

Feb 5, 2025 – 12:57 PM JST

PDB ID	:	7Y7C
EMDB ID	:	EMD-33660
Title	:	Structure of the Bacterial Ribosome with human tRNA Asp(G34) and
		$\mathrm{mRNA}(\mathrm{GAU})$
Authors	:	Ishiguro, K.; Yokoyama, T.; Shirouzu, M.; Suzuki, T.
Deposited on	:	2022-06-22
Resolution	:	2.51 Å(reported)
Based on initial model	:	7K00

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.51 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
_		17.40	25%	
1	A	1542	85%	14% •
			93%	
2	В	241	93%	7%
			40%	
3	С	233	88%	12%
			85%	
4	D	206	100%	
			27%	
5	E	167	92%	• 7%
			64%	
6	F	135	76%	24%
			65%	
7	G	179	85%	15%
			37%	
8	Н	130	99%	•

Conti	nued fron	$i \ previous$	page	
Mol	Chain	Length	Quality of chain	
			58%	
9	Ι	130	97%	••
10	т	100	66%	
10	J	103	93%	• 5%
11	K	120	49%	00/
	Λ	129	20%	• 9%
12	L	124	98%	
			70%	
13	М	118	96%	• •
			44%	
14	N	101	98%	••
1 5		00	44%	
15	0	89	99%	•
16	D	80	/ 6%	
10	Г	02	62%	•
17	0	84	Q1%	6%
	<u> </u>	01	51%	
18	R	75	88%	12%
			61%	
19	S	92	91%	9%
			89%	
20	Т	87	99%	•
01	TT	71	90%	
	U	(1	97%	••
22	а	2904	940/	110/ 50/
	u	2001	18%	11/0 5/0
23	b	120	86%	13% •
			7%	
24	с	273	99%	•
~~	,	200	17%	
25	d	209	99%	•
26	0	201	45%	
20	е	201	73%	
27	f	179	QQ%	
	-	110	89%	
28	g	177	97%	
	0		27%	
29	h	149	28% 72%	
			11%	
30	i	142	100%	
01	:	100	15%	
51	J	123	100%	
32	k	144	10.00/	
	IX	TII	8%	
33	1	136	99%	•
	1			

.

.

.

•

..

•

•

•

•

•

Quality of chain Mol 5% 127 347% m 93% 56% 35117n 99% 25% 36 1150 99% 11% 37р 11899% 33% 38103q 100% 11% 39110r 100% 32% 40100 \mathbf{S} 93% 7% 52% 10441 \mathbf{t} 98% 44% 4294 u 100% 11% 4385v 98% 26% 78 44W 99% 65% 4563 х 98% 17% 4659у 98% 16% 47 \mathbf{Z} 5798% 25% 0 48557% 91% • • 491 46100% $\mathbf{2}$. . 506595% 18% $\mathbf{3}$ 3851100% 84% 524 7086% 14% 17% Х 533537% 63% 36% Ζ 547779% 19% 33% V 557575% 20% 5%

2 Entry composition (i)

There are 56 unique types of molecules in this entry. The entry contains 141933 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	А	1520	Total 32634	C 14562	N 5991	O 10561	Р 1520	0	0

• Molecule 2 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	224	Total 1753	C 1109	N 315	0 321	S 8	0	0

• Molecule 3 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	206	Total 1624	C 1028	N 305	O 288	${ m S} { m 3}$	0	0

• Molecule 4 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		At	AltConf	Trace			
4	D	205	Total 1643	C 1026	N 315	O 298	${f S}$ 4	0	0

• Molecule 5 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	Е	156	Total 1152	С 717	N 217	0 212	S 6	0	0

• Molecule 6 is a protein called 30S ribosomal protein S6, fully modified isoform.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	F	103	Total 839	C 530	N 151	0 151	S 7	0	0

• Molecule 7 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	G	153	Total 1203	C 750	N 231	0 218	${f S}$ 4	0	0

• Molecule 8 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	AltConf	Trace			
8	Η	129	Total 979	C 616	N 173	O 184	S 6	0	0

• Molecule 9 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	Ι	127	Total 1022	C 634	N 206	0 179	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	J	98	Total 786	C 493	N 150	0 142	S 1	0	0

• Molecule 11 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	K	117	Total 877	C 540	N 173	0 161	${ m S} { m 3}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
K	119	IAS	ASN	conflict	UNP P0A7R9

• Molecule 12 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	L	123	Total 957	C 591	N 196	0 165	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	М	115	Total 891	C 552	N 179	O 157	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	Ν	100	Total 805	C 499	N 164	O 139	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	О	88	Total 714	C 439	N 144	0 130	S 1	0	0

• Molecule 16 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
16	Р	81	Total 643	C 403	N 127	0 112	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Q	79	Total 641	C 406	N 120	0 112	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
18	R	66	Total 544	C 345	N 102	O 96	S 1	0	0

• Molecule 19 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	S	84	Total 668	С 427	N 127	0 112	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Т	86	Total 670	C 414	N 138	0 115	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
21	U	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 22 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
22	a	2753	Total 59130	C 26384	N 10897	O 19096	Р 2753	0	0

• Molecule 23 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
23	b	119	Total 2549	C 1135	N 466	O 829	Р 119	0	0

• Molecule 24 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	С	271	Total 2082	C 1288	N 423	0 364	${ m S} 7$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms		AltConf	Trace	
25	d	209	Total 1566	C 980	N 288	0 294	S 4	0	0

• Molecule 26 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	е	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	f	177	Total 1410	C 899	N 249	O 256	S 6	0	0

• Molecule 28 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	g	176	Total 1323	C 832	N 243	0 246	${S \over 2}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
29	h	41	Total 303	C 194	N 54	0 54	S 1	0	0

• Molecule 30 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	i	142	Total 1129	С 714	N 212	O 199	${f S}$ 4	0	0

• Molecule 31 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	AltConf	Trace			
31	j	123	Total 946	C 593	N 181	0 166	S 6	0	0

