

wwPDB EM Validation Summary Report (i)

Oct 2, 2024 – 04:45 PM JST

PDB ID	:	8XJV
EMDB ID	:	EMD-38407
Title	:	Structural basis for the linker histone H5-nucleosome binding and chromatin compaction
Authors	:	Li, W.Y.; Song, F.; Zhu, P.
Deposited on	:	2023-12-22
Resolution	:	3.60 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	Au	2124	99%		_
2	Av	2124	99%		•
3	А	130	86%	8%	6%
3	Ae	130	93%		6%
3	В	130	83%	14%	·
3	С	130	79%	20%	•
3	D	130	88%	6%	5%
3	Е	130	▲ 86%	12%	•

Mol	Chain	Length	Quality of chain	
3	F	130	84%	7% • 8%
3	G	130	85%	14% ••
3	Н	130	80%	16% •
3	Ι	130	91%	8% •
3	K	130	83%	13% ••
3	L	130	85%	15% ·
3	aj	130	92%	• 5%
3	ak	130	91%	• 5%
3	al	130	85%	15%
3	am	130	95%	
3	an	130	94%	
3	ao	130	95%	5%
3	ар	130	98%	
3	aq	130	89%	• 10%
3	ar	130	98%	
3	as	130	92%	8%
3	at	130	96%	
3	au	130	● 85%	• 15%
4	Aa	123	82%	• 16%
4	Ab	123	99%	•
4	Ac	123	80% •	19%
4	Ad	123	83%	17%
4	Af	123	78%	21%
4	Ag	123	83%	• 15%
4	At	123	96%	

Contr	nuea jron	n previous	page		
Mol	Chain	Length	Quality of chain		
4	J	123	72%	11%	• 16%
4	М	123	85%		15%
4	Ν	123	66%	19%	• 15%
4	Ο	123	67%	16%	16%
4	Р	123	76%	99	% 15%
4	Q	123	86%		13% •
4	R	123	69%	12%	19%
4	\mathbf{S}	123	80%		20%
4	Т	123	• 84%		16%
4	U	123	• 89%		10% •
4	V	123	80%		20% •
4	W	123	73%		26% •
4	av	123	83%		• 16%
4	aw	123	98%		·
4	ax	123	98%		
4	ay	123	98%		·
4	az	123	80%		19%
5	Х	136	6 9%	13%	18%
5	Y	136	72%	9%	• 18%
5	Ζ	136	54% 12%		34%
5	a	136	89%		• 8%
5	b	136	73%	•	26%
5	с	136	76%	•	22%
5	d	136	72%		28%
5	е	136	68%		31%

Mol	Chain	Length	Quality of chain	
5	f	136	72%	28%
5	g	136	74%	• 25%
5	h	136	69%	• 29%
5	i	136	71%	• 27%
5	j	136	• 76%	• 23%
5	k	136	72%	• 27%
5	1	136	• 81%	• 16%
5	m	136	69%	• 28%
5	n	136	82%	• 17%
5	0	136	79%	• 20%
5	р	136	74%	• 25%
5	q	136	●	• 19%
5	r	136	75%	• 22%
5	s	136	70%	30%
5	t	136	• 80%	• 19%
5	u	136	90%	• 7%
6	0	103	78%	13% • 9%
6	1	103	8%	10% 16%
6	2	103	 76%	16% • 8%
6	3	103	79%	12% 10%
6	4	103	• 74%	11% 16%
6	5	103	83%	10% 8%
6	6	103	72%	11% 17%
6	7	103	77%	20% ••
6	8	103	65%	18% 17%

6 9 103 77% 22% 6 CD 103 75% $17%$ $17%$ 6 $a2$ 103 $96%$ $17%$ $17%$ 6 $a2$ 103 $96%$ $16%$ 103 $96%$ $16%$ 6 $a3$ 103 $83%$ $16%$ $16%$ 6 $a4$ 103 $92%$ $12%$ 6 $a6$ 103 $97%$ $12%$ 6 $a6$ 103 $97%$ $12%$ 6 $a8$ 103 $88%$ $12%$ 6 $a8$ 103 $82%$ $16%$ 6 $a9$ 103 $93%$ $13%$ 6 v 103 $93%$ $13%$	• • • 7% • • • • •
6 CD 103 $75%$ $17%$ 6 $a2$ 103 $96%$ 6 $a3$ 103 $92%$ $16%$ 6 $a4$ 103 $92%$ $12%$ 6 $a5$ 103 $88%$ $12%$ 6 $a6$ 103 $97%$ $10%$ 6 $a7$ 103 $99%$ $10%$ 6 $a8$ 103 $82%$ $16%$ 6 $a9$ 103 $82%$ $13%$ 6 v 103 $93%$ $33%$ 6 v 103 $93%$ $33%$	6% ••• 7% •• ••
6 $a2$ 103 96% 6 $a3$ 103 83% 16% 6 $a4$ 103 92% $.$ 6 $a5$ 103 7% 88% 12° 6 $a6$ 103 97% $.$ $.$ 6 $a6$ 103 97% $.$ $.$ 6 $a7$ 103 $.$ $.$ $.$ 6 $a8$ 103 $.$ $.$ $.$ 6 $a9$ 103 $.$ $.$ $.$ $.$ 6 v 103 $.$	· · · 7% 6 · ·
6 $a3$ 103 83% 16% 6 $a4$ 103 92% $.$ 6 $a5$ 103 7% 88% 12° 6 $a6$ 103 7% 88% 12° 6 $a6$ 103 7% 88% 12° 6 $a6$ 103 7% 88% 12° 6 $a7$ 103 7% 88% 12° 6 $a8$ 103 6% 82% $.16\%$ 6 $a9$ 103 6% 85% $.13\%$ 6 v 103 93% $.$ 93% $.$ 6 w 103 93% $.$ 93% $.$	7% 6 • • •
6 $a4$ 103 92% \cdot 6 $a5$ 103 7% 88% $12'$ 6 $a6$ 103 97% 6 $a6$ 103 97% 6 $a7$ 103 99% 6 $a8$ 103 82% $.66\%$ 6 $a9$ 103 6% 85% $.139$ 6 v 103 6% $.139$ 6 v 103 $.139$ 6 v 103 $.99\%$ $.139$	7% 6 ••
6 $a5$ 103 $7%$ $88%$ 12 6 $a6$ 103 $97%$ $97%$ 6 $a7$ 103 $99%$ 6 6 $a8$ 103 $82%$ $16%$ 6 $a9$ 103 $6%$ $85%$ $13%$ 6 v 103 $93%$ $.$ $13%$ 6 v 103 $93%$ $.$ $13%$	6 •••
6 $a6$ 103 $97%$ 6 $a7$ 103 $99%$ 6 $a8$ 103 $82%$ $16%$ 6 $a8$ 103 $82%$ $16%$ 6 $a9$ 103 $85%$ $13%$ 6 v 103 $85%$ $13%$ 6 v 103 $93%$ $.$	•••
6 $a0$ 103 $97%$ 6 $a7$ 103 $99%$ 6 $a8$ 103 $82%$ $16%$ 6 $a9$ 103 $85%$ $13%$ 6 v 103 $93%$ $09%$	
6 $a7$ 103 $99%$ 6 $a8$ 103 $82%$ $16%$ 6 $a9$ 103 $6%$ $35%$ $13%$ 6 v 103 $93%$ $09%$ 6 w 103 $93%$ $09%$	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6 a9 103 85% 139 6 v 103 93% . 6 w 103 93% .	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)
6 w 103	5%
	— .
6 x 103 96%	.
6 y 103 99%	-
6 z 103 81% · 18%	_
7 Ah 196 64% · 34%	
7 Ai 196 5% . 139)
7 Aj 196 49% · 47%	_
7 Ak 196 64% · 34%	_
7 Al 196 52% · 45%	_
7 Am 196 . 11	%
7 An 196 61% · 35%	_
7 Ao 196	_
7 Ap 196	
7 Ag 196 6%	

Mol	Chain	Length	Quality of chain		
7	Ar	196	88%	•	8%
7	As	196	62% 5% 33%		

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 181715 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a DNA chain called DNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
1	Au	2116	Total 43052	C 20433	N 7794	O 12709	Р 2116	0	0

• Molecule 2 is a DNA chain called DNA.

Mol	Chain	Residues		I	Atoms			AltConf	Trace
2	Av	2112	Total 43620	C 20607	N 8241	O 12660	Р 2112	0	0

• Molecule 3 is a protein called Histone H2A.

Mol	Chain	Residues	Atoms	AltConf	Trace
3	А	122	Total C N O 936 585 184 167	0	0
3	В	126	Total C N O 962 600 190 172	0	0
3	С	129	Total C N O 983 611 196 176	0	0
3	D	123	Total C N O 940 587 185 168	0	0
3	Е	128	Total C N O 973 605 194 174	0	0
3	F	119	Total C N O 916 573 180 163	0	0
3	G	129	Total C N O 983 611 196 176	0	0
3	Н	125	Total C N O 958 598 189 171	0	0
3	Ι	129	Total C N O 983 611 196 176	0	0
3	K	128	Total C N O 977 608 195 174	0	0
3	L	130	Total C N O S 991 616 197 177 1	0	0

Mol	Chain	Residues	Atoms	AltConf	Trace
3	aj	123	Total C N O	0	0
			940 587 185 168		
3	ak	123	Total C N O	0	0
			940 587 185 168		
3	al	111	Total C N O	0	0
			851 533 169 149		
3	am	127	Total C N O	0	0
			973 606 194 173		
3	an	125	Total C N O	0	0
		120	958 598 189 171	0	0
3	20	194	Total C N O	0	0
0	40	127	949 592 187 170	0	0
3	an	197	Total C N O	0	0
0	ар	121	973 606 194 173	0	0
3	an	117	Total C N O	0	0
0	aq	111	900 564 175 161	0	0
3	ər	120	Total C N O	0	0
0	ai	129	983 611 196 176	0	0
3	95	110	Total C N O	0	0
0	as	119	916 573 180 163	0	0
2	ot	196	Total C N O	0	0
0	at	120	962 600 190 172	0	0
3	011	111	Total C N O	0	0
0	au		859 540 169 150	0	0
9	Δο	199	Total C N O	0	0
0	не		936 585 184 167	U	U

• Molecule 4 is a protein called Histone H2B 1.1.

Mol	Chain	Residues		At	oms			AltConf	Trace
4	т	103	Total	С	Ν	0	S	0	0
4	J	105	814	510	152	150	2	0	0
4	М	193	Total	С	Ν	0	S	0	0
4	111	123	956	599	179	175	3	0	0
4	N	105	Total	С	Ν	0	S	0	0
4	IN	105	830	519	155	154	2	0	0
4	0	103	Total	С	Ν	Ο	\mathbf{S}	0	0
4	0	105	814	510	152	150	2	0	0
4	P	105	Total	С	Ν	Ο	\mathbf{S}	0	0
4	I	105	830	519	155	154	2	0	0
	0	193	Total	С	N	0	S	0	0
±	Q	123	956	599	179	175	3	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace
4	B	100	Total	С	Ν	0	S	0	0
	10	100	788	494	147	145	2	0	0
4	S	123	Total	С	Ν	Ο	\mathbf{S}	0	0
	5	120	956	599	179	175	3	0	0
4	Т	123	Total	С	Ν	Ο	\mathbf{S}	0	0
	1	120	956	599	179	175	3	0	0
4	U	123	Total	С	Ν	Ο	\mathbf{S}	0	0
	Ŭ	120	956	599	179	175	3	0	
4	V	123	Total	С	Ν	Ο	\mathbf{S}	0	0
	•	120	956	599	179	175	3	Ŭ	
4	W	123	Total	С	Ν	Ο	\mathbf{S}	0	0
		120	956	599	179	175	3	Ŭ	
4	av	103	Total	С	Ν	Ο	\mathbf{S}	0	0
		100	814	510	152	150	2	Ŭ	
4	aw	123	Total	С	Ν	Ο	\mathbf{S}	0	0
-		120	956	599	179	175	3	Ŭ	
4	ax	123	Total	С	Ν	Ο	\mathbf{S}	0	0
-		120	956	599	179	175	3	Ŭ	
4	av	123	Total	С	Ν	Ο	\mathbf{S}	0	0
	ay	120	956	599	179	175	3	Ŭ	
4	az	100	Total	С	Ν	Ο	\mathbf{S}	0	0
		100	788	494	147	145	2	Ŭ	
4	Aa	103	Total	С	Ν	Ο	\mathbf{S}	0	0
		100	814	510	152	150	2	Ŭ	
4	Ab	123	Total	С	Ν	0	S	0	0
			956	599	179	175	3	Ŭ	
4	Ac	100	Total	С	Ν	0	S	0	0
			788	494	147	145	2	Ŭ	
4	Ad	102	Total	С	Ν	Ο	S	0	0
		102	805	504	150	149	2	Ŭ	
4	Af	97	Total	С	Ν	Ο	\mathbf{S}	0	0
			766	480	142	142	2	Ŭ	
4	Ag	104	Total	С	Ν	Ο	S	0	0
	0		823	515	154	152	2		
4	At	123	Total	С	Ν	Ο	S	0	0
	110	120	956	599	179	175	3		

There are 24 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
J	1948	MET	-	initiating methionine	UNP P02281
М	0	MET	-	initiating methionine	UNP P02281
N	105	MET	-	initiating methionine	UNP P02281

Chain	Residue	Modelled	Actual	Comment	Reference
0	375	MET	-	initiating methionine	UNP P02281
Р	480	MET	-	initiating methionine	UNP P02281
Q	603	MET	-	initiating methionine	UNP P02281
R	230	MET	-	initiating methionine	UNP P02281
S	849	MET	-	initiating methionine	UNP P02281
Т	2736	MET	-	initiating methionine	UNP P02281
U	1838	MET	-	initiating methionine	UNP P02281
V	976	MET	-	initiating methionine	UNP P02281
W	2859	MET	-	initiating methionine	UNP P02281
av	0	MET	-	initiating methionine	UNP P02281
aw	123	MET	-	initiating methionine	UNP P02281
ax	246	MET	-	initiating methionine	UNP P02281
ay	369	MET	-	initiating methionine	UNP P02281
az	469	MET	-	initiating methionine	UNP P02281
Aa	572	MET	-	initiating methionine	UNP P02281
Ab	695	MET	-	initiating methionine	UNP P02281
Ac	795	MET	-	initiating methionine	UNP P02281
Ad	2843	MET	-	initiating methionine	UNP P02281
Af	1074	MET	-	initiating methionine	UNP P02281
Ag	3069	MET	-	initiating methionine	UNP P02281
At	0	MET	-	initiating methionine	UNP P02281

• Molecule 5 is a protein called Histone H3.

