

wwPDB EM Validation Summary Report (i)

Oct 6, 2024 - 12:31 AM JST

PDB ID	:	5XY3
EMDB ID	:	EMD-6784
Title	:	Large subunit of Trichomonas vaginalis ribosome
Authors	:	Li, Z.; Guo, Q.; Zheng, L.; Ji, Y.; Xie, Y.; Lai, D.; Lun, Z.; Suo, X.; Gao, N.
Deposited on	:	2017-07-06
Resolution	:	3.20 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{llllllllllllllllllllllllllllllllllll$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	1	2765	72%	20%	8%
2	3	118	76%	23%	. •
3	4	162	69%	26%	5%
4	А	251	90%		• 6%
5	В	415	8%		•••
6	С	370	8%		5%•
7	D	308	87%	•	12%
8	Е	151	26% 81%	8%	11%

Continued from previous page... Chain Length Quality of chain Mol 6% 9 F 239. . 95% 16% 10 \mathbf{G} 24468% • 29% 22% 11 Η 197 5% • • 92% 10% Ι 1220990% • 7% 34% J . . 1316993% 17% 14L 189. . 95% 14% 5%• 15М 12891% Ν 2047% • 1692% 8% Ο 200 . . 1794% 5% Р • 5% 1816493% 5% Q 19186. . 96% 13% 20 \mathbf{R} 17889% 9% 5% 21 \mathbf{S} 17694% 5%• 9% Т • • 2215997% 18% U 2310689% 8% 13% 24V 1406% • 90% 25% W 2511351% 48% • 6% Х 2614028% 71% 17% Υ . . 2713895% 45% Ζ . . 2813993% 7% 29151 \mathbf{a} 5%• 94% 7% 30 \mathbf{b} 5883% 14% 52% 1123183% \mathbf{c} 14% • 7% 32d 11087% 10% • 7% 33 1325% 7% е 89%

Mol	Chain	Length	Quality of chain	
34	f	102	<u>6%</u> 86%	9% 5%
35	g	116	97%	••
36	h	124	97%	••••
37	i	91	79%	20%
38	j	81	88%	7% 5%
39	k	74	91%	• 8%
40	1	51	94%	• •
41	m	132	7% 37% • 61%	
42	О	104	89%	11%
43	р	92	96%	••

Continued from previous page...

2 Entry composition (i)

There are 43 unique types of molecules in this entry. The entry contains 107145 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 25S ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	1	2544	Total 54325	C 24285	N 9748	0 17748	Р 2544	0	0

• Molecule 2 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	3	117	Total 2493	C 1112	N 449	0 815	Р 117	0	0

• Molecule 3 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues		Α	AltConf	Trace			
3	4	154	Total 3289	C 1472	N 595	O 1068	Р 154	0	0

• Molecule 4 is a protein called Ribosomal protein L8, putative.

Mol	Chain	Residues		Ate	AltConf	Trace			
4	А	237	Total 1785	C 1105	N 365	O 306	${ m S} 9$	0	0

• Molecule 5 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	AltConf	Trace			
5	В	400	Total 3175	C 2002	N 608	0 554	S 11	0	0

• Molecule 6 is a protein called Ribosomal protein, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	С	362	Total 2772	C 1751	N 513	O 501	${ m S} 7$	0	0

• Molecule 7 is a protein called Ribosomal protein L5.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	D	272	Total 2167	C 1384	N 394	0 384	${ m S}{ m 5}$	0	0

• Molecule 8 is a protein called 60S ribosomal protein L6, putative.

Mol	Chain	Residues		At	oms		AltConf	Trace	
8	Ε	135	Total 1014	C 651	N 180	0 181	${S \over 2}$	0	0

• Molecule 9 is a protein called Ribosomal protein L30p/L7e, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	F	231	Total 1832	C 1174	N 330	O 324	${}^{\mathrm{S}}_{4}$	0	0

• Molecule 10 is a protein called Ribosomal protein L7Ae, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	G	174	Total 1384	C 892	N 245	O 239	S 8	0	0

• Molecule 11 is a protein called Ribosomal protein L6, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	Н	192	Total 1556	C 994	N 274	0 281	${ m S} 7$	0	0

• Molecule 12 is a protein called Ribosomal protein, putative.

