2.21	0.40
1:D:419:LEU:O	2:O:64:PRO:HA	2.22	0.40
1:E:64:THR:O	1:E:65:ASN:HB2	2.20	0.40
2:M:92:LYS:HB2	2:M:124:LYS:HE2	2.02	0.40
2:M:154:LEU:HD21	4:M:301:HCB:O4	2.20	0.40
4:M:301:HCB:H533	4:M:301:HCB:H482	2.03	0.40
2:N:49:MET:HE1	2:N:70:ALA:HA	2.03	0.40
2:N:87:ARG:O	2:N:88:LYS:HB2	2.21	0.40
2:P:26:VAL:HG23	2:P:29:GLU:OE2	2.20	0.40
2:Q:134:ILE:CD1	2:Q:164:GLN:HB3	2.50	0.40
1:A:219:CYS:HA	1:A:220:PRO:HD3	1.97	0.40
1:A:397:ILE:HD12	1:F:316:ALA:HB2	2.03	0.40
5:A:735:HOH:O	2:M:62:PHE:HD2	2.03	0.40
1:B:218:LEU:CD2	1:B:234:ILE:HG13	2.50	0.40
1:B:235:ILE:O	1:B:239:ARG:HG3	2.20	0.40
1:B:304:PRO:HB3	1:E:439:ARG:HD3	2.02	0.40
1:B:385:ASP:OD2	1:B:437:LEU:HG	2.20	0.40
1:C:19:ASN:HB2	1:D:17:GLU:HB3	2.04	0.40
1:E:374:THR:CG2	1:E:375:PHE:N	2.84	0.40
2:M:117:MET:HA	2:M:120:ILE:HG22	2.04	0.40
2:M:141:VAL:HG22	2:M:149:VAL:HG21	2.03	0.40
2:M:153:ALA:C	2:M:154:LEU:HD12	2.41	0.40
2:M:168:GLN:HA	2:M:171:GLU:HG2	2.03	0.40
2:Q:8:ILE:O	2:Q:8:ILE:HG22	2.20	0.40
1:B:194:ARG:HG2	1:B:194:ARG:NH1	2.34	0.40
1:D:73:LEU:HD23	1:D:73:LEU:HA	1.66	0.40
1:D:354:LEU:HB2	1:D:355:PRO:CD	2.51	0.40
1:E:248:SER:HB3	1:E:271:VAL:HG23	2.02	0.40
1:F:198:LYS:HE3	1:F:205:GLU:HB2	2.03	0.40
2:M:81:THR:N	2:M:82:PRO:HD3	2.37	0.40
2:N:77:ILE:HA	2:N:80:ILE:HG12	2.04	0.40
2:N:102:ILE:HD12	2:N:162:GLN:CG	2.52	0.40
2:P:99:ILE:HA	2:P:150:ALA:O	2.21	0.40
4:Q:301:HCB:H473	4:Q:301:HCB:H481	2.01	0.40
2:R:77:ILE:O	2:R:78:LYS:C	2.59	0.40
2:R:81:THR:N	2:R:82:PRO:CD	2.83	0.40
2:R:97:VAL:HG13	2:R:148:VAL:HB	2.04	0.40
1:A:332:GLY:O	1:A:365:GLY:HA3	2.22	0.40
1:B:442:PHE:HB2	1:E:370:GLU:OE2	2.22	0.40