Mol	Chain	Residues		At	oms			AltConf	Trace
5	v	119	Total	С	Ν	0	S	0	0
0	Λ	112	901	566	176	156	3	0	0
5	v	111	Total	С	Ν	Ο	S	0	0
0	1	111	896	563	175	155	3	0	0
5	7	00	Total	С	Ν	Ο	S	0	0
0		90	739	466	140	130	3	0	0
5	0	195	Total	С	Ν	Ο	S	0	0
0	a	120	995	624	196	172	3	0	0
5	h	101	Total	С	Ν	0	S	0	0
0	D	101	833	526	161	143	3	0	0
5	0	106	Total	С	Ν	0	S	0	0
0	C	100	860	542	166	149	3	0	0
5	d	08	Total	С	Ν	Ο	\mathbf{S}	0	0
0	u	90	808	509	156	140	3	0	0
5	0	04	Total	С	Ν	Ο	S	0	0
	е	54	768	483	147	135	3		
5	f	08	Total	С	Ν	0	S	0	0
	L	90	808	509	156	140	3	0	U

Mol	Chain	Residues		\mathbf{At}	\mathbf{oms}			AltConf	Trace
5	ď	102	Total	С	Ν	0	S	0	0
0	5	102	837	528	162	144	3	0	0
5	h	07	Total	С	Ν	Ο	\mathbf{S}	0	0
5	11	91	801	504	155	139	3	0	0
ĸ	;	00	Total	С	Ν	0	S	0	0
5	1	99	817	515	158	141	3	0	0
K	;	105	Total	С	Ν	0	S	0	0
5	J	105	853	537	165	148	3	0	0
ĸ	1.	00	Total	С	Ν	0	S	0	0
5	K	99	817	515	158	141	3	0	0
Б	1	114	Total	С	Ν	0	S	0	0
5	1	114	917	576	179	159	3	0	0
Б	m	08	Total	С	Ν	0	S	0	0
0	111	90	808	509	156	140	3	0	0
5	n	112	Total	С	Ν	0	S	0	0
9	11	115	910	572	178	157	3	0	0
5	0	100	Total	С	Ν	Ο	S	0	0
0	0	103	880	554	170	153	3	0	0
5	n	102	Total	С	Ν	Ο	\mathbf{S}	0	Ο
0	р	102	837	528	162	144	3	0	0
5	a	110	Total	С	Ν	Ο	\mathbf{S}	0	Ο
0	Ч	110	891	560	174	154	3	0	0
5	r	106	Total	С	Ν	Ο	\mathbf{S}	0	Ο
0	1	100	860	542	166	149	3	0	0
5	q	95	Total	С	Ν	Ο	\mathbf{S}	0	Ο
0	a	50	780	492	148	137	3	0	0
5	+	110	Total	С	Ν	Ο	\mathbf{S}	0	Ο
0	U	110	890	560	174	153	3	U	0
5	11	126	Total	\mathbf{C}	Ν	Ο	S	0	0
0	u	120	1001	627	197	174	3	0	0

• Molecule 6 is a protein called Histone H4.

Mol	Chain	Residues		At	oms		AltConf	Trace	
6	17	08	Total	С	Ν	0	S	0	0
0	v	90	767	481	156	129	1	0	0
6		102	Total	С	Ν	0	S	0	0
0	W	105	800	499	164	135	2	0	0
6		00	Total	С	Ν	0	S	0	0
0	X	99	771	483	157	130	1	0	0
6	17	102	Total	С	Ν	0	S	0	0
0	У	102	792	494	163	134	1	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace
6	-	0.1	Total	С	Ν	0	S	0	0
0	Z	04	673	424	133	115	1	0	0
6	0	0.4	Total	С	Ν	0	S	0	0
0	0	94	741	465	150	125	1	0	0
6	1	87	Total	С	Ν	0	S	0	0
0	T	01	703	442	142	118	1	0	0
6	2	95	Total	С	Ν	Ο	\mathbf{S}	0	0
0	2	90	750	471	152	126	1	0	0
6	3	93	Total	С	Ν	Ο	\mathbf{S}	0	0
0	0	50	736	463	149	123	1	0	0
6	4	87	Total	С	Ν	Ο	\mathbf{S}	0	0
0	Т	01	703	442	142	118	1	0	0
6	5	95	Total	С	Ν	Ο	\mathbf{S}	0	0
0	0	50	750	471	152	126	1	0	0
6	6	85	Total	С	Ν	Ο	\mathbf{S}	0	0
0	0	00	688	432	140	115	1	0	0
6	7	101	Total	С	Ν	Ο	\mathbf{S}	0	0
0	•	101	786	491	162	132	1	0	0
6	8	86	Total	С	Ν	Ο	\mathbf{S}	0	0
	0		694	436	140	117	1	0	0
6	9	102	Total	С	Ν	Ο	\mathbf{S}	0	0
		102	792	494	163	134	1	Ŭ	
6	CD	97	Total	С	Ν	Ο	\mathbf{S}	0	0
			762	479	155	127	1	Ŭ	
6	a2	100	Total	С	Ν	Ο	\mathbf{S}	0	0
		100	782	489	161	131	1	Ŭ	
6	a3	87	Total	С	Ν	Ο	S	0	0
			703	442	142	118	1	Ŭ	
6	a4	96	Total	С	Ν	0	S	0	0
			754	473	153	127	1	Ŭ	
6	а5	91	Total	С	Ν	Ο	\mathbf{S}	0	0
			725	455	147	122	1	Ŭ	
6	a6	101	Total	С	Ν	Ο	\mathbf{S}	0	0
		101	786	491	162	132	1	Ŭ	
6	а7	102	Total	С	Ν	Ο	\mathbf{S}	0	0
		102	792	494	163	134	1		
6	a8	87	Total	С	Ν	Ο	\mathbf{S}	0	0
			703	442	142	118	1		
6	90	90	Total	С	Ν	Ο	\mathbf{S}	0	0
	aJ	50	716	449	145	121	1	0	

• Molecule 7 is a protein called Histone H5.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	Ab	120	Total	С	Ν	Ο	S	0	0
1	All	130	992	613	206	171	2	0	0
7	Δį	170	Total	С	Ν	Ο	S	0	0
1	AI	170	1298	805	274	217	2	0	0
7	Δi	103	Total	С	Ν	Ο	\mathbf{S}	0	0
1	лj	105	780	485	154	139	2	0	0
7	Δk	120	Total	С	Ν	Ο	\mathbf{S}	0	0
1	ЛК	125	986	610	205	169	2	0	0
7	Δ1	107	Total	С	Ν	Ο	\mathbf{S}	0	0
1	111	107	808	501	161	144	2	0	0
7	Δm	175	Total	С	Ν	Ο	\mathbf{S}	0	0
	ЛШ	110	1340	831	284	223	2	0	0
7	Δn	128	Total	С	Ν	Ο	\mathbf{S}	0	0
· ·	ЛП	120	975	604	201	168	2	0	0
7	Δο	150	Total	С	Ν	Ο	\mathbf{S}	0	0
· ·	110	105	1215	754	255	204	2	0	0
7	Δn	73	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
·	mp	10	555	346	109	99	1	0	0
7	Δα	100	Total	С	Ν	Ο	\mathbf{S}	0	0
1	nq	150	1456	903	311	240	2	0	0
7	Δr	180	Total	С	Ν	Ο	\mathbf{S}	0	0
1	111	100	1375	852	295	226	2	0	0
7	As	131	Total	\mathbf{C}	Ν	Ο	S	0	0
	110	101	999	618	207	172	2	0	

There are 72 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ah	541	HIS	-	expression tag	UNP P02259
Ah	542	HIS	-	expression tag	UNP P02259
Ah	543	HIS	-	expression tag	UNP P02259
Ah	544	HIS	-	expression tag	UNP P02259
Ah	545	HIS	-	expression tag	UNP P02259
Ah	546	HIS	-	expression tag	UNP P02259
Ai	190	HIS	-	expression tag	UNP P02259
Ai	191	HIS	-	expression tag	UNP P02259
Ai	192	HIS	-	expression tag	UNP P02259
Ai	193	HIS	-	expression tag	UNP P02259
Ai	194	HIS	-	expression tag	UNP P02259
Ai	195	HIS	-	expression tag	UNP P02259
Aj	323	HIS	-	expression tag	UNP P02259
Aj	324	HIS	-	expression tag	UNP P02259
Aj	325	HIS	-	expression tag	UNP P02259
Aj	326	HIS	-	expression tag	UNP P02259

Continu	lea from pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
Aj	327	HIS	-	expression tag	UNP P02259
Aj	328	HIS	-	expression tag	UNP P02259
Ak	674	HIS	-	expression tag	UNP P02259
Ak	675	HIS	-	expression tag	UNP P02259
Ak	676	HIS	-	expression tag	UNP P02259
Ak	677	HIS	-	expression tag	UNP P02259
Ak	678	HIS	-	expression tag	UNP P02259
Ak	679	HIS	-	expression tag	UNP P02259
Al	431	HIS	-	expression tag	UNP P02259
Al	432	HIS	-	expression tag	UNP P02259
Al	433	HIS	-	expression tag	UNP P02259
Al	434	HIS	-	expression tag	UNP P02259
Al	435	HIS	-	expression tag	UNP P02259
Al	436	HIS	-	expression tag	UNP P02259
Am	190	HIS	-	expression tag	UNP P02259
Am	191	HIS	-	expression tag	UNP P02259
Am	192	HIS	-	expression tag	UNP P02259
Am	193	HIS	-	expression tag	UNP P02259
Am	194	HIS	-	expression tag	UNP P02259
Am	195	HIS	-	expression tag	UNP P02259
An	190	HIS	-	expression tag	UNP P02259
An	191	HIS	-	expression tag	UNP P02259
An	192	HIS	-	expression tag	UNP P02259
An	193	HIS	-	expression tag	UNP P02259
An	194	HIS	-	expression tag	UNP P02259
An	195	HIS	-	expression tag	UNP P02259
Ao	190	HIS	-	expression tag	UNP P02259
Ao	191	HIS	-	expression tag	UNP P02259
Ao	192	HIS	-	expression tag	UNP P02259
Ao	193	HIS	-	expression tag	UNP P02259
Ao	194	HIS	-	expression tag	UNP P02259
Ao	195	HIS	-	expression tag	UNP P02259
Ap	190	HIS	-	expression tag	UNP P02259
Ap	191	HIS	-	expression tag	UNP P02259
Ap	192	HIS	-	expression tag	UNP P02259
Ap	193	HIS	-	expression tag	UNP P02259
Ap	194	HIS	-	expression tag	UNP P02259
Ap	195	HIS	-	expression tag	UNP P02259
Aq	190	HIS	-	expression tag	UNP P02259
Aq	191	HIS	-	expression tag	UNP P02259
Aq	192	HIS	-	expression tag	UNP P02259
Aq	193	HIS	-	expression tag	UNP P02259

ntin α 1 [

					Df
Chain	Residue	Modelled	Actual	Comment	Reference
Aq	194	HIS	-	expression tag	UNP P02259
Aq	195	HIS	-	expression tag	UNP P02259
Ar	190	HIS	-	expression tag	UNP P02259
Ar	191	HIS	-	expression tag	UNP P02259
Ar	192	HIS	-	expression tag	UNP P02259
Ar	193	HIS	-	expression tag	UNP P02259
Ar	194	HIS	-	expression tag	UNP P02259
Ar	195	HIS	-	expression tag	UNP P02259
As	190	HIS	-	expression tag	UNP P02259
As	191	HIS	-	expression tag	UNP P02259
As	192	HIS	-	expression tag	UNP P02259
As	193	HIS	-	expression tag	UNP P02259
As	194	HIS	-	expression tag	UNP P02259
As	195	HIS	-	expression tag	UNP P02259