Mol	Chain	Residues		A	toms			AltConf	Trace
12	Ι	195	Total 1569	C 989	N 304	0 264	S 12	0	0

• Molecule 13 is a protein called 60S ribosomal protein L11, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	J	164	Total 1320	C 827	N 258	O 230	${f S}{5}$	0	0

• Molecule 14 is a protein called Ribosomal protein L13e, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	L	185	Total 1498	C 947	N 296	O 252	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called Ribosomal protein L14, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	М	124	Total 1004	C 650	N 176	0 177	S 1	0	0

• Molecule 16 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
16	Ν	202	Total 1696	C 1076	N 343	0 271	S 6	0	0

• Molecule 17 is a protein called Ribosomal protein L13, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	О	196	Total	C	N 205	0	S	0	0
			1559	988	295	271	\mathbf{G}		

• Molecule 18 is a protein called Ribosomal protein L22, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	Р	155	Total 1230	C 781	N 231	0 211	S 7	0	0

• Molecule 19 is a protein called 60S ribosomal protein L18, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Q	185	Total 1465	C 907	N 295	O 255	S 8	0	0

• Molecule 20 is a protein called 60S ribosomal protein L19-3, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	R	162	Total 1299	C 805	N 277	0 213	${S \atop 4}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	S	175	Total 1384	C 882	N 252	O 247	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called Ribosomal protein L21e, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	Т	158	Total 1255	C 797	N 249	O 207	${S \over 2}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L22-1, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	U	97	Total 794	С 511	N 140	0 141	${S \atop 2}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L23, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	V	134	Total 986	C 622	N 185	0 172	${ m S} 7$	0	0

• Molecule 25 is a protein called Ribosomal protein L24e, putative.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
25	W	59	Total 513	C 323	N 108	O 79	${f S}\ 3$	0	0

• Molecule 26 is a protein called Ribosomal protein L23, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	Х	101	Total 803	C 518	N 141	0 141	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called Ribosomal protein L24, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	Y	134	Total 1068	C 671	N 204	0 188	${f S}{5}$	0	0

• Molecule 28 is a protein called Ribosomal protein L27e, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	Ζ	135	Total 1042	C 682	N 184	0 172	$\frac{S}{4}$	0	0

• Molecule 29 is a protein called Uncharacterized protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
29	a	149	Total 1179	C 749	N 229	0 196	${ m S}{ m 5}$	0	0

• Molecule 30 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
30	b	50	Total 415	C 256	N 92	O 65	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 31 is a protein called 60S ribosomal protein L30, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	С	96	Total 727	C 462	N 121	0 140	$\frac{S}{4}$	0	0

• Molecule 32 is a protein called Ribosomal protein L31e, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	d	99	Total 783	C 497	N 149	0 134	${ m S} { m 3}$	0	0

• Molecule 33 is a protein called Ribosomal protein L32, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	е	123	Total 1003	C 633	N 198	O 169	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called Ribosomal protein L35Ae, putative.

Mol	Chain	Residues		At	oms		AltConf	Trace	
34	f	97	Total 781	C 511	N 137	0 131	${S \over 2}$	0	0

• Molecule 35 is a protein called Ribosomal protein L34e, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	g	115	Total 921	C 565	N 191	O 158	${f S}$ 7	0	0

• Molecule 36 is a protein called Ribosomal protein L29, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	h	122	Total 984	C 623	N 190	O 169	${S \over 2}$	0	0

• Molecule 37 is a protein called Ribosomal protein L36e, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	i	73	Total 616	C 385	N 128	0 101	$\frac{S}{2}$	0	0

• Molecule 38 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	j	77	Total 616	C 380	N 128	0 101	${ m S} 7$	0	0

• Molecule 39 is a protein called Ribosomal protein L38e, putative.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
39	k	68	Total 547	C 358	N 90	O 99	0	0