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:291:SER:HB3	1:C:317:VAL:HG11	2.03	0.40
1:D:116:CYS:H	1:D:374:THR:CG2	2.35	0.40
1:D:169:THR:C	1:D:172:PRO:HD2	2.41	0.40
1:D:451:LYS:N	5:D:602:HOH:O	2.37	0.40
1:D:493:ARG:C	1:D:495:MET:N	2.75	0.40
1:F:64:THR:O	1:F:65:ASN:HB2	2.22	0.40
1:F:294:THR:OG1	1:F:295:THR:N	2.54	0.40
1:A:26:LEU:HD13	1:A:323:PHE:CD1	2.57	0.40
1:A:248:SER:HB2	5:A:703:HOH:O	2.22	0.40
1:A:489:ASP:O	1:A:493:ARG:HG3	2.22	0.40
1:B:123[B]:TYR:HE2	1:E:442:PHE:CE2	2.39	0.40
1:C:397:ILE:HD13	1:D:264:LEU:HD11	2.04	0.40
1:D:300:LYS:HB2	1:D:302:THR:HG22	2.03	0.40
1:D:381:VAL:CG2	1:D:457:ALA:HB1	2.52	0.40
1:F:149:PHE:CZ	1:F:152:PRO:HD3	2.56	0.40
1:F:275:ILE:HD13	1:F:326:LEU:CD1	2.52	0.40
2:M:56:PHE:CE2	2:M:117:MET:CE	3.05	0.40
2:N:201:GLY:HA3	4:N:301:HCB:C7B	2.52	0.40
2:Q:133:PRO:HG2	2:Q:136:THR:OG1	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	489/503~(97%)	453~(93%)	35~(7%)	1 (0%)	47	73
1	В	499/503~(99%)	479 (96%)	20 (4%)	0	100	100
1	С	499/503~(99%)	482 (97%)	17 (3%)	0	100	100
1	D	489/503~(97%)	457 (94%)	30 (6%)	2(0%)	34	60
1	Ε	499/503~(99%)	475 (95%)	24 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	F	499/503~(99%)	469 (94%)	30~(6%)	0	100	100
2	М	212/224~(95%)	191 (90%)	14 (7%)	7 (3%)	4	8
2	Ν	208/224~(93%)	186 (89%)	15 (7%)	7 (3%)	3	8
2	Ο	212/224~(95%)	187 (88%)	18 (8%)	7 (3%)	4	8
2	Р	213/224~(95%)	187 (88%)	20 (9%)	6 (3%)	5	11
2	Q	207/224~(92%)	155~(75%)	36 (17%)	16 (8%)	1	1
2	R	212/224~(95%)	185 (87%)	22 (10%)	5 (2%)	6	15
All	All	4238/4362 (97%)	3906 (92%)	281 (7%)	51 (1%)	13	32

Continued from previous page...

All (51) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	4	ASN
2	М	85	GLU
2	0	94	LEU
2	0	95	GLY
2	Р	84	MET
2	Q	109	ILE
2	Q	178	VAL
2	Q	179	LYS
2	М	33	ALA
2	М	95	GLY
2	Ν	87	ARG
2	Р	82	PRO
2	Р	86	LYS
2	Р	95	GLY
2	Q	197	ALA
2	R	35	ILE
2	R	95	GLY
2	Ν	88	LYS
2	N	108	SER
2	N	139	GLU
2	Ν	167	GLU
2	0	88	LYS
2	R	21	GLU
1	D	442	PHE
2	М	94	LEU
2	N	176	ASP
2	0	35	ILE
2	Р	94	LEU

Mol	Chain	Res	Type
2	Q	108	SER
2	Q	127	ASP
2	Q	146	PRO
2	Q	148	VAL
1	А	130	GLU
2	М	92	LYS
2	0	84	MET
2	Q	107	HIS
2	Q	145	LYS
2	Q	210	LYS
2	R	88	LYS
2	Ν	4	LYS
2	Q	155	MET
2	Q	174	VAL
2	Р	102	ILE
2	Q	102	ILE
2	М	82	PRO
2	М	102	ILE
2	0	80	ILE
2	0	102	ILE
2	Q	165	ILE
2	R	102	ILE
2	Q	97	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	5
1	А	407/411~(99%)	391~(96%)	16 (4%)	32 61	
1	В	411/411 (100%)	401 (98%)	10 (2%)	49 77	
1	С	411/411 (100%)	402 (98%)	9(2%)	52 79	
1	D	407/411~(99%)	395~(97%)	12 (3%)	42 71	
1	Ε	411/411 (100%)	404 (98%)	7 (2%)	60 84	
1	F	411/411 (100%)	402 (98%)	9~(2%)	52 79	

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
2	М	169/176~(96%)	163~(96%)	6 (4%)	35 64
2	Ν	166/176~(94%)	159~(96%)	7 (4%)	30 58
2	Ο	169/176~(96%)	162~(96%)	7 (4%)	30 59
2	Р	169/176~(96%)	160~(95%)	9~(5%)	22 48
2	Q	166/176~(94%)	159~(96%)	7 (4%)	30 58
2	R	169/176~(96%)	163~(96%)	6 (4%)	35 64
All	All	3466/3522~(98%)	3361 (97%)	105 (3%)	42 70

Continued from previous page...