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA

Chain D:	88%	6% 5%
MET SER CLY CLY ARG CLY CLY CLY CLY CLY CLY 145 D450 D450 D450 D450 D450 D450 D450 T471 CL471 CL471 CL471 CL471 CL471 CL472 CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	E 439	
• Molecule 3: Histone H2A		
Chain E:	86%	12% •
MET 8508 K516 7517 A519 A519 A519 A519 A519 C531 L541 L541 L562 E563 E563 E563 L570	H589 E599 L604 R605 S635 LYS LYS	
• Molecule 3: Histone H2A		
Chain F:	84%	7% • 8%
MET SER GLY GLY ARG CLY CLY CLY GLY GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C	8747 8748 8760 8760 8760 8764 8764	
• Molecule 3: Histone H2A		
Chain G:	85%	14% ••
MET 8755 6756 6756 8757 6758 6758 4775 1764 4775 1764 4775 1764 4775 1764 1775 1764 1775 1764 1775 1764 1775 1764 1775 1764 1775 1764 1775 1764 1775 1764 1775 1766 1775 1767 1767	P834 1865 1865 1865 1865 1866 1866 1866 1870 1870 1870 1870 1870	
• Molecule 3: Histone H2A		
Chain H:	80%	16% •
MET SER CLY AKG CLY K6140 K6140 R6175 R6175 R6175 R61777 R61777 R61777 R61777 R61777 R61777 R61777 R61777 R61777 R61777 R61777 R61777 R61777 R617777 R617777 R617777 R6177777 R617777777777	H5217 L5218 Q5219 R5233 R5234 R5234 R5234 G5241 K5254 T5255 S5255 S5255 S5255 K5259 K5263 K5263 K5263	
• Molecule 3: Histone H2A		
Chain I:	91%	8% •
MET 22463 82463 82473 82479 82479 22487 82487 82487 82481 82481 82481 82481 82481 82481 82481 82481 12517 12540	20 <mark>91</mark>	
• Molecule 3: Histone H2A		
Chain K:	83%	13% ••
MET SER SER S265 65265 65284 05285 L5286 L5286 L5286 L5286 L5326 L5326 L5326 L5326 L5326	45332 N5336 N5336 R5340 15341 15343 R5344 A5349 L5359 L5359 L5359 L5356 R5366 A5366 A5366	

• Molecule 3: Histone H2A

Chain L:	85%	15% •
M5393 R5404 A5406 K5408 R5408 R5425 R5435	L5456 L5466 L5466 L5466 L5466 L5469 N5483	
• Molecule 3:	Histone H2A	
Chain aj:	92%	• 5%
MET SER GLY GLY GLN GLN F91	S113 S113 S128 K129	
• Molecule 3:	Histone H2A	
Chain ak:	91%	• 5%
MET SER GLY GLY CLY CLN CLN CLN CLN	E214 E214 1238 1238 1238 1238	
• Molecule 3:	Histone H2A	
Chain al:	85%	15%
MET SER GLY ARG GLY LYS LYS Q675 L785	LYS LYS GLU GLU SER SER LYS SER LYS LYS LYS	
• Molecule 3:	Histone H2A	
Chain am:	95%	••
MET SER GLY R786 A797 K798 T799 T799		
• Molecule 3:	Histone H2A	
Chain an:	94%	• •
MET SER GLY GLY GLY GLY K913 S926 S926 S926		
• Molecule 3:	Histone H2A	
Chain ao:	95%	5%
MET SER GLY GLY GLY CLYS Q1038 M1161		

• Molecule 3: Histone H2A

Chain ap:	98%	·
MET SER GLY R4003 K4129 K4129		
• Molecule 3: Histone H2A		
Chain aq:	89%	• 10%
MET SER GLY GLY GLY ARG GLY CLN GLY GLY CLY GLY CLY CLY GLY ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG		
• Molecule 3: Histone H2A		
Chain ar:	98%	
MET 25598 72606 12607 K2726		
• Molecule 3: Histone H2A		
Chain as:	92%	8%
MET SER GLY CLY ARG CLY CLY CLY CLY FHR M1718 M136		
• Molecule 3: Histone H2A		
Chain at:	96%	•••
MET SER GLY ARG 04247 14252 14252 14252 14252 14252 14252 14252 14252 14372		
• Molecule 3: Histone H2A		
Chain au:	85%	• 15%
MET SER GLY GLY GLY ARG CLY CLN CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	SER SER ALA LYS SER LYS LYS	
• Molecule 3: Histone H2A		
Chain Ae:	93%	• 6%
MET SER GLY GLY GLY GLY GLN GLN K2966 K2966 K2966		

• Molecule 4: Histone H2	B 1.1			
Chain J:	72%	11% •	16%	
MET LYS SFR SFR SFR ALA ALA ALA ALA LYS CLY SFR LYS ALA ALA VAL VALA THR THR	GLN 61.0 11970 01970 01971 01971 01971 11975 11975 11975 11975 11976 11972 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 12007 12006 12007 10007 10007 10007 10000000000	L2045 L2046 L2047 K2070		
• Molecule 4: Histone H2	B 1.1			
Chain M:	85%		15%	
M0 P5 A6 A6 A6 K12 K12 K13 A14 A14 K20 K20 K20 K20 K20 K20 K20 K20	151 151 552 553 553 553 553 863 861 185 186 786 788 888 888 888 888 888 888 888 8	K122		
• Molecule 4: Histone H2	B 1.1			
Chain N:	66%	19%	• 15%	
MET ALA LYS SER ALA ALA ALA PRO CLYS CLYS CLYS CLYS VAL THR THR	1147 1147 1147 1163 1163 1163 1163 1163 1192 1192 1192 1192 1192 1192 1192 1106 1197	A205 K210 H211 A212 V213 S214 E215 G216 G216 T217 K218	A219 V220 K222 Y223 T224 K227 K227	
• Molecule 4: Histone H2	B 1.1			
Chain O:	67%	16%	16%	
MET LYS SFR SFR SFR ALA ALA ALA LYS CLY SFR LYS CLY ALA ALA ALA THR THR	GLN Kap5 Kap6 Kap6 Fap7 Yap9 Yap9 Yap9 Yap9 Yap9 Yap9 Yap9 Yap9	K429 K429 A430 K431 S432 I433 V441 V441	1466 V470 L474 K480	K497
• Molecule 4: Histone H2	B 1.1			
Chain P:	76%	9%	15%	
MET ALA ALA ALA ALA ALA ALA PRO PRO PRO CLY CLYS CLYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	R606 E512 1531 1531 1531 1533 1536 1576 11577 11577 11579 11579 11579 11579	800 800 800		
• Molecule 4: Histone H2	B 1.1	_		
Chain Q:	86%		13% •	
M603 A603 A605 A A605	R679 1689 7690 7690 7690 7690 8698 1700 1700 1700 1700 1700 1700 1702 1702			
• Molecule 4: Histone H2	B 1.1			
Chain R:	69%	12%	19%	
MET ALA ALA ALA ALA SER PRO PRO CLYS CLYS SER LYS CLYS SER LYS LYS THR THR THR	GLN: GLN: LYS LYS ASP ASP ASP C253 C256 C273 C275 C275 C275 C275 C275 C275 C275 C275	1316 1316 1318 1323 1323 1323 1323 1346 K347	Y348 T349 8350 A351 K352	
• Molecule 4: Histone H2	B 1.1			

Chain S:	80%	20%
M849 P854 V886 V886 P897 P897 M905 M905 M905 M905 M908 M905 M912 N912 N912 N912	R918 8921 8921 8925 1935 1935 1935 1943 8939 1944 1945 1945 1945 1945 1946	1960 1961 1962 1968 1968 8969 1968 1968 1970
• Molecule 4: Histone	H2B 1.1	
Chain T:	84%	16%
M2736 A2745 K2745 K2748 K2749 K2749 T2752 K2753 D2758 D2758	N2 / / 9 P2 783 P2 783 P2 783 P2 783 P2 783 P2 783 P2 783 P2 825 P2 825	K2858
• Molecule 4: Histone	H2B 1.1	
Chain U:	89%	10% •
M1838 A1839 K1840 A1842 A1842 K1846 K1862 K1862 K1862 M1894 M1894	T1925 S1926 A1929 A1932 L1935 E1940	
• Molecule 4: Histone	H2B 1.1	
Chain V:	80%	20% •
M976 A977 K938 K938 K1993 K1900 K1000 B1003 €1008	L1018 S1028 S1028 L1034 M1035 T1063 T1063 T1065 T1066 A1077 L1073 L1074 L1074 L1074 L1074	6107/ 61079 A1080 V1084 Y1094 K1098
• Molecule 4: Histone	H2B 1.1	
Chain W:	73%	26% •
N2859 22865 72877 72877 72877 72877 72880 72880 72882 72882 72882 72882 72882 72882 72882	L2901 22909 72909 72914 12917 72921 72928 72928 72928 72928 72938 12938 12938 12938 12938 12938 12938	12944 12945 12946 22947 12965 12965 12966 12966 12966 12966 12978 18978
• Molecule 4: Histone	H2B 1.1	
Chain av:	83%	• 16%
MET ALA LYS SER SER ALA ALA ALA CLYS GLY GLY CLYS CLYS CLYS TLYS TLYS TALA		
• Molecule 4: Histone	H2B 1.1	
Chain aw:	98%	
M123 K131 M179 K245		
• Molecule 4: Histone	H2B 1.1	

Chain ax:	98%	•
12.15 255 1255 1255 1255 1255 1255 1255		
• Molecule 4: Histone H2B 1.1		
Chain ay:	98%	•
1389 14377 1412 14451 14451		
• Molecule 4: Histone H2B 1.1		
Chain az:	80%	• 19%
MET LYS SER SER ALA ALA ALA ALA ALA LYS LYS CLY CLYS CLY CLYS CLY CLYS CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	K691	
• Molecule 4: Histone H2B 1.1		
Chain Aa:	82%	• 16%
MET ALA LYS SER ALA ALA ALA ALA LYS LYS LYS CLY SER LYS THR THR THR THR THR THR CLN CLN		
• Molecule 4: Histone H2B 1.1		
Chain Ab:	99%	
A71 A771 K817		
• Molecule 4: Histone H2B 1.1		
Chain Ac:	80%	• 19%
MET LYS SER SER SER ALA ALA PRO PRO PRO LYS LYS LYS CLYS SER LYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	1854 17	
• Molecule 4: Histone H2B 1.1		
Chain Ad:	83%	17%
MET LYS SER ALA ALA ALA PRO LYS LYS LYS CLYS CLYS CLYS CLYS CLYS CL		
• Molecule 4: Histone H2B 1.1		

Chain Af:	789	%	·	21%	
	8	8 8 8 <mark>8</mark>			
MET ALAA ALAA ALAA ALAA ALAA ALAA ALAA AL	LYSS LYSS LYSS ALA ALA ALA ALA CYSS CLYS CLYS CLYS CLYS CLYS CLYS CLYS				
• Molecule 4: H	listone H2B 1.1				
Chain Ag:		83%		15%	-
MET ALA ALA SER ALA PRO PRO LYS CLYS SER SER	172 173 174 174 174 174 174 174 174 173 173 174 174 174 174 174 174 174 174 174 174				
• Moloculo 4: H	fistono H2B 1 1				
• Molecule 4. II	listone fizb 1.1				
Chain At:		96%		•	
M0 A1 K2 K20 K31 K31 R83 G101	K122				
• Molecule 5: H	listone H3				
Chain X:	69%		13%	18%	
MET ALA ALA ARG THR LYS GLN ALA ARG ARG SER SER THR	GLY GLY LYS ALA ARA PRO PRO PRO PRO PRO CLY CLU CLU CLO LOO LOO	68 R69 K79 E94 E94 E103 L103 A111	1112 R116 1119 D123 1124 0125	L126 A127 R128 R129 I130	E133 R134 A135
• Molecule 5: H	listone H3				
Chain Y:	72%		9% •	18%	
MET ALA ARG THR LYS GLN THR ALA ARG SER SER THR	GLY GLY GLY GLY PRO PRO PRO PRO PRO PRO CLYS GLN CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	A140 P149 R153 L171 L171 L171 L172 R174 K175	q204 L214 R227 D234	A246	
• Molecule 5: H	listone H3				
Chain Z:	54%	12%	34%		
MET ALA ARG ARG LYS CLN CLN ARG ARG LYS SER SER THR	GILY GLY GLY LLYS ALA PRO ALA CLN CLN CLN ALA ALA ALA ALA ARG	LYS SER ALA ALA PRO GLY GLY CLY CLY CLY CLY CLY CLY STR CLY ARG ARG	TYR TYR ARG PRO GLY THR V247 A248 L249 L249	1252 R253 R254 S258	1263 R264 P267
A276 1282 1283 1283 1283 1284 7284 7284 7294 7317	D324 B324 B335 A336 A336				
• Molecule 5. H	listone H3				
Chain a:		89%		• 8%	

MET ARG ARG ARG LYS CLW ALA ARG CLW CLY CLYS ARG CLY CLYS CLY CLYS CLYS CLYS CLYS CLYS C	LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LYS LYS PRO H1314 H1314 R1317 S1361 S1361 R1404	A1410
• Molecule 5: Histone H3			
Chain i:	71%	·	27%
MET ALA ALA ALA ALA CLY CLY CLN CLY CLY CLY CLY CLY CLY CLY CLY CCL	LEU LEU LYS LYS LYS LYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LYS K3187 S3236 M3270 R3281 R3285	
• Molecule 5: Histone H3			
Chain j:	76%	·	23%
MET ALA ALA ALA ALA ALA ARG CLY SER CLY SER CLY CLY CLY CLY CLY CLY CLY	L CEUR L CEUR ALLA ALLA ALLA ALLA ALLA ALLA ALLA AL	131 134 135	
• Molecule 5: Histone H3			
Chain k:	72%	·	27%
MET ALA ALA ALA ALA ALA CLY CLY SER CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA PRO ALA ALA CLY VAL	LYS K136 F183 A234	
• Molecule 5: Histone H3			
Chain l:	81%		• 16%
MET ALA ALA ALA ARG CTY CLN CLN CLN ALA ALA CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LEU LEU 1235 1235 1235 1235 1235 1235 1235 1235	A348	
• Molecule 5: Histone H3			
Chain m:	69%	·	28%
MET ARG ARG LYS LYS LYS CLN ALA ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LYS LYS P349 7352 R352 R353 8368 8368	A446
• Molecule 5: Histone H3			
Chain n:	82%		• 17%
MET ALA ALA ARG THR CVS GLN GLN ALA ALA CLY GLY GLY ALA PRO PRO CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	LEU LEU ALA F508 A559 A559		
• Molecule 5: Histone H3			
Chain o:	79%	·	20%