• Molecule 40 is a protein called 60S ribosomal protein L39, putative.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
40	l	50	Total 428	C 267	N 97	O 59	${ m S}{ m 5}$	0	0

• Molecule 41 is a protein called Ubiquitin, putative.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
41	m	52	Total 417	C 254	N 89	O 69	${f S}{5}$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L44, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	О	93	Total 773	C 486	N 158	0 121	S 8	0	0

• Molecule 43 is a protein called Uncharacterized protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	р	89	Total 678	C 426	N 133	0 114	${S \atop 5}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 25S ribosomal RNA

• Molecule 3: 5.8S ribosomal RNA

• Molecule 25: Ribosomal protein L24e, putative

MET SER GLU GLU GLU CLN CLN VAL LEU ALA ALA	LYS ARG CYS C16 H18 D46	I50 • • • • • • • • • • • • • • • • • • •	E84 S85 H87 H18 H18 H1S GLU		
• Molecule 38:	Ribosomal prot	tein L37			
Chain j:		88%		7% 5%	
MET 62 62 61 61 61 62 62 623 623 623 623 623 623	C26 F27 H28 H28 F28 F28 F28 F28 F28 F28 F28 F28 F28 F				
• Molecule 39:	Ribosomal prot	tein L38e, puta	ative		
Chain k:	9%	91%		• 8%	
MET P2 T7 A13 A13 A13	K21 428 529 529 530 931 649 750	F52 F52 F61 F61 E62 E65 E65	ASP LYS LYS ALA ALA ALA		
• Molecule 40:	60S ribosomal j	protein L39, p	utative		
Chain l:		94%		• •	
MET A2 L7 C14 R28 R34 R34	I36 I36 R46 N50				
• Molecule 41:	Ubiquitin, puta	ative			
Chain m:	37%	·	61%		
MET OLN OLN TILE PHE VAL LYS THR LEU THR CLEU	HIS THR THR LEU GLU GLU GLU GLU AR ASP ASP	LLE GLU ASP VAL LYS ALA ALA CLY GLN GLN CYS	GLU GLU GLY GLY FILE ASP GLN GLN CILN CILN CILN CILN CILN CILN CILN CI	GLY LYS GLN GLN GLU GLU ASP ASP ASN THR THR LEU GLN	TYR
ILE CLA LYS ASP ASP ASP THR THR LEU VAL VAL	ARG LEEU ARG GLY GLY GLY GLV Y 830 ASO ASO ASO ASO ASO ASO ASO ASO ASO ASO	E90 E90 E108 R109	C118 C130 C130 C130 C130 C130		
• Molecule 42:	60S ribosomal j	protein L44, p	utative		
Chain o:		89%		11%	
MET V2 S27 R28 R28 E94 LYS LYS LYS	LYS HLS ALA GLU PRO THR TRP				
• Molecule 43:	Uncharacterize	d protein			
Chain p:		96%		• •	
MET A2 R3 R4 K59 K59 E88	489 090 LYS LYS				
		W P R	O R L D W I D E OPDB OTEIN DATA BANK		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	57162	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	2	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.399	Depositor
Minimum map value	-0.231	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.010	Depositor
Recommended contour level	0.044	Depositor
Map size (Å)	422.40002, 422.40002, 422.40002	wwPDB
Map dimensions	320, 320, 320	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.32, 1.32, 1.32	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain Bond le		lengths Bond and		l angles	
	Ullaill	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.20	0/60789	0.68	0/94723
2	3	0.20	0/2785	0.67	0/4339
3	4	0.20	0/3681	0.67	0/5732
4	А	0.38	0/1822	0.61	0/2450
5	В	0.36	0/3237	0.60	0/4340
6	С	0.38	0/2819	0.59	0/3816
7	D	0.37	0/2201	0.57	0/2950
8	Е	0.42	0/1028	0.63	0/1388
9	F	0.36	0/1864	0.51	0/2507
10	G	0.46	0/1409	0.62	0/1892
11	Н	0.34	0/1589	0.51	0/2136
12	Ι	0.37	0/1603	0.59	0/2151
13	J	0.35	0/1341	0.55	0/1797
14	L	0.35	0/1525	0.57	0/2042
15	М	0.34	0/1020	0.54	0/1371
16	Ν	0.38	0/1739	0.63	0/2332
17	0	0.39	0/1591	0.58	0/2141
18	Р	0.33	0/1260	0.52	0/1701
19	Q	0.37	0/1488	0.63	0/1996
20	R	0.35	0/1314	0.59	0/1754
21	S	0.37	0/1416	0.55	0/1922
22	Т	0.34	0/1288	0.55	0/1743
23	U	0.39	0/809	0.56	0/1085
24	V	0.34	0/1000	0.53	0/1346
25	W	0.37	0/530	0.56	0/705
26	Х	0.34	0/819	0.46	0/1106
27	Y	0.35	0/1082	0.54	0/1447
28	Ζ	0.38	0/1061	0.51	0/1428
29	a	0.36	0/1209	0.55	0/1619
30	b	0.37	0/423	0.57	0/559
31	с	0.37	0/735	0.47	0/987
32	d	0.40	0/794	0.58	0/1065
33	е	0.34	0/1027	0.56	0/1381
34	f	0.41	0/799	0.60	0/1075