All (105) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	13	LEU
1	А	84	ARG
1	А	90	ARG
1	А	91	ASP
1	А	116	CYS
1	А	123[A]	TYR
1	А	123[B]	TYR
1	А	151	LEU
1	А	156	ARG
1	А	239	ARG
1	А	245	ASN
1	А	277	LEU
1	А	288	TRP
1	А	289	TYR
1	А	342	ASP
1	А	374	THR
1	В	84	ARG
1	В	90	ARG
1	В	109	PHE
1	В	118[A]	TYR
1	В	118[B]	TYR
1	В	122[A]	LYS
1	В	122[B]	LYS
1	В	245	ASN
1	В	277	LEU
1	В	310	LEU
1	C	84	ARG
1	С	90	ARG
1	С	109	PHE

Mol	Chain	Res	Type
1	С	122[A]	LYS
1	С	122[B]	LYS
1	С	245	ASN
1	С	277	LEU
1	С	310	LEU
1	С	364	TYR
1	D	35	GLU
1	D	84	ARG
1	D	117[A]	LYS
1	D	117[B]	LYS
1	D	151	LEU
1	D	156	ARG
1	D	239	ARG
1	D	245	ASN
1	D	277	LEU
1	D	288	TRP
1	D	305	VAL
1	D	310	LEU
1	Е	84	ARG
1	Е	90	ARG
1	Е	109	PHE
1	Е	245	ASN
1	Ε	277	LEU
1	Е	310	LEU
1	Е	364	TYR
1	F	84	ARG
1	F	90	ARG
1	F	109	PHE
1	F	119[A]	GLN
1	F	119[B]	GLN
1	F	245	ASN
1	F	277	LEU
1	F	310	LEU
1	F	364	TYR
2	М	17	ASP
2	М	21	GLU
2	М	90	GLN
2	М	128	LEU
2	М	147	GLN
2	М	190	ASP
2	N	20	ASP
2	Ν	21	GLU

Mol	Chain	Res	Type
2	N	49	MET
2	Ν	62	PHE
2	Ν	112	ASP
2	Ν	147	GLN
2	Ν	176	ASP
2	0	10	LYS
2	0	28	ASN
2	0	60	GLU
2	0	90	GLN
2	0	128	LEU
2	0	147	GLN
2	0	190	ASP
2	Р	3	ASN
2	Р	17	ASP
2	Р	42	GLU
2	Р	90	GLN
2	Р	94	LEU
2	Р	111	LYS
2	Р	128	LEU
2	Р	147	GLN
2	Р	190	ASP
2	Q	4	LYS
2	Q	18	PHE
2	Q	87	ARG
2	Q	111	LYS
2	Q	154	LEU
2	Q	175	ARG
2	Q	195	ILE
2	R	3	ASN
2	R	39	GLU
2	R	90	GLN
2	R	128	LEU
2	R	147	GLN
2	R	190	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (104) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	51	GLN
1	А	167	HIS
1	А	175	ASN
1	А	182	HIS

Mol	Chain	Res	Type
1	А	232	GLN
1	А	245	ASN
1	А	268	ASN
1	А	384	ASN
1	А	395	GLN
1	А	410	GLN
1	А	416	ASN
1	А	468	HIS
1	В	51	GLN
1	В	167	HIS
1	В	182	HIS
1	В	232	GLN
1	В	245	ASN
1	В	268	ASN
1	В	384	ASN
1	В	395	GLN
1	В	410	GLN
1	В	416	ASN
1	В	426	GLN
1	В	440	HIS
1	В	458	HIS
1	В	468	HIS
1	С	51	GLN
1	С	167	HIS
1	С	182	HIS
1	С	232	GLN
1	С	245	ASN
1	С	268	ASN
1	С	384	ASN
1	С	395	GLN
1	С	410	GLN
1	С	416	ASN
1	С	426	GLN
1	С	440	HIS
1	С	458	HIS
1	С	468	HIS
1	D	51	GLN
1	D	167	HIS
1	D	182	HIS
1	D	189	ASN
1	D	232	GLN
1	D	245	ASN

Mol	Chain	Res	Type
1	D	268	ASN
1	D	384	ASN
1	D	395	GLN
1	D	416	ASN
1	D	426	GLN
1	D	468	HIS
1	D	482	GLN
1	Е	51	GLN
1	Е	167	HIS
1	Е	182	HIS
1	Е	232	GLN
1	Е	245	ASN
1	Е	268	ASN
1	Е	384	ASN
1	Е	395	GLN
1	Е	410	GLN
1	Е	416	ASN
1	Е	426	GLN
1	Е	468	HIS
1	F	51	GLN
1	F	167	HIS
1	F	182	HIS
1	F	232	GLN
1	F	245	ASN
1	F	268	ASN
1	F	384	ASN
1	F	395	GLN
1	F	410	GLN
1	F	416	ASN
1	F	426	GLN
1	F	458	HIS
1	F	468	HIS
2	М	3	ASN
2	M	161	ASN
2	М	164	GLN
2	М	216	ASN
2	N	119	ASN
2	N	205	ASN
2	0	3	ASN
2	0	28	ASN
2	0	161	ASN
2	0	164	GLN