WORLDWIDE PROTEIN DATA BANK

MET ALA ARG THR LYS GLN ARG LYS SER THR CLY GLY	LYS ALA PALA PALA ALA ALA ALA ALA ALA ALA A	
• Molecule 5: Histo	one H3	
Chain p:	74%	• 25%
MET ALA ALA ALA ARG LYS CLN CLN ARG CLN SER SER SER CLY SER CLY SC	LYS ALA ALA ARD ARD ARD ARD ALA ALA ARA ARA ARA ARA ARA ARA ARA ARA	
• Molecule 5: Histo	one H3	
Chain q:	79%	• 19%
MET ALA ARG TARG CLN CLNS GLN ALA ARG ARG CLY GLY GLY	LYS PALA PALA CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	
• Molecule 5: Histo	one H3	
Chain r:	75%	• 22%
NET ALA ALA ALA ARG LYS CLN THR ALA ALA ALA ALA ALA CLY SER SLY SCT CLY	LYS ALA ALA ALA ALA ARG LYS CLN LLSU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	CTO CAL
• Molecule 5: Histo	one H3	
Chain s:	70%	30%
MET ALA ARG TTHR LYS GLN ARG CLY SSER SSER CLY CLY SSER CLY	LYS ALA ALA ARG CLYS CLYS ARG CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA CLYS CLY CLYS CLY CLYS CLY FRO FRO CLY FRO CLY FRO FRO FRO FRO FRO FRO FRO FRO FRO FRO	ARG Y2072 A2166
• Molecule 5: Histo	one H3	
Chain t:	80%	• 19%
MET ALA ALA ALA ALA ALA CLY ALA ALA ALA ALA ALA ALA CLY CLY CLY CLY	LYS RIA PRO PRO ARG CIN CIYS GLN LYS CIN LYS AIA AIA AIA DI 269 AIA AIA AIA	
• Molecule 5: Histo	one H3	
Chain u:	90%	• 7%
MET ALA ALA ARG LYS CLYS CLYS ARG ARG LYS ARG LYS CS083	R3087 ← L3090 ← R3096 ← R3096 ← R3106 R3110 R3110 R3110 A3205	
• Molecule 6: Histo	one H4	
Chain v:	93%	• 5%

• Molecule 6: Histone H4

Chain w:	99%		
M103 L113 G205			
• Molecul	e 6: Histone H4		
Chain x:	96%		·
MET SER GLY ARG G206 G304			
• Molecul	e 6: Histone H4		
Chain y:	99%		
MET S305 G406			
• Molecul	e 6: Histone H4		
Chain z:	81%	·	18%
MET SER GLY ARG GLY LYS GLY	GLY LIYS CLY CLY CLY CLY CLY CLY ALA ALA ALA ALA AL2 C490 C490		
• Molecul	e 6: Histone H4		
Chain 0:	78%	13%	• 9%
MET SER GLY GLY LYS GLY GLY	DIX 101X		
• Molecul	e 6: Histone H4		
Chain 1:	75%)%	16%
MET SER GLY ARG GLY GLY GLY	CICY CICY CICY CICY CICY CICY CICY CICY	G671	
• Molecul	e 6: Histone H4		
Chain 2:	• 76%	16%	• 8%

MET MET (190 (190 (197 (197 (197 (197 (197 (197 (197 (197	1250 1250 1250 1250 1250 1250 1250 1270 1277 1277 1277 1277 1277 1277 127	
• Molecule 6: Histone H4		
Chain CD:	75%	17% • 6%
MET SER GLY GLY ARG GLY K291 C292 C293 K296 K296 K296 K296 K296 K296 K296 K296	1310 1320 1320 1320 1325 1325 1376 1376 1376 1376 1376 1376 1376 1376	
• Molecule 6: Histone H4		
Chain a2:	96%	
MET SISA RISE RISE RISE RISE RISE RISE RISE RISE		
• Molecule 6: Histone H4		
Chain a3:	83%	• 16%
MET SER GLY GLY ARG ARG ALY CLY CLY CLY CLY CLY CLY CLY CLY CLY C		
• Molecule 6: Histone H4		
Chain a4:	92%	• 7%
MET BER GLY GLY LYS GLY GLY GLY GF7 GF7		
• Molecule 6: Histone H4		
Chain a5:	88%	12%
MET SER GLY GLY ARG GLY CLY GLY GLY GLY GLY GLY GLY GLY CLY GLY GLY GF73 GF73 GF73 GF74 HG52 GF73 GF73 GF73 GF74 GF75 GF73 GF76 GF76 GF76 GF76 GF76 GF76 GF76 GF76	6684 C162 	
• Molecule 6: Histone H4		
Chain a6:	97%	
MET SIBA 03194 R3264 R3264 03294		
• Molecule 6: Histone H4		
Chain a7:	99%	·

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	13670	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	2000	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	47000	Depositor
Image detector	FEI FALCON II $(4k \ge 4k)$	Depositor
Maximum map value	0.183	Depositor
Minimum map value	-0.051	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.0293	Depositor
Map size (Å)	506.88, 506.88, 506.88	wwPDB
Map dimensions	288, 288, 288	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.76, 1.76, 1.76	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	Au	0.54	1/48227~(0.0%)	0.92	2/74345~(0.0%)
2	Av	0.52	0/49010	0.90	5/75728~(0.0%)
3	А	0.24	0/946	0.53	0/1269
3	Ae	0.23	0/946	0.48	0/1269
3	В	0.23	0/972	0.50	0/1302
3	С	0.28	0/993	0.58	1/1329~(0.1%)
3	D	0.25	0/950	0.53	0/1274
3	Е	0.24	0/983	0.52	0/1318
3	F	0.23	0/926	0.50	0/1243
3	G	0.23	0/993	0.52	0/1329
3	Н	0.24	0/968	0.50	0/1297
3	Ι	0.24	0/993	0.50	0/1329
3	Κ	0.54	2/987~(0.2%)	0.70	5/1321~(0.4%)
3	L	0.42	2/1001~(0.2%)	0.55	0/1339
3	aj	0.28	0/950	0.53	0/1274
3	ak	0.23	0/950	0.54	0/1274
3	al	0.23	0/860	0.49	0/1158
3	am	0.32	0/983	0.54	0/1316
3	an	0.24	0/968	0.52	0/1297
3	ao	0.23	0/959	0.51	0/1286
3	ар	0.23	0/983	0.51	0/1316
3	aq	0.25	0/910	0.52	0/1222
3	ar	0.23	0/993	0.53	0/1329
3	as	0.24	0/926	0.51	0/1243
3	at	0.24	0/972	0.53	0/1302
3	au	0.23	0/869	0.51	0/1171
4	Aa	0.24	0/825	0.49	0/1101
4	Ab	0.23	0/969	0.46	0/1292
4	Ac	0.23	0/799	0.47	0/1068
4	Ad	0.24	0/816	0.47	0/1090
4	Af	0.23	0/777	0.46	0/1041
4	Ag	0.23	0/834	0.46	0/1113
4	At	0.35	0/969	0.55	0/1292
4	J	0.23	0/825	0.49	0/1101

	Chain	B	ond lengths	E	Sond angles
IVI01	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
4	М	0.25	0/969	0.47	0/1292
4	Ν	0.37	0/841	0.53	0/1123
4	0	0.23	0/825	0.50	0/1101
4	Р	0.23	0/841	0.45	0/1123
4	Q	0.24	0/969	0.47	0/1292
4	R	0.23	0/799	0.45	0/1068
4	S	0.25	0/969	0.52	1/1292~(0.1%)
4	Т	0.23	0/969	0.48	0/1292
4	U	0.24	0/969	0.50	0/1292
4	V	0.26	0/969	0.48	0/1292
4	W	0.37	1/969~(0.1%)	0.47	0/1292
4	av	0.24	0/825	0.50	0/1101
4	aw	0.24	0/969	0.48	0/1292
4	ax	0.25	0/969	0.50	1/1292~(0.1%)
4	ay	0.34	1/969~(0.1%)	0.54	0/1292
4	az	0.23	0/799	0.45	0/1068
5	Х	0.24	0/914	0.53	0/1225
5	Y	0.25	0/909	0.57	1/1218~(0.1%)
5	Ζ	0.23	0/747	0.50	0/1000
5	a	0.26	0/1009	0.58	1/1351~(0.1%)
5	b	0.23	0/845	0.53	0/1132
5	С	0.23	0/873	0.51	0/1170
5	d	0.23	0/820	0.51	0/1099
5	е	0.24	0/777	0.52	0/1041
5	f	0.23	0/820	0.50	0/1099
5	g	0.23	0/849	0.51	0/1137
5	h	0.24	0/812	0.52	0/1088
5	i	0.23	0/829	0.52	0/1111
5	j	0.24	0/865	0.54	0/1159
5	k	0.23	0/829	0.52	0/1111
5	1	0.25	0/930	0.58	1/1246~(0.1%)
5	m	0.25	0/820	0.58	1/1099~(0.1%)
5	n	0.23	0/923	0.52	0/1236
5	0	0.24	0/893	0.52	$\overline{0/1197}$
5	р	0.23	0/849	0.53	$0/1\overline{137}$
5	q	0.27	0/904	0.52	$0/1\overline{211}$
5	r	0.23	0/873	0.50	0/1170
5	s	0.23	0/790	0.50	0/1059
5	t	0.23	0/903	0.52	0/1211
5	u	0.24	0/1015	0.55	0/1359
6	0	0.23	0/749	0.56	0/997
6	1	0.23	0/711	0.56	0/948
6	2	0.43	$1/758 \ \overline{(0.1\%)}$	0.88	3/1008~(0.3%)

Mal	Chain	B	ond lengths	Bond angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
6	3	0.24	0/744	0.56	0/992
6	4	0.23	0/711	0.55	0/948
6	5	0.23	0/758	0.56	0/1008
6	6	0.23	0/695	0.57	0/929
6	7	0.25	0/794	0.58	0/1053
6	8	0.24	0/702	0.58	0/937
6	9	0.23	0/800	0.56	0/1061
6	CD	0.25	0/770	0.59	0/1024
6	a2	0.24	0/790	0.57	0/1048
6	a3	0.23	0/711	0.54	0/948
6	a4	0.23	0/762	0.54	0/1013
6	a5	0.24	0/733	0.56	0/976
6	a6	0.24	0/794	0.58	0/1053
6	a7	0.23	0/800	0.55	0/1061
6	a8	0.24	0/711	0.54	0/948
6	a9	0.24	0/724	0.57	0/965
6	V	0.24	0/775	0.59	0/1029
6	W	0.24	0/808	0.55	0/1071
6	Х	0.23	0/779	0.55	0/1034
6	У	0.24	0/800	0.55	0/1061
6	Z	0.24	0/680	0.58	0/908
7	Ah	0.26	0/1005	0.63	0/1335
7	Ai	0.25	0/1315	0.65	0/1740
7	Aj	0.58	3/790~(0.4%)	1.17	6/1053~(0.6%)
7	Ak	0.27	0/999	0.67	1/1327~(0.1%)
7	Al	0.27	0/819	0.63	0/1092
7	Am	0.26	0/1357	0.64	0/1794
7	An	0.27	0/988	0.67	2/1313~(0.2%)
7	Ao	0.25	0/1232	0.63	0/1634
7	Ap	0.26	0/562	0.61	0/749
7	Aq	0.26	0/1475	0.62	0/1947
7	Ar	0.26	0/1390	0.65	1/1830~(0.1%)
7	As	0.30	0/1013	0.75	3/1347~(0.2%)
All	All	0.42	$11\overline{/193454}~(0.0\%)$	0.77	35/278529~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	Κ	0	1

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	Κ	5284	ALA	C-N	12.67	1.55	1.33
7	Aj	143	PRO	CB-CG	-10.93	0.95	1.50
6	2	696	PRO	CG-CD	-9.43	1.19	1.50
4	W	2976	LYS	C-N	7.70	1.51	1.34
3	Κ	5285	GLY	C-N	7.39	1.51	1.34

The worst 5 of 11 bond length outliers are listed below:

The worst 5 of 35 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	Aj	143	PRO	CA-N-CD	-17.36	87.20	111.50
7	Aj	143	PRO	N-CD-CG	-15.91	79.33	103.20
6	2	696	PRO	N-CD-CG	-15.83	79.45	103.20
7	Aj	143	PRO	CA-CB-CG	-15.53	74.50	104.00
7	As	130	PRO	CA-N-CD	-12.89	93.45	111.50