• Molecule 32 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	k	144	Total 1053	C 654	N 207	O 190	${S \over 2}$	0	0

• Molecule 33 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	1	136	Total 1075	C 686	N 205	0 177	S 7	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	82	MS6	MET	conflict	UNP P0ADY7

• Molecule 34 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	m	118	Total 945	C 585	N 194	0 161	${f S}{5}$	0	0

• Molecule 35 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
35	n	116	Total 892	C 552	N 178	O 162	0	0

• Molecule 36 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	О	114	Total 917	С 574	N 179	0 163	S 1	0	0

• Molecule 37 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
37	р	117	Total 947	C 604	N 192	O 151	0	0

• Molecule 38 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	q	103	Total 816	C 516	N 153	0 145	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 39 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	r	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 40 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	s	93	Total 738	C 466	N 139	0 131	${ m S} { m 2}$	0	0

• Molecule 41 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
41	t	102	Total 779	C 492	N 146	0 141	0	0

• Molecule 42 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	u	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	v	84	Total 628	C 388	N 126	0 113	S 1	0	0

• Molecule 44 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	W	77	Total 625	C 388	N 129	O 106	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 45 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
45		62	Total	С	Ν	0	S	0	0
40	X	02	501	308	98	94	1	0	0

• Molecule 46 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
46	У	58	Total 449	C 281	N 87	O 79	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 47 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
47	Z	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 48 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
48	0	51	Total 417	C 269	N 76	O 72	0	0

• Molecule 49 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
49	1	46	Total 377	C 228	N 90	O 57	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 50 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
50	2	64	Total 504	C 323	N 105	0 74	S 2	0	0

• Molecule 51 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
51	3	38	Total 302	C 185	N 65	0 48	S 4	0	0

• Molecule 52 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
52	4	60	Total	С	Ν	0	S	0	0
52	4	00	480	299	90	85	6	0	0

• Molecule 53 is a RNA chain called mRNA.

Mol	Chain	Residues		Ate	\mathbf{oms}			AltConf	Trace
53	Х	13	Total 279	C 125	N 52	O 89	Р 13	0	0

• Molecule 54 is a RNA chain called P-site tRNA-fMet.

Mol	Chain	Residues	Atoms					AltConf	Trace	
54	Z	77	Total 1645	С 734	N 297	O 536	Р 77	S 1	0	0

 $\bullet\,$ Molecule 55 is a RNA chain called A-site tRNA-Asp.

Mol	Chain	Residues	Atoms				AltConf	Trace	
55	V	75	Total 1603	C 719	N 283	O 527	Р 74	0	0

• Molecule 56 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
56	А	73	Total Mg 73 73	0
56	a	200	Total Mg 200 200	0
56	b	3	Total Mg 3 3	0
56	d	1	Total Mg 1 1	0
56	Z	1	Total Mg 1 1	0
56	Ζ	3	Total Mg 3 3	0
56	V	2	Total Mg 2 2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S rRNA

Chain D:

100%

Chain L:	20%	98%	
MET A2 K10 K14 K15 V16	A17 K18 S19 B19 E52 E70 E70 C75 E70 C75 E76 C75 E76	D2189 A101 L102 L102 D103 K107 M123 A124	
• Molecule 13	3: 30S ribosomal protein	n S13	
Chain M:	70%	96%	• •
MET A2 R3 I4 A5 G6 G6 N8	19 10 11 112 112 114 115 117 117 117 117 117 119 119 119	K27 K31 A32 133 A35 A35 A35 A35 A35 A35 A35 A37 C38 C38 C38 C38 C38 C41 C42 C42 C42 C42 C42 C42 C42 C42 C42 C42	 550 651 651 651 651 153 155 156 157 158 158
G67 D68 L69 R70 R71 E72 I73 S74	M75 375 177 177 177 187 M81 188 188 183 084 C85 C85 C85 R92	R93 C94 C104 N105 N105 N111 P1115 P1115 LYS LYS LYS	
• Molecule 14	4: 30S ribosomal protein	n S14	
Chain N:	44%	98%	
MET A2 E10 V11 A15 L16	A17 D18 K19 F21 F21 F21 F21 F23 K23 K23 K23 K25 K23 K25 K28 K28 K28 K28 K28 K28 K28 K28 K28 K28	131 132 133 133 133 134 135 135 135 135 135 135 135 135 135 136 136 136 136 136 136 136 136 136 137 138 139 139 139 139 139 139 139 139 141 142 143 144 144 144 144 144 145 145 145 145 145 145 146 147 148 149 149 1	Lb1 B52 R53 R53 R56 R65 C91 C91 C91 C92 C92
• Molecule 15	5: 30S ribosomal protein	n S15	
Chain O:	44%	99%	-
MET 22 1.3 54 75 66 77 78	A9 K10 111 V12 S13 E14 F15 G16 A19 N20 N20 N21 T22 T22	223 226 235 235 268 268 268 273 877 773 775 775 779 182 182 182 182	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
• Molecule 16	5: 30S ribosomal protein	n S16	
Chain P:	76%	99%	-
M1 V2 T3 A7 B8 B8 B8	G10 A11 K12 K13 F15 P15 Q18 Q18 Q28 C24 M26 M27 M26 M27 M27 M27 M27 M27	N29 E34 E34 F35 F39 F39 F41 F41 F41 F41 E47 E45 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E47 E48 E48 E48 E48 E48 E48 E48 E48 E48 E48	L54 D55 R566 A58 A58 W60 V61 C62 C62 C62 C62 C62 C62 C62 C62 C62 C62
R70 V71 A72 A73 A73 L74 F75 K76	L/7 N79 K80 A81 ALA		
• Molecule 17	7: 30S ribosomal protein	n S17	
Chain Q:	62%	94% 6	%
MET THR ASP K4 I5 R6 T7 L8	09 010 N11 V12 V13 S14 S14 K16 K16 K16 K16 K19 K19 K19 Y22 V22	V23 A24 125 E26 E26 K39 K40 K41 H41 H45 K43 H47 H45 K43 H47 K44 H47 K45 K43 K45 K45 K45 K45 K45 K45 K45 K45 K45 K45	155 656 656 057 058 058 161 862 863 862 863 865 865 876 877 877