Mol	Chain	Res	Type
2	0	216	ASN
2	Р	58	GLN
2	Р	74	ASN
2	Р	90	GLN
2	Р	147	GLN
2	Р	161	ASN
2	Р	164	GLN
2	Р	216	ASN
2	Q	74	ASN
2	Q	135	ASN
2	Q	162	GLN
2	Q	177	GLN
2	R	3	ASN
2	R	161	ASN
2	R	164	GLN
2	R	216	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

10 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	GOL	А	601	-	$5,\!5,\!5$	0.32	0	$5,\!5,\!5$	0.89	0
3	GOL	Е	601	-	$5,\!5,\!5$	0.26	0	$5,\!5,\!5$	0.96	0
4	HCB	N	301	2	88,100,100	1.05	3 (3%)	138,164,164	1.48	18 (13%)
4	HCB	Q	301	2	88,100,100	1.00	3 (3%)	138,164,164	1.50	18 (13%)
3	GOL	С	601	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.49	0
4	HCB	0	301	2	88,100,100	1.02	4 (4%)	138,164,164	1.46	16 (11%)
4	HCB	R	301	2	88,100,100	1.02	2 (2%)	138,164,164	1.47	18 (13%)
4	HCB	Р	301	2	88,100,100	0.99	4 (4%)	138,164,164	1.48	18 (13%)
4	HCB	М	301	2	88,100,100	1.00	4 (4%)	138,164,164	1.46	16 (11%)
3	GOL	F	601	-	$5,\!5,\!5$	0.37	0	$5,\!5,\!5$	0.61	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GOL	А	601	-	-	0/4/4/4	-
3	GOL	Е	601	-	-	0/4/4/4	-
4	HCB	Ν	301	2	-	14/52/223/223	0/3/11/11
4	HCB	Q	301	2	-	16/52/223/223	0/3/11/11
3	GOL	С	601	-	-	2/4/4/4	-
4	HCB	0	301	2	-	12/52/223/223	0/3/11/11
4	HCB	R	301	2	-	12/52/223/223	0/3/11/11
4	HCB	Р	301	2	-	12/52/223/223	0/3/11/11
4	HCB	М	301	2	-	12/52/223/223	0/3/11/11
3	GOL	F	601	-	-	0/4/4/4	-

All (20) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
4	Q	301	HCB	C14-N23	4.47	1.42	1.30
4	Р	301	HCB	C14-N23	4.44	1.42	1.30
4	М	301	HCB	C14-N23	4.38	1.42	1.30
4	Ν	301	HCB	C14-N23	4.35	1.42	1.30
4	R	301	HCB	C14-N23	4.35	1.42	1.30
4	0	301	HCB	C14-N23	4.33	1.42	1.30
4	R	301	HCB	C6B-C5B	3.25	1.45	1.38
4	0	301	HCB	C6B-C5B	3.16	1.45	1.38

7XCN

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
4	Р	301	HCB	C6B-C5B	3.11	1.44	1.38
4	М	301	HCB	C6B-C5B	3.07	1.44	1.38
4	Q	301	HCB	C6B-C5B	3.05	1.44	1.38
4	Ν	301	HCB	C6B-C5B	2.81	1.44	1.38
4	М	301	HCB	C2B-N3B	-2.20	1.30	1.34
4	Ν	301	HCB	C4B-C5B	2.20	1.41	1.37
4	Q	301	HCB	C2B-N3B	-2.14	1.30	1.34
4	Р	301	HCB	C2B-N3B	-2.13	1.30	1.34
4	0	301	HCB	C4B-C5B	2.13	1.41	1.37
4	Р	301	HCB	C4B-C5B	2.10	1.41	1.37
4	М	301	HCB	C4B-C5B	2.08	1.41	1.37
4	0	301	HCB	C2B-N3B	-2.01	1.31	1.34