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
3	Κ	5285	GLY	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Au	43052	0	23722	0	0
2	Av	43620	0	23665	0	0
3	А	936	0	1008	8	0
3	Ae	936	0	1008	0	0
3	В	962	0	1035	17	0
3	С	983	0	1056	28	0
3	D	940	0	1011	6	0
3	Е	973	0	1043	11	0
3	F	916	0	985	5	0
3	G	983	0	1056	15	0
3	Н	958	0	1032	12	0

Conti	nuea from	<i>i previous</i>	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	I	983	0	1056	7	0
3	K	977	0	1051	14	0
3	L	991	0	1065	17	0
3	aj	940	0	1011	0	0
3	ak	940	0	1011	0	0
3	al	851	0	909	0	0
3	am	973	0	1048	0	0
3	an	958	0	1032	0	0
3	ao	949	0	1019	0	0
3	ар	973	0	1048	0	0
3	aq	900	0	967	0	0
3	ar	983	0	1056	0	0
3	as	916	0	985	0	0
3	at	962	0	1035	0	0
3	au	859	0	921	0	0
4	Aa	814	0	856	0	0
4	Ab	956	0	1021	0	0
4	Ac	788	0	826	0	0
4	Ad	805	0	843	0	0
4	Af	766	0	797	0	0
4	Ag	823	0	864	0	0
4	At	956	0	1024	0	0
4	J	814	0	856	10	0
4	М	956	0	1024	15	0
4	N	830	0	871	22	0
4	0	814	0	856	27	0
4	Р	830	0	871	7	0
4	Q	956	0	1021	12	0
4	R	788	0	826	10	0
4	S	956	0	1021	17	0
4	Т	956	0	1021	14	0
4	U	956	0	1021	8	0
4	V	956	0	1021	19	0
4	W	956	0	1021	25	0
4	av	814	0	856	0	0
4	aw	956	0	1021	0	0
4	ax	956	0	1021	0	0
4	ay	956	0	1021	0	0
4	az	788	0	826	0	0
5	X	901	0	951	9	0
5	Y	896	0	946	7	0
5	Z	739	0	779	9	0

	nueu jion	<i>i previous</i>	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	a	995	0	1059	0	0
5	b	833	0	880	0	0
5	с	860	0	906	0	0
5	d	808	0	846	0	0
5	е	768	0	809	0	0
5	f	808	0	846	0	0
5	g	837	0	883	0	0
5	h	801	0	838	0	0
5	i	817	0	858	0	0
5	j	853	0	898	0	0
5	k	817	0	858	0	0
5	1	917	0	971	0	0
5	m	808	0	846	0	0
5	n	910	0	964	0	0
5	0	880	0	928	0	0
5	р	837	0	883	0	0
5	q	891	0	941	0	0
5	r	860	0	906	0	0
5	S	780	0	818	0	0
5	t	890	0	941	0	0
5	u	1001	0	1064	0	0
6	0	741	0	796	7	0
6	1	703	0	755	6	0
6	2	750	0	809	14	0
6	3	736	0	793	7	0
6	4	703	0	755	7	0
6	5	750	0	809	7	0
6	6	688	0	745	6	0
6	7	786	0	847	12	0
6	8	694	0	742	13	0
6	9	792	0	852	14	0
6	CD	762	0	825	15	0
6	a2	782	0	844	0	0
6	a3	703	0	755	0	0
6	a4	754	0	812	0	0
6	a5	725	0	779	0	0
6	a6	786	0	847	0	0
6	a7	792	0	852	0	0
6	a8	703	0	755	0	0
6	a9	716	0	766	0	0
6	v	767	0	828	0	0
6	W	800	0	861	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	Х	771	0	831	0	0
6	У	792	0	852	0	0
6	Z	673	0	722	0	0
7	Ah	992	0	1087	0	0
7	Ai	1298	0	1466	0	0
7	Aj	780	0	838	0	0
7	Ak	986	0	1082	0	0
7	Al	808	0	866	0	0
7	Am	1340	0	1519	0	0
7	An	975	0	1072	0	0
7	Ao	1215	0	1363	0	0
7	Ap	555	0	584	0	0
7	Aq	1456	0	1660	0	0
7	Ar	1375	0	1585	0	0
7	As	999	0	1097	0	0
All	All	181715	0	149311	363	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

The worst 5 of 363 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:C:279:GLN:HE22	4:O:419:GLN:CD	1.10	1.51
3:C:279:GLN:NE2	4:O:419:GLN:NE2	1.80	1.28
3:C:279:GLN:NE2	4:0:419:GLN:CD	1.92	1.22
3:C:279:GLN:HE22	4:O:419:GLN:NE2	1.38	1.18
3:C:279:GLN:NE2	4:O:419:GLN:OE1	1.80	1.11

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	А	120/130~(92%)	110 (92%)	10 (8%)	0	100	100
3	Ae	120/130~(92%)	113~(94%)	7~(6%)	0	100	100
3	В	124/130~(95%)	115~(93%)	9~(7%)	0	100	100
3	С	127/130~(98%)	115~(91%)	12 (9%)	0	100	100
3	D	121/130~(93%)	115~(95%)	6 (5%)	0	100	100
3	Ε	126/130~(97%)	121 (96%)	5 (4%)	0	100	100
3	F	117/130~(90%)	110 (94%)	7 (6%)	0	100	100
3	G	127/130~(98%)	122 (96%)	5 (4%)	0	100	100
3	Н	123/130~(95%)	119 (97%)	4 (3%)	0	100	100
3	Ι	127/130~(98%)	121 (95%)	6 (5%)	0	100	100
3	K	126/130~(97%)	119 (94%)	7 (6%)	0	100	100
3	L	128/130~(98%)	124 (97%)	4 (3%)	0	100	100
3	aj	121/130~(93%)	111 (92%)	10 (8%)	0	100	100
3	ak	121/130~(93%)	114 (94%)	7 (6%)	0	100	100
3	al	109/130~(84%)	106 (97%)	3 (3%)	0	100	100
3	am	125/130~(96%)	115 (92%)	9 (7%)	1 (1%)	16	51
3	an	123/130~(95%)	112 (91%)	11 (9%)	0	100	100
3	ao	122/130~(94%)	115 (94%)	7 (6%)	0	100	100
3	ар	125/130~(96%)	119 (95%)	6 (5%)	0	100	100
3	aq	115/130~(88%)	111 (96%)	4 (4%)	0	100	100
3	ar	127/130~(98%)	119 (94%)	8 (6%)	0	100	100
3	as	117/130~(90%)	113 (97%)	4 (3%)	0	100	100
3	at	124/130~(95%)	114 (92%)	10 (8%)	0	100	100
3	au	109/130~(84%)	104 (95%)	5 (5%)	0	100	100
4	Aa	101/123~(82%)	97~(96%)	4 (4%)	0	100	100
4	Ab	121/123~(98%)	114 (94%)	7 (6%)	0	100	100
4	Ac	98/123~(80%)	98 (100%)	0	0	100	100
4	Ad	100/123~(81%)	97~(97%)	3 (3%)	0	100	100
4	Af	95/123~(77%)	92 (97%)	3 (3%)	0	100	100
4	Ag	102/123~(83%)	99~(97%)	3 (3%)	0	100	100
4	At	121/123~(98%)	112 (93%)	7 (6%)	2 (2%)	7	37
4	J	101/123~(82%)	95 (94%)	6 (6%)	0	100	100

α \cdots 1	C		
Continued	trom	previous	page
• • • • • • • • • • • • •		P	1

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	М	121/123~(98%)	113 (93%)	8 (7%)	0	100	100
4	Ν	103/123~(84%)	97~(94%)	5 (5%)	1 (1%)	13	46
4	Ο	101/123~(82%)	94 (93%)	7 (7%)	0	100	100
4	Р	103/123~(84%)	101 (98%)	2 (2%)	0	100	100
4	Q	121/123~(98%)	109 (90%)	12 (10%)	0	100	100
4	R	98/123~(80%)	94 (96%)	4 (4%)	0	100	100
4	S	121/123~(98%)	110 (91%)	11 (9%)	0	100	100
4	Т	121/123~(98%)	114 (94%)	7 (6%)	0	100	100
4	U	121/123~(98%)	110 (91%)	11 (9%)	0	100	100
4	V	121/123~(98%)	110 (91%)	11 (9%)	0	100	100
4	W	121/123~(98%)	114 (94%)	7 (6%)	0	100	100
4	av	101/123~(82%)	96 (95%)	5 (5%)	0	100	100
4	aw	121/123~(98%)	108 (89%)	13 (11%)	0	100	100
4	ax	121/123~(98%)	114 (94%)	6 (5%)	1 (1%)	16	51
4	ay	121/123~(98%)	115 (95%)	6 (5%)	0	100	100
4	az	98/123~(80%)	96 (98%)	2 (2%)	0	100	100
5	Х	110/136~(81%)	105 (96%)	5 (4%)	0	100	100
5	Y	109/136~(80%)	105 (96%)	4 (4%)	0	100	100
5	Ζ	88/136~(65%)	87 (99%)	1 (1%)	0	100	100
5	a	123/136~(90%)	116 (94%)	7 (6%)	0	100	100
5	b	99/136~(73%)	97~(98%)	2 (2%)	0	100	100
5	с	104/136~(76%)	101 (97%)	3 (3%)	0	100	100
5	d	96/136~(71%)	92 (96%)	4 (4%)	0	100	100
5	е	92/136~(68%)	89 (97%)	3 (3%)	0	100	100
5	f	96/136~(71%)	96 (100%)	0	0	100	100
5	g	100/136~(74%)	98 (98%)	2 (2%)	0	100	100
5	h	95/136~(70%)	95 (100%)	0	0	100	100
5	i	97/136~(71%)	95 (98%)	2 (2%)	0	100	100
5	j	103/136~(76%)	100 (97%)	3 (3%)	0	100	100
5	k	97/136~(71%)	96 (99%)	1 (1%)	0	100	100
5	1	112/136~(82%)	108 (96%)	4 (4%)	0	100	100

Continued from previous page...