• Molecule 18: 30S ribosomal protein S18

WORLDWIDE PROTEIN DATA BANK

	32%		
Chain k:		100%	
M1 R2 R69 R78 R78 S30 S30 D81	La2 A83 K84 V85 E86 G87 G87 C87 V89 V89 V990 C81 L92 D91 L92 D91 K97	A38 E106 E115 V116 V116 V120 V122 V122 V122 V122 C124 C124 V122 V122 V122 V122 V122 V122 V122 V	A.134 1135 E.136 A.137 A.137 A.138 A.138 C.140 C.140 C.140 C.142 E.142 E.142 E.142
• Molecule 33:	50S ribosomal protein L	16	
Chain l:		99%	
M1 D25 4D481 D105	E110 E111 E112 E115 V135 M136		
• Molecule 34:	50S ribosomal protein L	17	
Chain m:		93% 7%	-
M1 157 D58 D72 S89 S89	R118 SER GLU LYS GLU ALA ALA ALA GLU GLU		
• Molecule 35:	50S ribosomal protein L	18	
Chain n:	56%	99%	
MET D2 K3 K4 S5 S5 A6 R16	E20 L121 G22 A23 A23 F124 F35 F42 N43 G44 S45 E46 E46 E46	L48 V440 A50 A50 A51 C52 C52 C52 A53 A55 A55 A55 A55 A55 A55 A55 A55 A55	D69 609 A71 A72 A73 A73 A77 A77 A77 A77 A77 A77 A77 A77
K85 G86 E87 K88 K88 D89 G101 K102 K103	A107 b108 A109 A110 R111 E112 A113 G114 C112 C114 C115 F117		
• Molecule 36:	50S ribosomal protein L	19	
Chain o:	25%	99%	
MET S2 N3 14 15 K6 G7 C7 E9	Q15 D16 V17 V33 C35 C35 C35 C35 C35 C35 C35 C35 C35 C	I64 S65 N66 G67 E68 E88 R88 R88 R88 R88 R88 R89 R111 C114 N115	
• Molecule 37:	50S ribosomal protein L	20	
Chain p:	_	99%	
MET A2 S87 V88 E89 E89 K102 K103	V110 E111 K112 A113 A115 A115 L117 A118 A118		
• Molecule 38:	50S ribosomal protein L	21	

	33%		
Chain q:		100%	
M1 E16 G17 D26 127 A28 T29 T29 C30	E31 132 F34 F35 A36 E37 E37 E37 A36 C44 A42 A42 A42 A42 A42 C44 C44	E46 V47 K48 B55 G55 G57 G57 G57 K60 A61 E62 E62 E62 E70 E70 E70 T98	1101 \$102 A103
• Molecule 39: §	50S ribosomal protein	L22	
Chain r:		100%	
M1 E2 D34 663 A64 A64 A64	D68 D68 R95 D109 R110		
• Molecule 40: §	50S ribosomal protein	L23	
Chain s:		93%	7%
M1 12 R3 E4 E5 E5 L7 L7 R12	A23 M24 E25 K26 S27 S27 D37 K44 K44 K44 K49 K49 K49 K49 K61	E52 V53 E54 E54 R69 R71 G71 G71 G71 G71 G72 G92 G90 G90 G91 N92 L93 C3P C3P C3P C3P C3P C3P C3P C3P C3P C3	VALL GLY ALA ALA GLU GLU
• Molecule 41: §	50S ribosomal protein	L24	
Chain t:	52%	98%	
MET A.2 A.3 A.3 A.3 A.3 A.3 A.3 B.3 D.9 E 10 E 10	K21 R22 C23 C23 C23 C23 K24 V25 K26 V25 K26 S30 S31 S31 S31 S31	C388 1339 1410 1411 1411 141 146 146 146 146 146 146 1	EE0 4 A71 4 A71 4 A75 4 A76 4 C78 6 C78 6 A76 4 A80 4 B81 6 F87 5 E88 5 E88 6 E88 6
K91 K92 V93 S98 N99 S100 E101 T102	SUL		
• Molecule 42: §	50S ribosomal protein	L25	
Chain u:	44%	100%	
M1 F2 13 14 N5 R0 R0 R0	A10 E11 A22 A23 A23 C32 C33 C33 C33 C33 C33 C33 C33 C33 C	H44 D45 M80 M80 M52 A52 A54 A54 E55 F56 F56 F56 F56 F56 V60 V60 V60 V65	G67 K68 E89 I70 K71 V72 K73 A74 Q75 D76 Q75 N92 R93 R93 A94
• Molecule 43: 5	50S ribosomal protein	L27	
Chain v:		98%	
MET A2 H3 K5 K5 A6 G7 K72	R 83 A 84 E 85 E 85		
• Molecule 44: 8	50S ribosomal protein	L28	
Chain w:	26%	99%	
		PODE PROTEIN DATA BANK	

• Molecule 51: 50S ribosomal protein L36

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	400281	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	105000	Depositor
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.285	Depositor
Minimum map value	-0.129	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.008	Depositor
Recommended contour level	0.035	Depositor
Map size (Å)	439.10498, 439.10498, 439.10498	wwPDB
Map dimensions	530, 530, 530	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.8285, 0.8285, 0.8285	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 2MA, OMU, 4OC, 1MG, 6MZ, MG, 1MA, IAS, 5MC, 4SU, H2U, MA6, MS6, G7M, 5MU, 2MG, OMC, OMG, 4D4, PSU, 3TD, D2T, MEQ, UR3