All (104) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
4	Q	301	HCB	C11-N23-C14	8.89	109.67	106.31
4	R	301	HCB	C11-N23-C14	8.74	109.62	106.31
4	Р	301	HCB	C11-N23-C14	8.68	109.59	106.31
4	М	301	HCB	C11-N23-C14	8.39	109.48	106.31
4	Ν	301	HCB	C11-N23-C14	8.35	109.47	106.31
4	0	301	HCB	C11-N23-C14	8.35	109.47	106.31
4	Ν	301	HCB	C18-C60-C61	4.54	125.30	113.97
4	Q	301	HCB	C18-C60-C61	4.34	124.79	113.97
4	М	301	HCB	C18-C60-C61	4.08	124.15	113.97
4	0	301	HCB	C18-C60-C61	4.03	124.03	113.97
4	Р	301	HCB	C18-C60-C61	3.96	123.85	113.97
4	R	301	HCB	C18-C60-C61	3.91	123.73	113.97
4	Ν	301	HCB	C2R-C3R-C4R	3.01	108.56	103.22
4	R	301	HCB	C30-C3-C4	2.94	116.47	109.63
4	Q	301	HCB	C30-C3-C4	2.92	116.43	109.63
4	М	301	HCB	C30-C3-C4	2.92	116.42	109.63
4	Р	301	HCB	C30-C3-C4	2.90	116.38	109.63
4	R	301	HCB	P-O2-C3R	2.90	129.95	119.41
4	0	301	HCB	C30-C3-C4	2.90	116.37	109.63
4	0	301	HCB	P-O2-C3R	2.88	129.87	119.41
4	Р	301	HCB	C20-C1-N21	-2.83	105.62	110.27
4	Р	301	HCB	P-O2-C3R	2.80	129.59	119.41
4	М	301	HCB	C20-C1-N21	-2.79	105.70	110.27
4	N	301	HCB	P-O2-C3R	2.75	129.40	119.41
4	М	301	HCB	C2R-C3R-C4R	2.73	108.06	103.22
4	М	301	HCB	P-O2-C3R	2.72	129.32	119.41

7V	CIN
(Λ)	UN.

Conti	nued from	<i>previ</i>	ous page		7	$\mathbf{O}\mathbf{h}$ a survey $\mathbf{d}(0)$	
	Chain	Res	Type	Atoms		Observed(°)	Ideal(°)
4	N	301	HCB	C30-C3-C4	2.72	115.95	109.63
4	Q	301	HCB	O5M-C5B-C4B	-2.71	113.20	120.98
4	R	301	HCB	O5M-C5B-C4B	-2.71	113.21	120.98
4	0	301	HCB	C20-C1-N21	-2.70	105.83	110.27
4	Q	301	HCB	C30-C31-C32	2.69	121.73	112.59
4	0	301	HCB	C2R-C3R-C4R	2.66	107.94	103.22
4	Р	301	HCB	C2R-C3R-C4R	2.66	107.94	103.22
4	0	301	HCB	O5M-C5B-C4B	-2.64	113.40	120.98
4	R	301	HCB	C2R-C3R-C4R	2.64	107.90	103.22
4	М	301	HCB	O5M-C5B-C4B	-2.63	113.42	120.98
4	Ν	301	HCB	C30-C31-C32	2.63	121.52	112.59
4	Ν	301	HCB	O5M-C5B-C4B	-2.61	113.49	120.98
4	Р	301	HCB	O5M-C5B-C4B	-2.61	113.49	120.98
4	М	301	HCB	C30-C31-C32	2.59	121.38	112.59
4	N	301	HCB	C12-C11-N23	2.58	114.27	111.48
4	Q	301	HCB	O5M-C5B-C6B	2.56	127.33	120.02
4	R	301	HCB	C30-C31-C32	2.56	121.27	112.59
4	0	301	HCB	C30-C31-C32	2.55	121.23	112.59
4	Р	301	HCB	C12-C11-N23	2.54	114.23	111.48
4	Q	301	HCB	C31-C30-C3	-2.53	107.44	114.73
4	Р	301	HCB	C30-C31-C32	2.52	121.13	112.59
4	R	301	HCB	C20-C1-N21	-2.52	106.14	110.27
4	Q	301	HCB	P-O2-C3R	2.50	128.51	119.41
4	Р	301	HCB	C36-C7-C6	2.47	125.22	112.40
4	М	301	HCB	C36-C7-C6	2.47	125.21	112.40
4	Q	301	HCB	C36-C7-C6	2.46	125.18	112.40
4	Q	301	HCB	C12-C13-C14	2.45	105.10	101.86
4	R	301	HCB	O5M-C5B-C6B	2.45	127.01	120.02
4	0	301	HCB	C36-C7-C37	-2.44	106.78	110.80
4	0	301	HCB	C36-C7-C6	2.44	125.05	112.40
4	R	301	HCB	C36-C7-C6	2.43	125.00	112.40
4	М	301	HCB	C12-C11-N23	2.41	114.09	111.48
4	Ν	301	HCB	C36-C7-C6	2.41	124.93	112.40
4	0	301	HCB	O5M-C5B-C6B	2.41	126.89	120.02
4	Р	301	HCB	C36-C7-C37	-2.40	106.84	110.80
4	0	301	HCB	C12-C11-N23	2.40	114.07	111.48
4	Р	301	HCB	C54-C17-C55	-2.39	105.30	109.25
4	М	301	HCB	O5M-C5B-C6B	2.39	126.84	120.02
4	М	301	HCB	C36-C7-C37	-2.38	106.88	110.80
4	N	301	HCB	C2P-C1P-N59	2.38	116.44	112.93
4	Q	301	HCB	C2R-C3R-C4R	2.35	107.39	103.22
4	Р	301	HCB	O5M-C5B-C6B	2.35	126.72	120.02