5m96/136 (71%)90 (94%)6 (6%)01001005n111/136 (82%)104 (94%)7 (6%)0.01001005o100/136 (74%)98 (98%)2 (2%)0.01001005q100/136 (74%)98 (98%)2 (2%)0.01001005q100/136 (76%)101 (94%)7 (6%)0.01001005r104/136 (76%)100 (96%)4 (4%)0.01001005s93/136 (68%)91 (98%)2 (2%)0.01001005s93/136 (68%)91 (98%)7 (6%)0.01001005s93/136 (68%)91 (98%)4 (3%)0.0100100610124/136 (91%)120 (97%)4 (3%)0.01001006092/103 (89%)90 (98%)1 (1%)1 (1%)1011006185/103 (82%)84 (99%)1 (1%)1001001006391/103 (88%)88 (97%)3 (3%)0.01001006485/103 (82%)84 (95%)4 (4%)0.01001006683/103 (81%)81 (98%)2 (2%)0.01001006684/103 (82%)85 (98%)2 (2%)0.01001006699/103 (96%)85 (98%)2 (2%)0.010010066<	Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
11111113610410476%01001000107/136100100989876%010010010100101989822%010010010010100101101989876%01001001001010110110110100 <td>5</td> <td>m</td> <td>96/136~(71%)</td> <td>90 (94%)</td> <td>6 (6%)</td> <td>0</td> <td>100</td> <td>100</td>	5	m	96/136~(71%)	90 (94%)	6 (6%)	0	100	100
5o107/136 (79%)100 (94%)7 (6%)010105p100/136 (74%)98 (98%)2 (2%)0.010105q108/136 (79%)101 (94%)7 (6%)0.01001005r104/136 (76%)100 (96%)4 (4%)0.01001005s93/136 (68%)91 (98%)2 (2%)0.01001005t108/136 (79%)101 (94%)7 (6%)0.01001005u124/136 (91%)120 (97%)4 (3%)0.01001006092/103 (89%)90 (98%)1 (1%)1 (1%)1001006185/103 (82%)84 (99%)1 (1%)0.01001006391/103 (88%)88 (97%)3 (3%)0.01001001006391/103 (88%)88 (97%)3 (3%)0.01001001001006485/103 (82%)81 (95%)4 (4%)0.0100	5	n	111/136~(82%)	104 (94%)	7 (6%)	0	100	100
5p100/136 (74%)98 (98%)2 (2%)01001005q108/136 (79%)101 (94%)7 (6%)01001005r104/136 (76%)100 (96%)4 (4%)01001005s93/136 (68%)91 (98%)2 (2%)01001005t108/136 (79%)101 (94%)7 (6%)01001001005u124/136 (91%)120 (97%)4 (3%)01001001006092/103 (89%)90 (98%)1 (1%)01001001006185/103 (82%)84 (99%)1 (1%)01001001006391/103 (88%)88 (97%)3 (3%)01001001006485/103 (82%)88 (97%)3 (3%)01001001006391/103 (88%)88 (97%)3 (3%)01001001006485/103 (82%)88 (97%)3 (3%)01001001006683/103 (81%)88 (98%)2 (2%)01001001006799/103 (96%)95 (96%)4 (4%)01001001006884/103 (82%)82 (98%)2 (2%)010010010066395/103 (96%)96 (96%)1 (1%)01001001006	5	О	107/136~(79%)	100 (94%)	7 (6%)	0	100	100
5q108/136 (79%)101 (94%)7 (6%)01001005r104/136 (76%)100 (96%)4 (4%)01001005s93/136 (68%)91 (98%)2 (2%)01001005t108/136 (79%)101 (94%)7 (6%)01001001005u124/136 (91%)120 (97%)4 (3%)01001001006092/103 (89%)90 (98%)1 (1%)1 (1%)1246185/103 (82%)84 (99%)1 (1%)01001006293/103 (90%)85 (91%)8 (9%)01001006391/103 (88%)88 (97%)3 (3%)01001006485/103 (82%)81 (95%)4 (4%)01001006633/103 (90%)89 (96%)4 (4%)01001006683/103 (81%)81 (98%)2 (2%)01001006684/103 (82%)85 (90%)9 (10%)1 (1%)101006699/103 (96%)95 (95%)5 (5%)01001006a385/103 (82%)83 (98%)2 (2%)01001006a494/103 (91%)90 (96%)4 (4%)01001006a589/103 (66%)88 (99%)1 (1%)01001006a4 <td>5</td> <td>р</td> <td>100/136~(74%)</td> <td>98~(98%)</td> <td>2 (2%)</td> <td>0</td> <td>100</td> <td>100</td>	5	р	100/136~(74%)	98~(98%)	2 (2%)	0	100	100
5r104/136 (76%)100 (96%)4 (4%)01001005s93/136 (68%)91 (98%)2 (2%)01001005t108/136 (79%)101 (94%)7 (6%)01001005u124/136 (91%)120 (97%)4 (3%)01001001006092/103 (89%)90 (98%)1 (1%)1 (1%)12456185/103 (82%)84 (99%)1 (1%)01001001006293/103 (90%)85 (91%)8 (9%)01001001006391/103 (88%)88 (97%)3 (3%)01001001006485/103 (82%)81 (95%)4 (5%)01001001006683/103 (80%)89 (96%)4 (4%)01001001006683/103 (82%)82 (98%)2 (2%)01001001006799/103 (96%)95 (95%)5 (5%)010010010010068385/103 (82%)83 (98%)2 (2%)01001001001001006a494/103 (91%)90 (96%)4 (4%)0100 <td>5</td> <td>q</td> <td>108/136~(79%)</td> <td>101 (94%)</td> <td>7 (6%)</td> <td>0</td> <td>100</td> <td>100</td>	5	q	108/136~(79%)	101 (94%)	7 (6%)	0	100	100
5s93/136 (68%)91 (98%)2 (2%)01001005t108/136 (79%)101 (94%)7 (6%)01001005u124/136 (91%)120 (97%)4 (3%)01001006092/103 (89%)90 (98%)1 (1%)1 (1%)12456185/103 (82%)84 (99%)1 (1%)01001001006293/103 (90%)85 (91%)8 (9%)01001001006391/103 (88%)88 (97%)3 (3%)01001001006485/103 (82%)81 (95%)4 (5%)01001001006593/103 (90%)89 (96%)4 (4%)01001001006683/103 (81%)81 (98%)2 (2%)01001001006683/103 (82%)82 (98%)2 (2%)01001001001006799/103 (96%)95 (95%)5 (5%)01001001001001006638/103 (82%)83 (98%)2 (2%)0100 <td>5</td> <td>r</td> <td>104/136~(76%)</td> <td>100 (96%)</td> <td>4 (4%)</td> <td>0</td> <td>100</td> <td>100</td>	5	r	104/136~(76%)	100 (96%)	4 (4%)	0	100	100
5t108/136 (79%)101 (94%)7 (6%)01001005u124/136 (91%)120 (97%)4 (3%)01001006092/103 (89%)90 (98%)1 (1%)1 (1%)12456185/103 (82%)84 (99%)1 (1%)01001001006293/103 (90%)85 (91%)8 (9%)01001001006391/103 (88%)88 (97%)3 (3%)01001001006485/103 (82%)81 (95%)4 (5%)01001001006593/103 (90%)89 (96%)4 (4%)01001001006683/103 (81%)81 (98%)2 (2%)01001001006799/103 (96%)95 (96%)4 (4%)01001001006884/103 (82%)82 (98%)2 (2%)01001001006695/103 (92%)85 (90%)9 (10%)1 (1%)1001001006698/103 (85%)94 (96%)4 (4%)01001001006689/103 (85%)88 (99%)1 (1%)01001001006689/103 (86%)88 (99%)1 (1%)01001001006689/103 (85%)88 (98%)2 (2%)01001001006 <td>5</td> <td>s</td> <td>93/136~(68%)</td> <td>91 (98%)</td> <td>2 (2%)</td> <td>0</td> <td>100</td> <td>100</td>	5	s	93/136~(68%)	91 (98%)	2 (2%)	0	100	100
5u124/136 (91%)120 (97%)4 (3%)01001006092/103 (89%)90 (98%)1 (1%)1 (1%)1246185/103 (82%)84 (99%)1 (1%)01001006293/103 (90%)85 (91%)8 (9%)01001006391/103 (88%)88 (97%)3 (3%)01001006485/103 (82%)81 (95%)4 (5%)01001006593/103 (90%)89 (96%)4 (4%)01001006683/103 (81%)81 (98%)2 (2%)01001006799/103 (96%)95 (96%)4 (4%)01001006884/103 (82%)82 (98%)2 (2%)01001006884/103 (95%)95 (95%)5 (5%)01001006A298/103 (95%)94 (96%)4 (4%)01001006A385/103 (82%)83 (98%)2 (2%)01001006A49/103 (91%)90 (96%)4 (4%)01001006A385/103 (82%)83 (98%)2 (2%)01001006A49/103 (91%)96 (97%)3 (3%)01001006A589/103 (85%)83 (98%)2 (2%)01001006A699/103 (96%)91 (91%	5	t	108/136~(79%)	101 (94%)	7 (6%)	0	100	100
6092/103 (89%)90 (98%)1 (1%)1 (1%)12456185/103 (82%)84 (99%)1 (1%)001001006293/103 (90%)85 (91%)8 (9%)001001006391/103 (88%)88 (97%)3 (3%)001001006485/103 (82%)81 (95%)4 (5%)001001006485/103 (82%)89 (96%)4 (4%)001001006683/103 (81%)81 (98%)2 (2%)001001006683/103 (82%)95 (96%)4 (4%)001001006799/103 (96%)95 (95%)5 (5%)01001006884/103 (82%)85 (90%)9 (10%)1 (1%)122456385/103 (92%)85 (90%)9 (10%)1 (1%)1001006a385/103 (92%)83 (98%)2 (2%)001001006a494/103 (91%)90 (96%)4 (4%)001001006a589/103 (86%)88 (98%)1 (1%)001001006a699/103 (96%)96 (97%)3 (3%)001001006a699/103 (97%)91 (91%)9 (99%)1 (1%)1001006a699/103 (96%)96 (97%)3 (3%)001001006a6 <t< td=""><td>5</td><td>u</td><td>124/136~(91%)</td><td>120 (97%)</td><td>4 (3%)</td><td>0</td><td>100</td><td>100</td></t<>	5	u	124/136~(91%)	120 (97%)	4 (3%)	0	100	100
61 $85/103 (82%)$ $84 (99%)$ $1 (1%)$ 0 100 100 6 2 $93/103 (90%)$ $85 (91%)$ $8 (9%)$ 0 100 100 6 3 $91/103 (88%)$ $88 (97%)$ $3 (3%)$ 0 100 100 6 4 $85/103 (82%)$ $81 (95%)$ $4 (5%)$ 0 100 100 6 5 $93/103 (90%)$ $89 (96%)$ $4 (4%)$ 0 100 100 6 6 $83/103 (81%)$ $81 (98%)$ $2 (2%)$ 0 100 100 6 6 $83/103 (81%)$ $81 (98%)$ $2 (2%)$ 0 100 100 6 7 $99/103 (96%)$ $95 (96%)$ $4 (4%)$ 0 100 100 6 8 $84/103 (82%)$ $82 (98%)$ $2 (2%)$ 0 100 100 6 9 $100/103 (97%)$ $95 (95%)$ $5 (5%)$ 0 100 100 6 $a2$ $98/103 (92%)$ $85 (90%)$ $9 (10%)$ $1 (1%)$ 100 6 $a3$ $85/103 (82%)$ $83 (98%)$ $2 (2%)$ 0 100 100 6 $a4$ $94/103 (91%)$ $90 (96%)$ $4 (4%)$ 0 100 100 6 $a4$ $94/103 (91%)$ $90 (96%)$ $3 (3%)$ 0 100 100 6 $a4$ $94/103 (91%)$ $90 (96%)$ $3 (3%)$ 0 100 100 6 $a6$ $99/103 (96%)$ $83 (98%)$ <	6	0	92/103~(89%)	90 (98%)	1 (1%)	1 (1%)	12	45
6 2 $93/103 (90%)$ $85 (91%)$ $8 (9%)$ 0 100 100 6 3 $91/103 (88%)$ $88 (97%)$ $3 (3%)$ 0 100 100 6 4 $85/103 (82%)$ $81 (95%)$ $4 (5%)$ 0 100 100 6 5 $93/103 (90%)$ $89 (96%)$ $4 (4%)$ 0 100 100 6 6 $83/103 (81%)$ $81 (98%)$ $2 (2%)$ 0 100 100 6 6 $83/103 (81%)$ $81 (98%)$ $2 (2%)$ 0 100 100 6 7 $99/103 (96%)$ $95 (96%)$ $4 (4%)$ 0 100 100 6 8 $84/103 (82%)$ $82 (98%)$ $2 (2%)$ 0 100 100 6 9 $100/103 (97%)$ $95 (95%)$ $5 (5%)$ 0 100 100 6 $a2$ $98/103 (95%)$ $94 (96%)$ $4 (4%)$ 0 100 100 6 $a3$ $85/103 (82%)$ $83 (98%)$ $2 (2%)$ 0 100 100 6 $a4$ $94/103 (91%)$ $90 (96%)$ $1(1%)$ 0 100 100 6 $a6$ $99/103 (96%)$ $96 (97%)$ $3(3%)$ 0 100 100 6 $a6$ $89/103 (85%)$ $83 (98%)$ $2(2%)$ 0 100 100 6 $a6$ $85/103 (82%)$ $86 (98%)$ $2(2%)$ 0 100 100 6 $a9$ $88/103 (85%)$ <t< td=""><td>6</td><td>1</td><td>85/103~(82%)</td><td>84 (99%)</td><td>1 (1%)</td><td>0</td><td>100</td><td>100</td></t<>	6	1	85/103~(82%)	84 (99%)	1 (1%)	0	100	100
6 3 $91/103 (88\%)$ $88 (97\%)$ $3 (3\%)$ 0 100 100 6 4 $85/103 (82\%)$ $81 (95\%)$ $4 (5\%)$ 0 100 100 6 5 $93/103 (90\%)$ $89 (96\%)$ $4 (4\%)$ 0 100 100 6 6 $83/103 (81\%)$ $81 (98\%)$ $2 (2\%)$ 0 100 100 6 7 $99/103 (96\%)$ $95 (96\%)$ $4 (4\%)$ 0 100 100 6 8 $84/103 (82\%)$ $82 (98\%)$ $2 (2\%)$ 0 100 100 6 9 $100/103 (97\%)$ $95 (95\%)$ $5 (5\%)$ 0 100 100 6 8 $84/103 (82\%)$ $85 (90\%)$ $9(10\%)$ $1(1\%)$ 122 45^{10} 6 $A2$ $98/103 (95\%)$ $94 (96\%)$ $4 (4\%)$ 0 100 100 6 $a3$ $85/103 (82\%)$ $83 (98\%)$ $2 (2\%)$ 0 100 100 6 $a4$ $94/103 (91\%)$ $90 (96\%)$ $4 (4\%)$ 0 100 100 6 $a5$ $89/103 (86\%)$ $88 (99\%)$ $11(\%)$ 0 100 100 6 $a6$ $99/103 (96\%)$ $91 (91\%)$ $9(9\%)$ 0 100 100 6 $a6$ $88/103 (85\%)$ $88 (98\%)$ $2 (2\%)$ 0 100 100 6 $a6$ $85/103 (82\%)$ $86 (98\%)$ $2 (2\%)$ 0 100 100 6 $a9$ $88/103 (8$	6	2	93/103~(90%)	85 (91%)	8 (9%)	0	100	100