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.12	0/36261	0.82	3/56559~(0.0%)	
2	В	0.27	0/1784	0.49	0/2403	
3	С	0.48	0/1651	0.48	0/2225	
4	D	0.39	0/1665	0.46	0/2227	
5	Е	0.51	0/1165	0.51	0/1568	
6	F	0.44	0/858	0.51	0/1160	
7	G	0.41	0/1219	0.49	0/1635	
8	Н	0.47	0/989	0.48	0/1326	
9	Ι	0.47	0/1034	0.49	0/1375	
10	J	0.49	1/796~(0.1%)	0.53	0/1077	
11	Κ	0.46	0/884	0.50	0/1191	
12	L	0.57	0/960	0.53	0/1286	
13	М	0.42	0/900	0.56	0/1204	
14	Ν	0.47	0/817	0.50	0/1088	
15	0	0.44	0/722	0.51	0/964	
16	Р	0.41	0/653	0.51	0/877	
17	Q	0.48	0/650	0.57	0/871	
18	R	0.48	0/553	0.48	0/742	
19	S	0.43	0/685	0.49	0/922	
20	Т	0.39	0/676	0.49	0/895	
21	U	0.38	0/597	0.44	0/792	
22	a	1.38	0/65651	0.85	14/102413~(0.0%)	
23	b	1.05	0/2850	0.80	0/4444	
24	с	0.62	0/2121	0.53	0/2852	
25	d	0.59	0/1576	0.53	1/2119~(0.0%)	
26	е	0.50	0/1571	0.53	1/2113~(0.0%)	
27	f	0.45	0/1434	0.50	0/1926	
28	g	0.42	0/1343	0.52	0/1816	
29	h	0.32	0/306	0.55	0/413	
30	i	0.60	0/1152	0.51	0/1551	
31	j	0.56	0/955	0.53	$0/1\overline{279}$	

Mol Chain		Bo	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
32	k	0.54	0/1062	0.56	0/1413	
33	1	0.58	0/1073	0.50	0/1433	
34	m	0.56	0/958	0.55	0/1281	
35	n	0.45	0/902	0.51	0/1209	
36	0	0.55	0/929	0.49	0/1242	
37	р	0.69	0/960	0.48	0/1278	
38	q	0.59	0/829	0.55	0/1107	
39	r	0.56	0/864	0.51	0/1156	
40	s	0.51	0/744	0.56	0/994	
41	t	0.50	0/787	0.57	0/1051	
42	u	0.48	0/766	0.51	0/1025	
43	V	0.56	0/636	0.49	0/841	
44	W	0.55	0/635	0.52	0/848	
45	Х	0.42	0/502	0.57	0/667	
46	у	0.52	0/453	0.52	0/605	
47	Z	0.56	0/450	0.50	0/599	
48	0	0.58	0/424	0.53	0/565	
49	1	0.61	0/380	0.52	0/498	
50	2	0.57	0/513	0.53	0/676	
51	3	0.55	0/303	0.56	0/397	
52	4	0.37	0/488	0.55	0/649	
53	Х	1.06	0/312	0.75	0/484	
54	Ζ	1.04	$1/\overline{1725}~(0.1\%)$	0.81	0/2687	
55	V	0.94	0/1552	0.87	2/2420~(0.1%)	
All	All	1.11	2/152725~(0.0%)	0.76	21/228438~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
13	М	0	1
28	g	0	1
50	2	0	1
All	All	0	3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
54	Ζ	1	C	OP3-P	-10.56	1.48	1.61
10	J	53	ILE	C-N	-6.25	1.19	1.34

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	a	512	G	O4'-C1'-N9	8.62	115.09	108.20
22	a	2506	U	C2-N1-C1'	7.57	126.78	117.70
22	a	1313	U	C2-N1-C1'	6.46	125.45	117.70
22	a	2506	U	N1-C2-O2	6.39	127.28	122.80
22	a	837	С	N3-C2-O2	-6.21	117.55	121.90
26	е	116	ASP	CB-CG-OD1	6.04	123.74	118.30
22	a	748	G	O4'-C1'-N9	5.90	112.92	108.20
55	V	26	С	C2-N1-C1'	5.81	125.19	118.80
55	V	26	С	N1-C2-O2	5.80	122.38	118.90
22	a	984	А	O4'-C1'-N9	5.68	112.75	108.20
1	А	792	А	O4'-C1'-N9	5.57	112.66	108.20
22	a	1314	С	C2-N1-C1'	5.55	124.90	118.80
1	А	1036	А	O5'-P-OP1	-5.38	100.86	105.70
22	a	1509	А	O4'-C1'-N9	5.33	112.47	108.20
22	a	2506	U	C6-N1-C1'	-5.30	113.78	121.20
22	a	2506	U	N3-C2-O2	-5.23	118.54	122.20
22	a	481	G	O4'-C1'-N9	5.23	112.38	108.20
22	a	974	G	O4'-C1'-N9	5.16	112.33	108.20
25	d	181	ASP	CB-CG-OD1	5.11	122.89	118.30
22	a	2848	G	O4'-C1'-N9	5.09	112.27	108.20
1	A	1035	A	OP1-P-O3'	5.08	116.39	105.20

All (21) bond angle outliers are listed below:

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
50	2	31	HIS	Peptide
13	М	104	THR	Peptide
28	g	47	ASP	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM

entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	В	222/241~(92%)	207~(93%)	15 (7%)	0	100	100
3	С	204/233~(88%)	192 (94%)	12~(6%)	0	100	100
4	D	203/206~(98%)	200 (98%)	3~(2%)	0	100	100
5	Е	154/167~(92%)	151 (98%)	3 (2%)	0	100	100
6	F	101/135~(75%)	94 (93%)	7 (7%)	0	100	100
7	G	151/179~(84%)	145 (96%)	6 (4%)	0	100	100
8	Н	127/130~(98%)	124 (98%)	3 (2%)	0	100	100
9	Ι	125/130~(96%)	121 (97%)	4 (3%)	0	100	100
10	J	96/103~(93%)	92 (96%)	3 (3%)	1 (1%)	13	25
11	K	113/129~(88%)	108 (96%)	5 (4%)	0	100	100
12	L	120/124~(97%)	113 (94%)	7 (6%)	0	100	100
13	М	113/118 (96%)	108 (96%)	4 (4%)	1 (1%)	14	28
14	N	98/101~(97%)	93~(95%)	5 (5%)	0	100	100
15	Ο	86/89~(97%)	81 (94%)	5 (6%)	0	100	100
16	Р	79/82~(96%)	74 (94%)	5 (6%)	0	100	100
17	Q	77/84~(92%)	76~(99%)	1 (1%)	0	100	100
18	R	64/75~(85%)	61 (95%)	3~(5%)	0	100	100
19	S	82/92~(89%)	80 (98%)	2 (2%)	0	100	100
20	Т	84/87~(97%)	84 (100%)	0	0	100	100
21	U	68/71~(96%)	68 (100%)	0	0	100	100
24	с	269/273~(98%)	263 (98%)	6 (2%)	0	100	100
25	d	206/209~(99%)	199 (97%)	6 (3%)	1 (0%)	25	44
26	е	199/201~(99%)	193 (97%)	6 (3%)	0	100	100
27	f	175/179~(98%)	167 (95%)	8 (5%)	0	100	100
28	g	174/177~(98%)	161 (92%)	11 (6%)	2 (1%)	12	23
29	h	39/149~(26%)	35 (90%)	4 (10%)	0	100	100
30	i	140/142~(99%)	138 (99%)	2 (1%)	0	100	100
31	j	121/123 (98%)	116 (96%)	5 (4%)	0	100	100
32	k	142/144~(99%)	136 (96%)	6 (4%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
33	1	132/136~(97%)	128 (97%)	4 (3%)	0	100	100
34	m	116/127~(91%)	111 (96%)	5 (4%)	0	100	100
35	n	114/117~(97%)	111 (97%)	3 (3%)	0	100	100
36	О	112/115~(97%)	110 (98%)	2 (2%)	0	100	100
37	р	115/118 (98%)	115 (100%)	0	0	100	100
38	q	101/103 (98%)	99 (98%)	2 (2%)	0	100	100
39	r	108/110 (98%)	105 (97%)	3 (3%)	0	100	100
40	s	91/100 (91%)	85 (93%)	6 (7%)	0	100	100
41	t	100/104 (96%)	91 (91%)	9 (9%)	0	100	100
42	u	92/94~(98%)	90 (98%)	2 (2%)	0	100	100
43	v	82/85~(96%)	79 (96%)	3 (4%)	0	100	100
44	w	75/78~(96%)	75 (100%)	0	0	100	100
45	x	60/63~(95%)	54 (90%)	6 (10%)	0	100	100
46	У	56/59~(95%)	54 (96%)	2 (4%)	0	100	100
47	Z	54/57~(95%)	54 (100%)	0	0	100	100
48	0	49/55~(89%)	48 (98%)	1 (2%)	0	100	100
49	1	44/46~(96%)	44 (100%)	0	0	100	100
50	2	62/65~(95%)	57 (92%)	4 (6%)	1 (2%)	8	15
51	3	36/38~(95%)	36 (100%)	0	0	100	100
52	4	56/70~(80%)	52 (93%)	4 (7%)	0	100	100
All	All	5487/5913~(93%)	5278 (96%)	203 (4%)	6(0%)	50	69

Continued from previous page...

All (6) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
10	J	57	VAL
25	d	149	ASN
50	2	32	ILE
13	М	105	ASN
28	g	47	ASP
28	g	48	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	В	186/199~(94%)	185 (100%)	1 (0%)	86	95
3	С	170/190~(90%)	170~(100%)	0	100	100
4	D	172/173~(99%)	172 (100%)	0	100	100
5	Ε	119/126~(94%)	117~(98%)	2(2%)	56	79
6	F	90/116~(78%)	90 (100%)	0	100	100
7	G	126/147~(86%)	126 (100%)	0	100	100
8	Н	104/105~(99%)	104 (100%)	0	100	100
9	Ι	105/107~(98%)	104 (99%)	1 (1%)	73	88
10	J	86/90~(96%)	86 (100%)	0	100	100
11	K	89/98~(91%)	87~(98%)	2 (2%)	47	73
12	L	102/103~(99%)	102 (100%)	0	100	100
13	М	93/96~(97%)	93 (100%)	0	100	100
14	Ν	83/84~(99%)	82~(99%)	1 (1%)	67	86
15	Ο	76/77~(99%)	76 (100%)	0	100	100
16	Р	65/65~(100%)	65~(100%)	0	100	100
17	Q	73/78~(94%)	73 (100%)	0	100	100
18	R	57/65~(88%)	57 (100%)	0	100	100
19	S	72/79~(91%)	72 (100%)	0	100	100
20	Т	65/66~(98%)	65 (100%)	0	100	100
21	U	60/61~(98%)	59~(98%)	1 (2%)	56	79
24	с	216/218~(99%)	216 (100%)	0	100	100
25	d	$1\overline{63/163}\ (100\%)$	163 (100%)	0	100	100
26	e	$1\overline{65/165}\ (100\%)$	165 (100%)	0	100	100
27	f	148/150 (99%)	148 (100%)	0	100	100
28	g	137/138 (99%)	135 (98%)	2 (2%)	60	82
29	h	32/114 (28%)	32 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
30	i	116/116 (100%)	116 (100%)	0	100	100
31	j	104/104~(100%)	104 (100%)	0	100	100
32	k	103/103~(100%)	103 (100%)	0	100	100
33	1	107/107~(100%)	107 (100%)	0	100	100
34	m	98/103~(95%)	98 (100%)	0	100	100
35	n	86/87~(99%)	86 (100%)	0	100	100
36	0	99/100~(99%)	99 (100%)	0	100	100
37	р	89/90~(99%)	89 (100%)	0	100	100
38	q	84/84~(100%)	84 (100%)	0	100	100
39	r	93/93~(100%)	93~(100%)	0	100	100
40	S	80/84~(95%)	80 (100%)	0	100	100
41	t	83/85~(98%)	83 (100%)	0	100	100
42	u	78/78~(100%)	78 (100%)	0	100	100
43	v	61/63~(97%)	60~(98%)	1 (2%)	58	80
44	W	67/68~(98%)	67~(100%)	0	100	100
45	x	54/55~(98%)	54 (100%)	0	100	100
46	У	48/49~(98%)	48 (100%)	0	100	100
47	z	47/48~(98%)	47 (100%)	0	100	100
48	0	46/49~(94%)	45~(98%)	1 (2%)	47	73
49	1	38/38~(100%)	38 (100%)	0	100	100
50	2	51/52~(98%)	51 (100%)	0	100	100
51	3	34/34~(100%)	34~(100%)	0	100	100
52	4	55/62 (89%)	55 (100%)	0	100	100
All	All	4575/4825 (95%)	4563 (100%)	12 (0%)	90	97

Continued from previous page...