Continued from previous page								
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$	
4	N	301	HCB	O5M-C5B-C6B	2.34	126.69	120.02	
4	N	301	HCB	C1-C19-N24	2.32	110.00	106.33	
4	R	301	HCB	C54-C17-C55	-2.31	105.43	109.25	
4	R	301	HCB	C12-C11-N23	2.30	113.97	111.48	
4	N	301	HCB	C8-C9-C10	-2.29	118.37	123.32	
4	0	301	HCB	C8-C9-C10	-2.26	118.44	123.32	
4	R	301	HCB	C36-C7-C37	-2.26	107.08	110.80	
4	М	301	HCB	C8-C9-C10	-2.25	118.47	123.32	
4	R	301	HCB	C8-C9-C10	-2.23	118.50	123.32	
4	Q	301	HCB	C2-C3-C4	2.21	104.14	101.63	
4	Q	301	HCB	C54-C17-C55	-2.20	105.62	109.25	
4	Q	301	HCB	C20-C1-C19	-2.19	105.83	110.23	
4	N	301	HCB	C36-C7-C37	-2.19	107.19	110.80	
4	М	301	HCB	C19-C1-N21	2.18	104.44	101.67	
4	Q	301	HCB	C36-C7-C37	-2.18	107.22	110.80	
4	М	301	HCB	C54-C17-C55	-2.17	105.67	109.25	
4	Р	301	HCB	C8-C9-C10	-2.16	118.65	123.32	
4	Q	301	HCB	C12-C11-N23	2.16	113.82	111.48	
4	0	301	HCB	C54-C17-C55	-2.15	105.70	109.25	
4	Q	301	HCB	C1-C19-N24	2.14	109.73	106.33	
4	Ν	301	HCB	C20-C1-C19	-2.14	105.95	110.23	
4	R	301	HCB	C12-C13-C14	2.12	104.66	101.86	
4	R	301	HCB	C19-C1-N21	2.11	104.35	101.67	
4	0	301	HCB	C12-C13-C14	2.10	104.64	101.86	
4	Ν	301	HCB	O3-C2P-C1P	2.10	111.11	106.92	
4	0	301	HCB	C19-C1-N21	2.09	104.33	101.67	
4	N	301	HCB	C42-C41-C8	2.09	120.76	114.73	
4	N	301	HCB	C12-C13-C14	2.09	104.62	101.86	
4	М	301	HCB	C12-C13-C14	2.08	104.60	101.86	
4	Р	301	HCB	C1-C2-C3	-2.05	98.98	101.60	
4	Р	301	HCB	C19-C1-N21	2.05	104.27	101.67	
4	R	301	HCB	C1-C19-N24	2.04	109.57	106.33	
4	Р	301	HCB	C1-C19-N24	2.04	109.56	106.33	
4	Q	301	HCB	C42-C41-C8	2.02	120.55	114.73	
4	R	301	HCB	C20-C1-C19	-2.01	106.19	110.23	
4	Р	301	HCB	C42-C41-C8	2.00	120.51	114.73	

There are no chirality outliers.

All (80) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms	
4	М	301	HCB	C2-C3-C30-C31	

Mol	Chain	Res	Type	Atoms
4	М	301	HCB	C4-C3-C30-C31
4	М	301	HCB	C1P-C2P-O3-P
4	М	301	HCB	C3P-C2P-O3-P
4	М	301	HCB	C2P-O3-P-O4
4	N	301	HCB	C1P-C2P-O3-P
4	N	301	HCB	C3P-C2P-O3-P
4	N	301	HCB	C2P-O3-P-O4
4	0	301	HCB	C2-C3-C30-C31
4	0	301	HCB	C4-C3-C30-C31
4	0	301	HCB	C1P-C2P-O3-P
4	0	301	HCB	C3P-C2P-O3-P
4	0	301	HCB	C2P-O3-P-O4
4	Р	301	HCB	C2-C3-C30-C31
4	Р	301	HCB	C4-C3-C30-C31
4	Р	301	HCB	C1P-C2P-O3-P
4	Р	301	HCB	C3P-C2P-O3-P
4	Р	301	HCB	C2P-O3-P-O4
4	Q	301	HCB	C4-C3-C30-C31
4	Q	301	HCB	C1P-C2P-O3-P
4	Q	301	HCB	C3P-C2P-O3-P
4	Q	301	HCB	C2P-O3-P-O4
4	R	301	HCB	C2-C3-C30-C31
4	R	301	HCB	C4-C3-C30-C31
4	R	301	HCB	C1P-C2P-O3-P
4	R	301	HCB	C3P-C2P-O3-P
4	R	301	HCB	C2P-O3-P-O4
4	Q	301	HCB	C2-C3-C30-C31
4	N	301	HCB	C42-C41-C8-C9
4	Q	301	HCB	C14-C13-C48-C49
4	N	301	HCB	O6R-C4R-C5R-O8R
4	N	301	HCB	C18-C60-C61-O63
4	N	301	HCB	C18-C60-C61-N62
4	N	301	HCB	C30-C31-C32-N33
4	0	301	HCB	C30-C31-C32-N33
4	Q	301	HCB	C30-C31-C32-N33
3	С	601	GOL	O1-C1-C2-C3
4	М	301	HCB	C30-C31-C32-O34
4	М	301	HCB	C30-C31-C32-N33
4	N	301	HCB	C30-C31-C32-O34
4	0	301	HCB	C30-C31-C32-O34
4	P	301	HCB	C30-C31-C32-O34
4	Р	301	HCB	C30-C31-C32-N33