Mol Chain		Bond	lengths	Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
35	g	0.35	0/933	0.56	0/1243
36	h	0.37	0/993	0.57	0/1316
37	i	0.36	0/627	0.56	0/835
38	j	0.45	0/631	0.69	0/839
39	k	0.39	0/557	0.52	0/752
40	l	0.35	0/436	0.66	0/580
41	m	0.35	0/422	0.63	0/558
42	0	0.35	0/788	0.55	0/1038
43	р	0.35	0/688	0.58	0/919
All	All	0.28	0/115172	0.64	0/169106

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
4	А	231/251~(92%)	210 (91%)	18 (8%)	3 (1%)	10	41
5	В	394/415~(95%)	357~(91%)	32 (8%)	5 (1%)	10	41
6	С	356/370~(96%)	329~(92%)	16 (4%)	11 (3%)	3	22
7	D	266/308~(86%)	238 (90%)	26 (10%)	2 (1%)	16	51
8	E	127/151~(84%)	113 (89%)	8 (6%)	6 (5%)	2	14
9	F	229/239~(96%)	215 (94%)	11 (5%)	3 (1%)	10	41

α \cdot \cdot \cdot	C		
Continued	trom	nremous	naae
contentaca	<i>J</i> · <i>O</i> · · · <i>O</i>	proceed ac	pago