All (12) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	В	74	ARG
5	Ε	43	ASN
5	Е	77	ASN
9	Ι	106	ARG
11	Κ	75	LYS
11	Κ	127	ARG

Continued from previous page...

Mol	Chain	Res	Type
14	Ν	35	ASN
21	U	7	ARG
28	g	69	ARG
28	g	170	ARG
43	V	72	LYS
48	0	28	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such side chains are listed below:

Mol	Chain	Res	Type
5	Е	77	ASN
6	F	58	HIS
35	n	61	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	1514/1542~(98%)	200 (13%)	6~(0%)
22	a	2745/2904~(94%)	297 (10%)	0
23	b	118/120~(98%)	16 (13%)	0
53	Х	12/35~(34%)	0	0
54	Ζ	76/77~(98%)	10 (13%)	1 (1%)
55	V	74/75~(98%)	13 (17%)	2(2%)
All	All	4539/4753~(95%)	536 (11%)	9~(0%)

All (536) RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	2	А
1	А	4	U
1	А	5	U
1	А	6	G
1	А	9	G
1	А	22	G
1	А	32	А
1	А	39	G
1	А	47	С
1	А	48	С
1	А	50	А
1	А	51	А

Mol	Chain	Res	Type
1	А	60	А
1	А	69	G
1	А	71	А
1	А	73	С
1	А	74	А
1	А	76	G
1	А	78	А
1	А	79	G
1	А	81	А
1	А	83	С
1	А	85	U
1	А	86	G
1	А	87	С
1	А	90	С
1	А	91	U
1	А	93	U
1	А	94	G
1	А	95	С
1	А	121	U
1	А	122	G
1	А	130	А
1	А	131	А
1	А	141	G
1	А	143	А
1	А	144	G
1	А	146	G
1	А	149	А
1	А	163	С
1	А	164	G
1	А	180	U
1	А	181	А
1	А	183	С
1	А	204	G
1	А	216	U
1	A	226	G
1	А	245	U
1	А	247	G
1	А	251	G
1	А	266	G
1	А	267	С
1	А	289	G
1	А	293	G

Continued from previous page...

Mol	Chain	Res	Type
1	А	321	А
1	А	328	С
1	А	341	С
1	А	347	G
1	А	351	G
1	А	352	С
1	А	354	G
1	А	367	U
1	А	372	С
1	А	397	А
1	А	406	G
1	A	412	A
1	А	413	G
1	А	421	U
1	А	422	С
1	А	424	G
1	А	429	U
1	А	442	G
1	А	453	G
1	А	458	U
1	А	467	U
1	А	468	А
1	А	478	А
1	А	479	U
1	А	481	G
1	А	484	G
1	А	486	U
1	А	495	А
1	А	496	А
1	А	511	С
1	A	518	С
1	А	531	U
1	А	532	А
1	А	547	А
1	А	559	А
1	A	564	С
1	A	572	A
1	A	573	A
1	А	576	С
1	А	577	G
1	А	579	А
1	А	596	А

Mol	Chain	\mathbf{Res}	Type
1	А	618	С
1	А	633	G
1	А	650	G
1	А	653	U
1	А	665	А
1	А	695	А
1	А	721	G
1	А	723	U
1	А	746	А
1	А	747	А
1	А	755	G
1	А	777	А
1	А	787	A
1	А	793	U
1	A	794	A
1	A	802	A
1	А	815	A
1	А	817	С
1	А	832	G
1	А	851	G
1	А	890	G
1	А	914	А
1	А	926	G
1	А	934	С
1	А	935	А
1	А	960	U
1	А	966	2MG
1	А	969	А
1	А	975	А
1	А	976	G
1	А	977	А
1	A	993	G
1	А	994	А
1	A	1004	A
1	А	1009	U
1	А	1020	G
1	A	1026	G
1	А	1027	С
1	A	1028	C
1	А	1030	U
1	A	1031	C
1	А	1032	G

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 A 1034 G 1 A 1035 A 1 A 1036 A 1 A 1039 G 1 A 1039 G 1 A 1039 G 1 A 1046 A 1 A 1065 U 1 A 1085 U 1 A 1095 U 1 A 1094 G 1 A 1095 U 1 A 1101 A 1 A 1125 U 1 A 1132 C
1 A 1035 A 1 A 1036 A 1 A 1039 G 1 A 1046 A 1 A 1046 A 1 A 1065 U 1 A 1085 U 1 A 1088 G 1 A 1094 G 1 A 1095 U 1 A 1101 A 1 A 1125 U 1 A 1132 C
1 A 1036 A 1 A 1039 G 1 A 1046 A 1 A 1065 U 1 A 1065 U 1 A 1085 U 1 A 1085 U 1 A 1094 G 1 A 1094 G 1 A 1095 U 1 A 1101 A 1 A 1125 U 1 A 1132 C
1 A 1039 G 1 A 1046 A 1 A 1065 U 1 A 1085 U 1 A 1085 U 1 A 1085 U 1 A 1095 U 1 A 1095 U 1 A 1101 A 1 A 1125 U 1 A 1132 C
1 A 1046 A 1 A 1065 U 1 A 1085 U 1 A 1085 U 1 A 1088 G 1 A 1094 G 1 A 1095 U 1 A 1101 A 1 A 1125 U 1 A 1132 C
1 A 1065 U 1 A 1085 U 1 A 1088 G 1 A 1094 G 1 A 1095 U 1 A 1095 U 1 A 1101 A 1 A 1125 U 1 A 1132 C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 A 1088 G 1 A 1094 G 1 A 1095 U 1 A 1101 A 1 A 1125 U 1 A 1132 C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 A 1095 U 1 A 1101 A 1 A 1125 U 1 A 1132 C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 A 1125 U 1 A 1132 C
1 A 1132 C
1 A 1137 C
1 A 1139 G
1 A 1159 U
1 A 1167 A
1 A 1168 U
1 A 1171 A
1 A 1184 G
1 A 1196 A
1 A 1197 A
1 A 1213 A
1 A 1227 A
1 A 1228 C
1 A 1238 A
1 A 1239 A
1 A 1256 A
1 A 1258 G
1 A 1260 \overline{G}
1 A 1280 A
1 A 1286 \overline{U}
1 A 1287 A
1 A 1300 \overline{G}
1 A 1302 C
1 A 1305 G
1 A 1312 G
1 A 1317 C
1 A 1320 C
1 A 1338 G
1 A 1346 A