Continued from previous page...

Mol	Chain	Res	Type	Atoms	
4	Q	301	HCB	C30-C31-C32-O34	
4	R	301	HCB	C30-C31-C32-O34	
4	R	301	HCB	C30-C31-C32-N33	
3	С	601	GOL	O1-C1-C2-O2	
4	М	301	HCB	O6R-C4R-C5R-O8R	
4	0	301	HCB	O6R-C4R-C5R-O8R	
4	R	301	HCB	O6R-C4R-C5R-O8R	
4	Р	301	HCB	O6R-C4R-C5R-O8R	
4	Q	301	HCB	C12-C13-C48-C49	
4	М	301	HCB	C2P-O3-P-O2	
4	Ν	301	HCB	C2P-O3-P-O2	
4	0	301	HCB	C2P-O3-P-O2	
4	Р	301	HCB	C2P-O3-P-O2	
4	Q	301	HCB	C2P-O3-P-O2	
4	R	301	HCB	C2P-O3-P-O2	
4	М	301	HCB	C2P-O3-P-O5	
4	Ν	301	HCB	C2P-O3-P-O5	
4	0	301	HCB	C2P-O3-P-O5	
4	Р	301	HCB	C2P-O3-P-O5	
4	Q	301	HCB	C2P-O3-P-O5	
4	R	301	HCB	C2P-O3-P-O5	
4	М	301	HCB	C41-C42-C43-O44	
4	Q	301	HCB	C41-C42-C43-O44	
4	R	301	HCB	C41-C42-C43-O44	
4	Ν	301	HCB	C4-C3-C30-C31	
4	0	301	HCB	C41-C42-C43-O44	
4	Р	301	HCB	C41-C42-C43-O44	
4	Ν	301	HCB	C3R-C4R-C5R-O8R	
4	Q	301	HCB	C3R-C4R-C5R-O8R	
4	М	301	HCB	C41-C42-C43-N45	
4	Р	301	HCB	C41-C42-C43-N45	
4	0	301	HCB	C41-C42-C43-N45	
4	R	301	HCB	C41-C42-C43-N45	
4	Q	301	HCB	C42-C41-C8-C7	
4	Q	301	HCB	C41-C42-C43-N45	
4	Q	301	HCB	O6R-C4R-C5R-O8R	
4	Ν	301	HCB	C14-C13-C48-C49	

Continued from previous page...

There are no ring outliers.

7 monomers are involved in 86 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Е	601	GOL	3	0
4	Ν	301	HCB	10	0
4	Q	301	HCB	13	0
4	0	301	HCB	14	0
4	R	301	HCB	16	0
4	Р	301	HCB	15	0
4	М	301	HCB	15	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2		$OWAB(Å^2)$	Q<0.9	
1	А	490/503~(97%)	-0.42	4 (0%)	86	87	16, 40, 63, 103	0
1	В	493/503~(98%)	-0.40	7 (1%)	75	77	11, 33, 59, 85	0
1	С	493/503~(98%)	-0.42	4 (0%)	86	87	15, 36, 62, 92	0
1	D	490/503~(97%)	-0.47	5 (1%)	82	83	13, 36, 59, 95	0
1	Ε	493/503~(98%)	-0.42	6 (1%)	79	80	12, 31, 56, 86	0
1	F	493/503~(98%)	-0.42	7 (1%)	75	77	15, 38, 64, 93	0
2	М	214/224~(95%)	0.02	3(1%)	75	77	35, 66, 92, 129	0
2	Ν	212/224~(94%)	-0.18	3(1%)	75	77	27, 60, 84, 95	0
2	Ο	214/224~(95%)	0.04	9~(4%)	36	35	33, 68, 98, 125	0
2	Р	215/224~(95%)	-0.07	5(2%)	60	62	31, 62, 90, 115	0
2	Q	211/224~(94%)	0.44	17 (8%)	12	10	31, 76, 111, 123	0
2	R	$21\overline{4/224}~(95\%)$	-0.00	4 (1%)	66	69	36, 66, 93, 121	0
All	All	$423\overline{2}/4362~(97\%)$	-0.29	74 (1%)	70	72	11, 42, 85, 129	0