6 4 $85/103 (82%)$ $81 (95%)$ $4 (5%)$ 0 100 100 6 5 $93/103 (90%)$ $89 (96%)$ $4 (4%)$ 0 100 100 6 6 $83/103 (81%)$ $81 (98%)$ $2 (2%)$ 0 100 100 6 7 $99/103 (96%)$ $95 (96%)$ $4 (4%)$ 0 100 100 6 8 $84/103 (82%)$ $82 (98%)$ $2 (2%)$ 0 100 100 6 9 $100/103 (97%)$ $95 (95%)$ $5 (5%)$ 0 100 100 6 $A2$ $98/103 (95%)$ $94 (96%)$ $4 (4%)$ 0 100 100 6 $a2$ $98/103 (95%)$ $94 (96%)$ $4 (4%)$ 0 100 100 6 $a3$ $85/103 (82%)$ $83 (98%)$ $2 (2%)$ 0 100 100 6 $a4$ $94/103 (91%)$ $90 (96%)$ $4 (4%)$ 0 100 100 6 $a5$ $89/103 (86%)$ $88 (99%)$ $1 (1%)$ 0 100 100 6 $a6$ $99/103 (96%)$ $96 (97%)$ $3 (3%)$ 0 100 100 6 $a8$ $85/103 (82%)$ $83 (98%)$ $2 (2%)$ 0 100 100 6 $a9$ $88/103 (85%)$ $86 (98%)$ $2 (2%)$ 0 100 100 6 $a9$ $88/103 (85%)$ $86 (98%)$ $2 (2%)$ 0 100 100 6 x $96/103 (93%)$ <	6	3	91/103~(88%)	88 (97%)	3 (3%)	0	100	100
6 5 $93/103 (90\%)$ $89 (96\%)$ $4 (4\%)$ 0 100 100 6 6 $83/103 (81\%)$ $81 (98\%)$ $2 (2\%)$ 0 100 100 6 7 $99/103 (96\%)$ $95 (96\%)$ $4 (4\%)$ 0 100 100 6 8 $84/103 (82\%)$ $82 (98\%)$ $2 (2\%)$ 0 100 100 6 9 $100/103 (97\%)$ $95 (95\%)$ $5 (5\%)$ 0 100 100 6 CD $95/103 (92\%)$ $85 (90\%)$ $9 (10\%)$ $1 (1\%)$ 12 45^{-1} 6 $a2$ $98/103 (95\%)$ $94 (96\%)$ $4 (4\%)$ 0 100 100 100 6 $a3$ $85/103 (82\%)$ $83 (98\%)$ $2 (2\%)$ 0 100 100 100 6 $a4$ $94/103 (91\%)$ $90 (96\%)$ $4 (4\%)$ 0 100 100 100 6 $a5$ $89/103 (86\%)$ $88 (99\%)$ $1 (1\%)$ 0 100 100 100 6 $a4$ $94/103 (91\%)$ $90 (96\%)$ $3 (3\%)$ 0 100 100 100 100 100 6 $a5$ $89/103 (86\%)$ $88 (99\%)$ $1 (1\%)$ 0 100 100 100 6 $a6$ $99/103 (96\%)$ $91 (91\%)$ $9(\%)$ 0 100 100 100 6 $a8$ $85/103 (85\%)$ $86 (98\%)$ $2 (2\%)$ 0 100 100 100 6 a	6	4	85/103~(82%)	81 (95%)	4 (5%)	0	100	100
6683/103 (81%)81 (98%)2 (2%)01001006799/103 (96%)95 (96%)4 (4%)01001006884/103 (82%)82 (98%)2 (2%)010010069100/103 (97%)95 (95%)5 (5%)01001006CD95/103 (92%)85 (90%)9 (10%)1 (1%)12456a298/103 (95%)94 (96%)4 (4%)01001006a385/103 (82%)83 (98%)2 (2%)001001006a494/103 (91%)90 (96%)4 (4%)01001006a589/103 (86%)88 (99%)1 (1%)01001006a699/103 (96%)91 (91%)9 (9%)01001006a699/103 (96%)91 (91%)9 (9%)01001006a885/103 (82%)83 (98%)2 (2%)01001006a885/103 (85%)86 (98%)2 (2%)01001006a988/103 (85%)86 (98%)2 (2%)01001006a988/103 (85%)86 (98%)2 (2%)01001006w101/103 (98%)95 (99%)1 (1%)01001006w101/103 (98%)96 (99%)1 (1%)0100100796 (99%)1 (1%)	6	5	93/103~(90%)	89 (96%)	4 (4%)	0	100	100
6 7 $99/103 (96%)$ $95 (96%)$ $4 (4%)$ 0 100 100 6 8 $84/103 (82%)$ $82 (98%)$ $2 (2%)$ 0 100 100 6 9 $100/103 (97%)$ $95 (95%)$ $5 (5%)$ 0 100 100 6 CD $95/103 (92%)$ $85 (90%)$ $9 (10%)$ $1 (1%)$ 12 45 6 $a2$ $98/103 (95%)$ $94 (96%)$ $4 (4%)$ 0 100 100 6 $a3$ $85/103 (82%)$ $83 (98%)$ $2 (2%)$ 0 100 100 6 $a4$ $94/103 (91%)$ $90 (96%)$ $4 (4%)$ 0 100 100 6 $a5$ $89/103 (86%)$ $88 (99%)$ $1 (1%)$ 0 100 100 6 $a6$ $99/103 (96%)$ $96 (97%)$ $3 (3%)$ 0 100 100 6 $a6$ $88/103 (85%)$ $83 (98%)$ $2 (2%)$ 0 100 100 6 $a8$ $85/103 (82%)$ $83 (98%)$ $2 (2%)$ 0 100 100 6 $a9$ $88/103 (85%)$ $86 (98%)$ $2 (2%)$ 0 100 100 6 v $96/103 (93%)$ $95 (99%)$ $1 (1%)$ 0 100 100 6 w $101/103 (98%)$ $97 (96%)$ $4 (4%)$ 0 100 100 6 w $97/103 (94%)$ $96 (99%)$ $1 (1%)$ 0 100 100	6	6	83/103 (81%)	81 (98%)	2 (2%)	0	100	100
6884/103 (82%)82 (98%)2 (2%)010010069100/103 (97%)95 (95%)5 (5%)01001006CD95/103 (92%)85 (90%)9 (10%)1 (1%)12 45 6a298/103 (95%)94 (96%)4 (4%)01001006a385/103 (82%)83 (98%)2 (2%)01001006a494/103 (91%)90 (96%)4 (4%)01001006a589/103 (86%)88 (99%)1 (1%)01001006a699/103 (96%)96 (97%)3 (3%)01001006a7100/103 (97%)91 (91%)9 (9%)01001006a885/103 (82%)83 (98%)2 (2%)01001006a998/103 (95%)95 (99%)1 (1%)01001006a988/103 (85%)86 (98%)2 (2%)01001006w101/103 (93%)95 (99%)1 (1%)01001006w101/103 (98%)97 (96%)4 (4%)01001006x97/103 (94%)96 (99%)1 (1%)0100100	6	7	99/103~(96%)	95 (96%)	4 (4%)	0	100	100
69100/103 (97%)95 (95%)5 (5%)01001001006CD95/103 (92%)85 (90%)9 (10%)1 (1%)12 45 6a298/103 (95%)94 (96%)4 (4%)001001006a385/103 (82%)83 (98%)2 (2%)001001006a494/103 (91%)90 (96%)4 (4%)001001006a589/103 (86%)88 (99%)1 (1%)001001006a699/103 (96%)96 (97%)3 (3%)001001006a7100/103 (97%)91 (91%)9 (9%)001001006a885/103 (82%)83 (98%)2 (2%)001001006a988/103 (85%)86 (98%)2 (2%)001001006w101/103 (93%)95 (99%)1 (1%)001001006w101/103 (98%)97 (96%)4 (4%)001001006w101/103 (98%)96 (99%)1 (1%)001001006x97/103 (94%)96 (99%)1 (1%)00100100	6	8	84/103~(82%)	82 (98%)	2 (2%)	0	100	100
6CD $95/103 (92\%)$ $85 (90\%)$ $9 (10\%)$ $1 (1\%)$ 12 45 6a2 $98/103 (95\%)$ $94 (96\%)$ $4 (4\%)$ 0 100 100 100 6a3 $85/103 (82\%)$ $83 (98\%)$ $2 (2\%)$ 0 100 100 100 6a4 $94/103 (91\%)$ $90 (96\%)$ $4 (4\%)$ 0 100 100 100 6a5 $89/103 (86\%)$ $90 (96\%)$ $1 (1\%)$ 0 100 100 6a6 $99/103 (96\%)$ $96 (97\%)$ $3 (3\%)$ 0 100 100 6a6 $99/103 (96\%)$ $91 (91\%)$ $9 (9\%)$ 0 100 100 6a8 $85/103 (82\%)$ $83 (98\%)$ $2 (2\%)$ 0 100 100 6a9 $88/103 (85\%)$ $86 (98\%)$ $2 (2\%)$ 0 100 100 6w $101/103 (98\%)$ $95 (99\%)$ $1 (1\%)$ 0 100 100 6w $101/103 (98\%)$ $97 (96\%)$ $4 (4\%)$ 0 100 100 6w $101/103 (98\%)$ $97 (96\%)$ $1 (1\%)$ 0 100 100	6	9	100/103~(97%)	95~(95%)	5 (5%)	0	100	100
6a298/103 (95%)94 (96%)4 (4%)01001006a385/103 (82%)83 (98%)2 (2%)01001006a494/103 (91%)90 (96%)4 (4%)01001001006a589/103 (86%)88 (99%)1 (1%)01001001006a699/103 (96%)96 (97%)3 (3%)01001001006a7100/103 (97%)91 (91%)9 (9%)01001001006a885/103 (82%)83 (98%)2 (2%)01001001006a988/103 (85%)86 (98%)2 (2%)01001001006v96/103 (93%)95 (99%)1 (1%)01001001006w101/103 (98%)97 (96%)4 (4%)01001001006x97/103 (94%)96 (99%)1 (1%)0100100	6	CD	95/103~(92%)	85 (90%)	9 (10%)	1 (1%)	12	45
6a385/103 (82%)83 (98%)2 (2%)01001006a494/103 (91%)90 (96%)4 (4%)01001006a589/103 (86%)88 (99%)1 (1%)01001006a699/103 (96%)96 (97%)3 (3%)01001006a7100/103 (97%)91 (91%)9 (9%)01001006a885/103 (82%)83 (98%)2 (2%)01001006a988/103 (85%)86 (98%)2 (2%)01001006v96/103 (93%)95 (99%)1 (1%)01001006w101/103 (98%)97 (96%)4 (4%)01001006x97/103 (94%)96 (99%)1 (1%)0100100	6	a2	98/103~(95%)	94 (96%)	4 (4%)	0	100	100
6a494/103 (91%)90 (96%)4 (4%)001001006a589/103 (86%)88 (99%)1 (1%)001001006a699/103 (96%)96 (97%)3 (3%)001001006a7100/103 (97%)91 (91%)9 (9%)001001006a885/103 (82%)83 (98%)2 (2%)001001006a988/103 (85%)86 (98%)2 (2%)01001006v96/103 (93%)95 (99%)1 (1%)01001006w101/103 (98%)97 (96%)4 (4%)01001006x97/103 (94%)96 (99%)1 (1%)0100100	6	a3	85/103~(82%)	83~(98%)	2 (2%)	0	100	100
6a589/103 (86%)88 (99%)1 (1%)01001006a699/103 (96%)96 (97%)3 (3%)01001001006a7100/103 (97%)91 (91%)9 (9%)01001001006a885/103 (82%)83 (98%)2 (2%)01001001006a988/103 (85%)86 (98%)2 (2%)01001001006v96/103 (93%)95 (99%)1 (1%)01001001006x97/103 (94%)96 (99%)1 (1%)0100100100	6	a4	94/103~(91%)	90 (96%)	4 (4%)	0	100	100
6a699/103 (96%)96 (97%)3 (3%)01001006a7100/103 (97%)91 (91%)9 (9%)01001001006a885/103 (82%)83 (98%)2 (2%)01001001006a988/103 (85%)86 (98%)2 (2%)01001001006v96/103 (93%)95 (99%)1 (1%)01001006w101/103 (98%)97 (96%)4 (4%)01001006x97/103 (94%)96 (99%)1 (1%)0100100	6	a5	89/103~(86%)	88 (99%)	1 (1%)	0	100	100
6a7100/103 (97%)91 (91%)9 (9%)01001006a885/103 (82%)83 (98%)2 (2%)01001006a988/103 (85%)86 (98%)2 (2%)01001001006v96/103 (93%)95 (99%)1 (1%)01001001006w101/103 (98%)97 (96%)4 (4%)01001001006x97/103 (94%)96 (99%)1 (1%)0100100	6	a6	99/103~(96%)	96~(97%)	3 (3%)	0	100	100
6a885/103 (82%)83 (98%)2 (2%)01001006a988/103 (85%)86 (98%)2 (2%)01001001006v96/103 (93%)95 (99%)1 (1%)01001001006w101/103 (98%)97 (96%)4 (4%)01001001006x97/103 (94%)96 (99%)1 (1%)0100100	6	a7	100/103~(97%)	91 (91%)	9 (9%)	0	100	100
6a988/103 (85%)86 (98%)2 (2%)01001006v96/103 (93%)95 (99%)1 (1%)01001006w101/103 (98%)97 (96%)4 (4%)01001006x97/103 (94%)96 (99%)1 (1%)0100100	6	a8	85/103~(82%)	83 (98%)	2 (2%)	0	100	100
6 v 96/103 (93%) 95 (99%) 1 (1%) 0 100 100 6 w 101/103 (98%) 97 (96%) 4 (4%) 0 100 100 6 x 97/103 (94%) 96 (99%) 1 (1%) 0 100 100	6	a9	88/103~(85%)	86 (98%)	2(2%)	0	100	100
6 w 101/103 (98%) 97 (96%) 4 (4%) 0 100 100 6 x 97/103 (94%) 96 (99%) 1 (1%) 0 100 100	6	v	96/103~(93%)	95~(99%)	1 (1%)	0	100	100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	W	101/103~(98%)	97 (96%)	4 (4%)	0	100	100
	6	x	97/103~(94%)	96 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
6	У	100/103~(97%)	95~(95%)	5 (5%)	0	100	100
6	z	82/103~(80%)	79~(96%)	3 (4%)	0	100	100
7	Ah	128/196~(65%)	119~(93%)	9~(7%)	0	100	100
7	Ai	168/196~(86%)	147 (88%)	21 (12%)	0	100	100
7	Aj	101/196~(52%)	92 (91%)	9 (9%)	0	100	100
7	Ak	127/196~(65%)	114 (90%)	13 (10%)	0	100	100
7	Al	105/196~(54%)	94 (90%)	11 (10%)	0	100	100
7	Am	173/196~(88%)	150 (87%)	23 (13%)	0	100	100
7	An	126/196~(64%)	110 (87%)	16 (13%)	0	100	100
7	Ao	157/196~(80%)	138 (88%)	18 (12%)	1 (1%)	22	55
7	Ap	71/196~(36%)	67~(94%)	4 (6%)	0	100	100
7	Aq	188/196~(96%)	172 (92%)	16 (8%)	0	100	100
7	Ar	176/196~(90%)	144 (82%)	32 (18%)	0	100	100
7	As	129/196~(66%)	111 (86%)	17 (13%)	1 (1%)	16	51
All	All	11912/14160 (84%)	11227 (94%)	676 (6%)	9 (0%)	50	79