1A1353G1A1363A1A1364U1A1370G1A1378C1A1379G1A1379G1A1398A1A1419G1A1441A1A1442G1A1442G1A1452C1A1492A1A1497G1A1497G1A1503A1A1506U1A1529G1A1530G22a34U22a74A22a75G22a100U22a10122a10223a10334343534353435343534363437343634373436343734363437343634373436343734363437343734373437
1 A 1363 A 1 A 1364 U 1 A 1370 G 1 A 1378 C 1 A 1379 G 1 A 1379 G 1 A 1379 G 1 A 1378 C 1 A 1379 G 1 A 1398 A 1 A 1419 G 1 A 1441 A 1 A 1442 G 1 A 1452 C 1 A 1492 A 1 A 1492 A 1 A 1497 G 1 A 1503 A 1 A 1506 U 1 A 1529 G 1 A 1530 G 22 a 34 U 22 a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
22 a 101 A 22 a 102 U 22 a 103 A
22 a 102 U 22 a 103 A
22 a 103 A
22 a 118 A
22 a 119 A
22 a 120 U
22 a 140 C
22 a 142 A
22 a 163 C
22 a 181 A
22 a 196 A
22 a <u>199</u> A
22 a 215 G
22 a 216 A

Mol	Chain	Res	Type
22	a	222	А
22	a	233	А
22	a	248	G
22	a	264	С
22	a	265	А
22	a	271	G
22	a	272	А
22	a	276	U
22	a	277	G
22	a	278	А
22	a	281	С
22	a	282	А
22	a	283	G
22	a	289	G
22	a	311	A
22	a	329	G
22	a	330	А
22	a	346	А
22	a	359	G
22	a	361	G
22	a	362	А
22	a	365	U
22	a	367	G
22	a	386	G
22	a	396	G
22	a	405	U
22	a	411	G
22	a	412	А
22	a	425	G
22	a	448	U
$\overline{22}$	a	481	G
22	a	491	G
22	a	504	A
$\overline{22}$	a	505	A
22	a	508	A
22	a	509	С
22	a	532	А
22	a	545	U
22	a	546	U
22	a	549	G
22	a	563	A
22	a	573	U

Mol	Chain	Res	Type
22	a	575	А
22	a	586	А
22	a	603	А
22	a	613	А
22	a	615	U
22	a	627	А
22	a	637	А
22	a	645	С
22	a	646	U
22	a	647	G
22	a	653	U
22	a	654	А
22	a	655	А
22	a	686	U
22	a	717	С
22	a	730	А
22	a	747	5MU
22	a	765	С
22	a	775	G
22	a	776	G
22	a	782	А
22	a	784	G
22	a	785	G
22	a	792	А
22	a	805	G
22	a	812	С
22	a	827	U
22	a	828	U
22	a	845	А
22	a	846	U
22	a	847	U
22	a	859	G
22	a	881	G
22	a	888	С
22	a	890	С
22	a	891	G
22	a	895	U
22	a	896	А
22	a	907	G
22	a	910	А
22	a	914	G
22	a	927	А

Mol	Chain	Res	Type
22	a	931	U
22	a	932	U
22	a	946	С
22	a	961	С
22	a	974	G
22	a	983	А
22	a	996	А
22	a	1012	U
22	a	1013	С
22	a	1025	G
22	a	1033	U
22	a	1040	А
22	a	1047	G
22	a	1108	U
22	a	1111	А
22	a	1112	G
22	a	1122	G
22	a	1132	U
22	a	1133	A
22	a	1135	С
22	a	1142	А
22	a	1205	А
22	a	1250	G
22	a	1253	А
22	a	1256	G
22	a	1271	G
22	a	1272	А
22	a	1273	U
22	a	1300	G
22	a	1301	А
$\overline{22}$	a	1321	A
22	a	1329	U
22	a	1352	U
22	a	1365	A
22	a	1379	U
$\overline{22}$	a	1383	A
22	a	1412	U
22	a	1416	G
22	a	1417	С
22	a	$1\overline{428}$	С
22	a	1434	A
22	a	1445	G

Mol	Chain	Res	Type
22	a	1452	G
22	a	1453	А
22	a	1482	G
22	a	1493	С
22	a	1497	U
22	a	1508	А
22	a	1509	А
22	a	1510	G
22	a	1515	А
22	a	1523	U
22	a	1524	G
22	a	1535	А
22	a	1536	С
22	a	1537	G
22	a	1566	А
22	a	1569	A
22	a	1578	U
22	a	1584	U
22	a	1607	С
22	a	1608	А
22	a	1647	U
22	a	1648	U
22	a	1649	G
22	a	1674	G
22	a	1715	G
22	a	1729	U
22	a	1730	С
22	a	1731	G
22	a	1738	G
22	a	1745	А
22	a	1764	С
22	a	1773	A
22	a	1782	U
22	a	1800	С
22	a	1801	А
22	a	1802	A
22	a	1808	A
22	a	1816	С
22	a	1829	A
22	a	1833	С
22	a	1848	A
22	a	1869	G