All (74) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	R	86	LYS	8.8
2	Q	97	VAL	8.8
2	М	85	GLU	8.0
1	F	120[A]	ASP	7.5
1	D	123[A]	TYR	7.1
1	А	123[A]	TYR	5.9
2	Q	93	SER	5.5
1	F	118[A]	TYR	5.2
1	А	118[A]	TYR	5.2
1	В	119[A]	GLN	5.2
2	Q	95	GLY	4.9

Continued on next page...

Continuea from previous page								
1 E 101[A] CIV								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.7							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.5							
2 M 89 SER	4.4							
$\frac{2}{1}$ Q $\frac{120}{120}$ ILE	4.5							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.2							
$\frac{2}{1}$ $\frac{1}{100}$ $\frac{1}{1$	4.1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.0							
$\frac{1}{1} F 119[A] GLN$	3.9							
1 E 3 LYS	3.8							
I D 3 LYS	3.6							
2 Q 96 THR	3.6							
1 D 118[A] TYR	3.6							
2 P 85 GLU	3.6							
2 P 86 LYS	3.5							
2 R 90 GLN	3.5							
1 A 2 ALA	3.3							
1 B 123[A] TYR	3.3							
$1 \qquad E \qquad 123[A] TYR$	3.3							
1 B 2 ALA	3.2							
$1 \qquad B \qquad 120[A] \qquad ASP$	3.0							
$1 \qquad B \qquad 3 \qquad LYS$	2.9							
2 O 85 GLU	2.8							
2 P 173 GLY	2.8							
$1 \qquad C \qquad 120[A] \qquad ASP$	2.7							
2 Q 148 VAL	2.7							
2 Q 215 LEU	2.7							
1 A 122[A] LYS	2.6							
1 C 122[A] LYS	2.6							
1 F 123[A] TYR	2.6							
2 R 121 ALA	2.6							
2 O 36 ASP	2.6							
2 Q 209 ALA	2.5							
2 Q 121 ALA	2.5							
2 M 90 GLN	2.5							
2 Q 126 VAL	2.5							
1 E 120[A] ASP	2.4							
2 Q 84 MET	2.4							
	24							
$2 \mid N \mid 92 \mid LYS$	2.T							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.4							

ntin α d fa

Continued on next page...

7XCN

Mol	Chain	Res	Type	RSRZ	
2	Р	83	GLU	2.4	
2	Р	197	ALA	2.3	
1	В	118[A]	TYR	2.3	
1	С	495	MET	2.3	
2	R	169	LEU	2.3	
1	F	122[A]	LYS	2.2	
2	0	87	ARG	2.2	
2	Q	86	LYS	2.2	
2	Q	175	ARG	2.2	
2	0	8	ILE	2.1	
2	Q	207	ALA	2.1	
2	0	83	GLU	2.1	
1	F	3	LYS	2.1	
2	0	177	GLN	2.1	
1	D	2	ALA	2.1	
2	N	167	GLU	2.0	
2	Q	3	ASN	2.0	
2	Q	185	ALA	2.0	
2	0	20	ASP	2.0	
1	Е	117[A]	LYS	2.0	
2	Ν	123	PHE	2.0	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
3	GOL	F	601	6/6	0.76	0.26	53,66,72,80	0
3	GOL	С	601	6/6	0.79	0.33	59,73,74,74	0

Continued on next page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
3	GOL	А	601	6/6	0.79	0.26	64,76,82,90	0
3	GOL	Е	601	6/6	0.89	0.28	56,61,70,74	0
4	HCB	Q	301	90/90	0.92	0.20	$35,\!67,\!100,\!109$	0
4	HCB	R	301	90/90	0.95	0.16	30,51,62,70	0
4	HCB	0	301	90/90	0.96	0.17	27,48,67,73	0
4	HCB	Р	301	90/90	0.96	0.17	24,48,66,72	0
4	HCB	М	301	90/90	0.96	0.17	30,53,70,84	0
4	HCB	N	301	90/90	0.96	0.17	$16,\!54,\!67,\!95$	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