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
10	G	168/244~(69%)	151 (90%)	14 (8%)	3~(2%)	7 35
11	Н	188/197~(95%)	175~(93%)	8 (4%)	5(3%)	4 26
12	Ι	191/209~(91%)	175~(92%)	15 (8%)	1 (0%)	25 60
13	J	162/169~(96%)	155~(96%)	5(3%)	2(1%)	11 43
14	L	183/189~(97%)	167 (91%)	14 (8%)	2(1%)	12 44
15	М	122/128~(95%)	118 (97%)	3 (2%)	1 (1%)	16 51
16	Ν	198/204~(97%)	189 (96%)	9 (4%)	0	100 100
17	О	194/200~(97%)	188 (97%)	3 (2%)	3 (2%)	8 38
18	Р	151/164~(92%)	138 (91%)	12 (8%)	1 (1%)	19 54
19	Q	183/186~(98%)	168 (92%)	14 (8%)	1 (0%)	25 60
20	R	160/178~(90%)	150 (94%)	9 (6%)	1 (1%)	22 57
21	S	173/176~(98%)	166 (96%)	7 (4%)	0	100 100
22	Т	156/159~(98%)	145 (93%)	10 (6%)	1 (1%)	22 57
23	U	93/106~(88%)	83 (89%)	9 (10%)	1 (1%)	12 44
24	V	132/140~(94%)	124 (94%)	7 (5%)	1 (1%)	16 51
25	W	57/113~(50%)	54 (95%)	2(4%)	1 (2%)	7 35
26	Х	99/140~(71%)	92 (93%)	7 (7%)	0	100 100
27	Y	132/138~(96%)	124 (94%)	7 (5%)	1 (1%)	16 51
28	Ζ	129/139~(93%)	117 (91%)	8 (6%)	4(3%)	3 22
29	a	147/151~(97%)	135~(92%)	8 (5%)	4(3%)	4 26
30	b	46/58~(79%)	44 (96%)	2(4%)	0	100 100
31	с	92/112~(82%)	86 (94%)	5(5%)	1 (1%)	12 44
32	d	93/110~(84%)	91 (98%)	2(2%)	0	100 100
33	е	121/132~(92%)	113 (93%)	5 (4%)	3 (2%)	4 28
34	f	93/102~(91%)	83 (89%)	8 (9%)	2(2%)	5 30
35	g	113/116~(97%)	105 (93%)	6 (5%)	2(2%)	7 35
36	h	120/124~(97%)	112 (93%)	7 (6%)	1 (1%)	16 51
37	i	71/91~(78%)	64 (90%)	7 (10%)	0	100 100
38	j	73/81~(90%)	69 (94%)	4 (6%)	0	100 100
39	k	66/74~(89%)	64 (97%)	2 (3%)	0	100 100
40	1	48/51~(94%)	43 (90%)	5 (10%)	0	100 100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
41	m	50/132~(38%)	46~(92%)	3~(6%)	1 (2%)	6	32
42	О	91/104~(88%)	87~(96%)	4 (4%)	0	100	100
43	р	87/92~(95%)	82 (94%)	5~(6%)	0	100	100
All	All	5785/6443~(90%)	5365~(93%)	347 (6%)	73 (1%)	13	41

Continued from previous page...

5 of 73 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
5	В	42	HIS
7	D	306	PRO
8	Е	15	ILE
8	Е	94	VAL
10	G	193	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
4	А	181/191~(95%)	171 (94%)	10 (6%)	18 51
5	В	333/347~(96%)	321 (96%)	12 (4%)	30 62
6	С	294/301~(98%)	286~(97%)	8(3%)	40 69
7	D	225/256~(88%)	224 (100%)	1 (0%)	89 94
8	Ε	106/118~(90%)	100 (94%)	6~(6%)	17 50
9	F	185/192~(96%)	183 (99%)	2(1%)	70 86
10	G	151/209~(72%)	146~(97%)	5(3%)	33 64
11	Η	171/179~(96%)	164 (96%)	7 (4%)	26 59
12	Ι	167/177~(94%)	162 (97%)	5(3%)	36 66
13	J	139/144~(96%)	134 (96%)	5 (4%)	30 62
14	L	150/155~(97%)	147 (98%)	3 (2%)	50 75
15	М	103/107~(96%)	97 (94%)	6 (6%)	17 49
16	Ν	175/177~(99%)	161 (92%)	14 (8%)	10 37