5 of 9 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	Ν	205	PRO
6	0	499	ARG
3	am	797	ALA
4	At	20	LYS
6	CD	312	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	А	97/102~(95%)	96~(99%)	1 (1%)	73 85
3	Ae	97/102~(95%)	96~(99%)	1 (1%)	73 85

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	В	99/102~(97%)	98~(99%)	1 (1%)	73	85
3	С	101/102~(99%)	99~(98%)	2(2%)	50	72
3	D	97/102~(95%)	95~(98%)	2(2%)	48	71
3	Е	100/102~(98%)	99~(99%)	1 (1%)	73	85
3	F	95/102~(93%)	94 (99%)	1 (1%)	70	83
3	G	101/102~(99%)	100 (99%)	1 (1%)	73	85
3	Н	99/102~(97%)	95~(96%)	4 (4%)	27	56
3	Ι	101/102~(99%)	99~(98%)	2(2%)	50	72
3	К	100/102~(98%)	100 (100%)	0	100	100
3	L	102/102~(100%)	101 (99%)	1 (1%)	73	85
3	aj	97/102~(95%)	94 (97%)	3 (3%)	35	62
3	ak	97/102~(95%)	92~(95%)	5(5%)	19	49
3	al	86/102 (84%)	86 (100%)	0	100	100
3	am	100/102~(98%)	98~(98%)	2(2%)	50	72
3	an	99/102~(97%)	96~(97%)	3 (3%)	36	63
3	ao	98/102~(96%)	98 (100%)	0	100	100
3	ар	100/102~(98%)	100 (100%)	0	100	100
3	aq	94/102~(92%)	93~(99%)	1 (1%)	70	83
3	ar	101/102~(99%)	99~(98%)	2(2%)	50	72
3	as	95/102~(93%)	95~(100%)	0	100	100
3	at	99/102~(97%)	98~(99%)	1 (1%)	73	85
3	au	88/102~(86%)	87~(99%)	1 (1%)	70	83
4	Aa	88/103~(85%)	86~(98%)	2(2%)	45	68
4	Ab	103/103~(100%)	102~(99%)	1 (1%)	73	85
4	Ac	85/103~(82%)	84 (99%)	1 (1%)	67	82
4	Ad	87/103 (84%)	87 (100%)	0	100	100
4	Af	83/103 (81%)	82~(99%)	1 (1%)	67	82
4	Ag	89/103 (86%)	87~(98%)	2(2%)	47	69
4	At	103/103~(100%)	100 (97%)	3(3%)	37	63
4	J	88/103 (85%)	87~(99%)	1 (1%)	70	83
4	М	103/103~(100%)	101 (98%)	2 (2%)	52	73

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
4	Ν	90/103~(87%)	90 (100%)	0	100	100
4	Ο	88/103~(85%)	86~(98%)	2(2%)	45	68
4	Р	90/103~(87%)	88~(98%)	2(2%)	47	69
4	Q	103/103~(100%)	102~(99%)	1 (1%)	73	85
4	R	85/103~(82%)	83~(98%)	2(2%)	44	67
4	S	103/103~(100%)	101~(98%)	2(2%)	52	73
4	Т	103/103~(100%)	102~(99%)	1 (1%)	73	85
4	U	103/103~(100%)	102~(99%)	1 (1%)	73	85
4	V	103/103~(100%)	101~(98%)	2(2%)	52	73
4	W	103/103~(100%)	103~(100%)	0	100	100
4	av	88/103~(85%)	87~(99%)	1 (1%)	70	83
4	aw	103/103~(100%)	101~(98%)	2(2%)	52	73
4	ax	103/103~(100%)	102~(99%)	1 (1%)	73	85
4	ay	103/103~(100%)	101~(98%)	2(2%)	52	73
4	az	85/103~(82%)	84 (99%)	1 (1%)	67	82
5	Х	93/111~(84%)	89~(96%)	4 (4%)	25	54
5	Y	93/111~(84%)	92~(99%)	1 (1%)	70	83
5	Ζ	78/111~(70%)	76~(97%)	2(3%)	41	65
5	a	102/111~(92%)	99~(97%)	3~(3%)	37	63
5	b	88/111~(79%)	86~(98%)	2(2%)	45	68
5	с	90/111~(81%)	88~(98%)	2(2%)	47	69
5	d	85/111~(77%)	85 (100%)	0	100	100
5	е	81/111~(73%)	79~(98%)	2(2%)	42	66
5	f	85/111~(77%)	85 (100%)	0	100	100
5	g	88/111~(79%)	86~(98%)	2(2%)	45	68
5	h	84/111~(76%)	81~(96%)	3~(4%)	30	59
5	i	86/111 (78%)	83 (96%)	3 (4%)	31	60
5	j	89/111 (80%)	87~(98%)	2 (2%)	47	69
5	k	86/111 (78%)	85 (99%)	1 (1%)	67	82
5	1	95/111 (86%)	92~(97%)	3 (3%)	34	61
5	m	85/111 (77%)	82 (96%)	3 (4%)	31	60

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
5	n	94/111~(85%)	93~(99%)	1 (1%)	70	83
5	О	92/111~(83%)	91 (99%)	1 (1%)	70	83
5	р	88/111 (79%)	87~(99%)	1 (1%)	70	83
5	q	93/111 (84%)	90~(97%)	3(3%)	34	61
5	r	90/111 (81%)	86 (96%)	4 (4%)	24	53
5	s	82/111 (74%)	82 (100%)	0	100	100
5	t	93/111 (84%)	92~(99%)	1 (1%)	70	83
5	u	103/111 (93%)	99~(96%)	4 (4%)	27	57
6	0	74/79~(94%)	73~(99%)	1 (1%)	62	79
6	1	72/79~(91%)	71 (99%)	1 (1%)	62	79
6	2	75/79~(95%)	74 (99%)	1 (1%)	65	81
6	3	74/79~(94%)	74 (100%)	0	100	100
6	4	72/79~(91%)	71 (99%)	1 (1%)	62	79
6	5	75/79~(95%)	75 (100%)	0	100	100
6	6	71/79~(90%)	70 (99%)	1 (1%)	62	79
6	7	77/79~(98%)	74 (96%)	3 (4%)	27	57
6	8	71/79~(90%)	69~(97%)	2(3%)	38	64
6	9	78/79~(99%)	76 (97%)	2 (3%)	41	65
6	CD	76/79~(96%)	74 (97%)	2 (3%)	41	65
6	a2	77/79~(98%)	76~(99%)	1 (1%)	65	81
6	a3	72/79~(91%)	71 (99%)	1 (1%)	62	79
6	a4	75/79~(95%)	74 (99%)	1 (1%)	65	81
6	a5	73/79~(92%)	73 (100%)	0	100	100
6	a6	77/79~(98%)	76 (99%)	1 (1%)	65	81
6	a7	78/79~(99%)	78 (100%)	0	100	100
6	a8	72/79~(91%)	69 (96%)	3 (4%)	25	54
6	a9	72/79~(91%)	70 (97%)	2 (3%)	38	64
6	V	76/79~(96%)	74 (97%)	2 (3%)	41	65
6	W	79/79~(100%)	78~(99%)	1 (1%)	65	81
6	х	76/79~(96%)	76 (100%)	0	100	100
6	У	78/79~(99%)	78 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
6	Z	69/79~(87%)	68~(99%)	1 (1%)	62	79
7	Ah	104/158~(66%)	99~(95%)	5 (5%)	21	51
7	Ai	135/158~(85%)	129~(96%)	6 (4%)	24	53
7	Aj	82/158~(52%)	79~(96%)	3 (4%)	29	58
7	Ak	103/158~(65%)	101 (98%)	2 (2%)	52	73
7	Al	85/158~(54%)	80 (94%)	5 (6%)	16	45
7	Am	140/158~(89%)	136~(97%)	4 (3%)	37	63
7	An	102/158~(65%)	96~(94%)	6 (6%)	16	45
7	Ao	127/158~(80%)	126~(99%)	1 (1%)	79	88
7	Ap	57/158~(36%)	56~(98%)	1 (2%)	54	74
7	Aq	152/158~(96%)	146 (96%)	6 (4%)	27	57
7	Ar	144/158~(91%)	138 (96%)	6 (4%)	25	54
7	As	105/158~(66%)	99~(94%)	6 (6%)	17	46
All	All	9893/11376~(87%)	9699~(98%)	194 (2%)	50	72

 $5~{\rm of}~194$ residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
3	am	786	ARG
7	Ah	417	LEU
3	an	950	ARG
4	ay	451	LYS
7	Ai	157	THR

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 92 such side chains are listed below:

Mol	Chain	Res	Type
6	0	575	GLN
3	an	981	ASN
6	2	739	HIS
6	a8	1481	ASN
3	aq	4141	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-38407. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 144

Y Index: 144

Z Index: 144

6.2.2 Raw map

X Index: 144

Y Index: 144

Z Index: 144

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 125

Z Index: 139

6.3.2 Raw map

X Index: 125

Y Index: 154

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0293. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1585 $\rm nm^3;$ this corresponds to an approximate mass of 1431 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.278 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.278 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.60	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	-	5.30	_

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-38407 and PDB model 8XJV. Per-residue inclusion information can be found in section 3 on page 17.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0293 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0293).

9.4 Atom inclusion (i)

At the recommended contour level, 95% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0293) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.8730	0.4240
0	0.9070	0.4750
1	0.8100	0.4720
2	0.8650	0.4430
3	0.8950	0.4770
4	0.9020	0.4890
5	0.8970	0.4900
6	0.9040	0.4700
7	0.8970	0.4640
8	0.8890	0.4680
9	0.8960	0.4720
A	0.8140	0.4670
Aa	0.8920	0.4720
Ab	0.8650	0.4650
Ac	0.8970	0.4690
Ad	0.9080	0.4860
Ae	0.8740	0.4860
Af	0.9020	0.4770
Ag	0.8810	0.4810
Ah	0.7590	0.4280
Ai	0.7400	0.4050
Aj	0.8010	0.4340
Ak	0.7830	0.4280
Al	0.7160	0.4070
Am	0.7550	0.4180
An	0.7800	0.4260
Ao	0.7500	0.4200
Ap	0.7740	0.4140
Aq	0.7420	0.4000
Ar	0.7520	0.4060
As	0.7480	0.3970
At	0.8820	0.4810
Au	0.8820	0.3730
Av	0.8800	0.3760
В	0.8900	0.5000

Chain	Atom inclusion	Q-score
С	0.9000	0.5050
CD	0.8740	0.4630
D	0.8850	0.4740
Е	0.8020	0.4670
F	0.8990	0.4880
G	0.8870	0.4880
Н	0.8840	0.4740
Ι	0.8830	0.4770
J	0.9290	0.4860
К	0.8780	0.4930
L	0.8440	0.4840
М	0.7980	0.4500
N	0.9120	0.5040
0	0.8850	0.4940
Р	0.9160	0.4930
Q	0.8040	0.4750
R	0.9020	0.4670
S	0.8780	0.4620
Т	0.8770	0.4580
U	0.8710	0.4660
V	0.8770	0.4790
W	0.8770	0.4810
Х	0.8570	0.4680
Y	0.9040	0.4800
Z	0.9370	0.4810
a	0.8900	0.4630
a2	0.8690	0.4540
a3	0.8830	0.4850
a4	0.9160	0.4870
a5	0.8650	0.4720
a6	0.9070	0.4910
a7	0.8820	0.4840
a8	0.8380	0.4770
a9	0.8460	0.4730
aj	0.8780	0.4850
ak	0.8660	0.4950
al	0.8980	0.5070
am	0.8860	0.5050
an	0.8570	0.4590
ao	0.8730	0.4820
ap	0.8900	0.4800
aq	0.8590	0.4680

Chain	Atom inclusion	Q-score
ar	0.8970	0.4910
as	0.8770	0.4920
at	0.8620	0.4880
au	0.8650	0.4760
av	0.9150	0.4830
aw	0.8880	0.4820
ax	0.8950	0.4850
ay	0.8730	0.4890
az	0.9200	0.4860
b	0.8070	0.4510
С	0.9090	0.4850
d	0.9020	0.4740
е	0.9110	0.4890
f	0.9200	0.4770
g	0.9120	0.4910
h	0.9260	0.4800
i	0.9330	0.4960
j	0.9050	0.4690
k	0.9060	0.4890
1	0.8790	0.4600
m	0.9320	0.4970
n	0.8690	0.4740
0	0.9080	0.4860
р	0.9190	0.4920
q	0.8860	0.4760
r	0.8900	0.4740
S	0.9110	0.4810
t	0.9090	0.4670
u	0.8680	0.4580
V	0.8140	0.4370
W	0.8920	0.4860
х	0.9100	0.4910
у	0.9130	0.4900
Z	0.8190	0.4590