Continuel	£		
Continuea	jrom	previous	page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
17	Ο	160/163~(98%)	154 (96%)	6 (4%)	28	60
18	Р	127/135~(94%)	126~(99%)	1 (1%)	79	90
19	Q	151/153~(99%)	145~(96%)	6 (4%)	27	59
20	R	130/156~(83%)	127~(98%)	3~(2%)	45	72
21	S	149/151~(99%)	140 (94%)	9~(6%)	16	48
22	Т	131/132~(99%)	129~(98%)	2(2%)	60	81
23	U	85/92~(92%)	83~(98%)	2(2%)	44	71
24	V	103/108~(95%)	96~(93%)	7 (7%)	13	43
25	W	51/94~(54%)	51 (100%)	0	100	100
26	Х	89/117~(76%)	88~(99%)	1 (1%)	70	86
27	Y	118/122~(97%)	116 (98%)	2(2%)	56	78
28	Z	102/119~(86%)	100~(98%)	2(2%)	50	75
29	a	120/122~(98%)	117~(98%)	3(2%)	42	71
30	b	42/49~(86%)	40 (95%)	2(5%)	21	55
31	с	81/95~(85%)	79~(98%)	2(2%)	42	71
32	d	84/94~(89%)	81~(96%)	3~(4%)	30	62
33	е	108/116~(93%)	105~(97%)	3~(3%)	38	68
34	f	85/90~(94%)	78~(92%)	7 (8%)	9	36
35	g	97/98~(99%)	97~(100%)	0	100	100
36	h	103/105~(98%)	101~(98%)	2(2%)	52	76
37	i	65/82~(79%)	64~(98%)	1 (2%)	60	81
38	j	62/66~(94%)	56~(90%)	6 (10%)	6	27
39	k	63/68~(93%)	62~(98%)	1 (2%)	58	79
40	1	46/47~(98%)	44 (96%)	2(4%)	25	57
41	m	45/116~(39%)	43 (96%)	2 (4%)	24	57
42	0	84/94~(89%)	84 (100%)	0	100	100
43	р	$\overline{67/69}\ (97\%)$	66 (98%)	1 (2%)	60	81
All	All	4928/5406 (91%)	4768 (97%)	160 (3%)	36	65

5 of 160 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
24	V	32	SER
	a r.	1	

Continued from previous page...

Mol	Chain	Res	Type
34	f	81	GLU
24	V	135	VAL
31	с	19	LEU
38	j	22	CYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 60 such side chains are listed below:

Mol	Chain	Res	Type
11	Н	129	HIS
38	j	16	HIS
17	0	24	GLN
36	h	87	GLN
42	0	33	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	2532/2765~(91%)	523~(20%)	97~(3%)
2	3	116/118~(98%)	25~(21%)	3~(2%)
3	4	152/162~(93%)	40 (26%)	6 (3%)
All	All	2800/3045~(91%)	588 (21%)	106 (3%)

5 of 588 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	1	4	А
1	1	6	U
1	1	16	G
1	1	20	G
1	1	24	А

5 of 106 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	1687	G
1	1	2131	G
2	3	112	U
1	1	1787	С
1	1	1958	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-6784. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 160

Y Index: 160

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 189

Y Index: 120

Z Index: 174

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.044. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

6.6.1 emd_6784_msk_1.map (i)

Х

Υ

Ζ

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 572 $\rm nm^3;$ this corresponds to an approximate mass of 517 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.312 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.20	-	-
Author-provided FSC curve	3.18	3.66	3.21
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-6784 and PDB model 5XY3. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.044 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.044).

9.4 Atom inclusion (i)

At the recommended contour level, 81% of all backbone atoms, 76% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.044) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.7590	0.5100
1	0.8440	0.5360
3	0.8460	0.5180
4	0.7780	0.5050
А	0.7020	0.5180
В	0.6950	0.5050
С	0.6870	0.4940
D	0.6430	0.4700
Ε	0.5510	0.4410
F	0.7010	0.4880
G	0.5750	0.4470
Н	0.5680	0.4500
Ι	0.6860	0.5060
J	0.4960	0.4080
L	0.6440	0.4690
М	0.6040	0.4480
N	0.7840	0.5430
0	0.6870	0.4990
Р	0.7310	0.5160
Q	0.7240	0.5130
R	0.6510	0.4680
S	0.7070	0.5060
Т	0.7110	0.5000
U	0.5720	0.4450
V	0.6490	0.4880
W	0.4270	0.3950
X	0.6530	0.4860
Y	0.6190	0.4540
Z	0.4440	0.3740
a	0.7400	0.5220
b	0.7270	0.5050
c	0.3700	0.3400
d	0.6800	0.5040
e	0.7010	0.5090
f	0.7130	0.5210

Continued from previous page...

Chain	Atom inclusion	Q-score
g	0.5440	0.4090
h	0.5860	0.4390
i	0.6110	0.4600
j	0.7870	0.5490
k	0.5590	0.4370
1	0.7100	0.5130
m	0.6140	0.4650
0	0.6820	0.5070
р	0.6450	0.4780