Mol	Chain	Res	Type
22	a	1871	А
22	a	1906	G
22	a	1929	G
22	a	1930	G
22	a	1936	A
22	a	1937	A
22	a	1938	A
22	a	1945	G
22	a	1955	U
22	a	1966	A
22	a	1967	С
22	a	1970	А
22	a	1971	U
22	a	1972	G
22	a	1991	U
22	a	1993	U
22	a	2023	С
22	a	2033	А
22	a	2036	С
22	a	2043	С
22	a	2055	С
22	a	2056	G
22	a	2060	A
22	a	2061	G
22	a	2062	А
22	a	2069	G7M
22	a	2198	A
22	a	2204	G
22	a	2211	А
22	a	2225	A
22	a	2238	G
22	a	2239	G
22	a	2273	A
22	a	2278	A
22	a	2283	С
22	a	2287	A
22	a	2288	A
22	a	2305	U
22	a	2308	G
22	a	2322	A
22	a	2325	G
22	a	2333	А

Mol	Chain	Res	Type
22	a	2336	А
22	a	2345	G
22	a	2347	С
22	a	2350	С
22	a	2361	G
22	a	2377	А
22	a	2383	G
22	a	2385	С
22	a	2396	G
22	a	2402	U
22	a	2403	С
22	a	2406	А
22	a	2410	G
22	a	2425	A
22	a	2429	G
22	a	2430	A
22	a	2435	A
22	a	2441	U
22	a	2448	A
22	a	2476	A
22	a	2491	U
22	a	2492	U
22	a	2502	G
22	a	2504	PSU
22	a	2505	G
22	a	2507	С
22	a	2518	A
22	a	2520	С
22	a	2525	G
22	a	2529	G
22	a	2535	G
22	a	2547	А
22	a	2566	A
22	a	2567	G
22	a	2573	C
22	a	2585	U
22	a	2586	U
22	a	2602	A
22	a	2609	U
22	a	2613	U
22	a	2615	U
22	a	2629	U

Mol	Chain	Res	Type
22	a	2630	G
22	a	2660	А
22	a	2663	G
22	a	2673	G
22	a	2689	U
22	a	2690	U
22	a	2714	G
22	a	2726	А
22	a	2733	А
22	a	2744	G
22	a	2748	А
22	a	2765	А
22	a	2778	А
22	a	2797	U
22	a	2798	U
22	a	2820	A
22	a	2821	А
22	a	2861	U
22	a	2873	А
22	a	2877	G
22	a	2880	С
22	a	2884	U
22	a	2891	U
23	b	9	G
23	b	13	G
23	b	24	G
23	b	35	С
23	b	36	С
23	b	41	G
23	b	45	A
23	b	52	A
23	b	56	G
23	b	57	A
23	b	67	G
23	b	68	С
23	b	89	U
23	b	90	C
23	b	99	A
23	b	109	A
54	Ζ	9	G
$5\overline{4}$	Z	18	U
54	Z	19	G

Mol	Chain	Res	Type
54	Z	21	H2U
54	Ζ	22	А
54	Ζ	23	G
54	Ζ	32	G
54	Ζ	48	U
54	Ζ	54	G
54	Ζ	77	А
55	V	5	С
55	V	6	2MG
55	V	9	1MA
55	V	11	U
55	V	17	G
55	V	18	G
55	V	21	А
55	V	46	А
55	V	47	5MC
55	V	48	5MC
55	V	53	5MU
55	V	65	А
55	V	73	С

All (9) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	А	59	А
1	А	80	А
1	А	148	G
1	А	1026	G
1	А	1033	G
1	А	1035	А
54	Ζ	20	G
55	V	5	С
55	V	10	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

54 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

	-		-		Bo	ond leng	ths	В	ond and	rles
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
22	2MG	a	1835	22	18,26,27	1.99	6 (33%)	16,38,41	1.59	4 (25%)
54	PSU	Z	56	54	18,21,22	0.99	1 (5%)	22,30,33	1.82	4 (18%)
22	PSU	a	1911	22	18,21,22	1.08	3 (16%)	22,30,33	1.93	<mark>5 (22%)</mark>
22	PSU	a	2580	22	18,21,22	1.27	2 (11%)	22,30,33	2.15	<mark>6 (27%)</mark>
55	H2U	V	19	55	18,21,22	1.24	3 (16%)	21,30,33	0.97	0
55	PSU	V	54	55	18,21,22	1.06	2 (11%)	22,30,33	1.94	5 (22%)
1	2MG	А	1516	1	18,26,27	1.98	6 (33%)	16,38,41	1.52	4 (25%)
22	6MZ	a	2030	22	18,25,26	1.89	2 (11%)	16,36,39	2.62	3 (18%)
55	5MC	V	48	55	18,22,23	3.56	8 (44%)	26,32,35	1.08	1 (3%)
22	PSU	a	2504	22	18,21,22	1.07	2 (11%)	22,30,33	1.83	4 (18%)
22	2MA	a	2503	56,22	17,25,26	2.43	5 (29%)	17,37,40	1.38	2 (11%)
1	2MG	А	1207	1	18,26,27	2.02	6 (33%)	16,38,41	1.54	4 (25%)
55	PSU	V	13	55	18,21,22	1.06	1 (5%)	22,30,33	1.91	5 (22%)
1	MA6	А	1518	1	18,26,27	1.28	2 (11%)	19,38,41	1.69	3 (15%)
22	OMC	a	2498	56,22	19,22,23	2.60	7 (36%)	26,31,34	0.89	1 (3%)
22	PSU	a	2605	22	18,21,22	1.16	1 (5%)	22,30,33	1.92	4 (18%)
54	H2U	Z	21	54	18,21,22	1.09	2 (11%)	21,30,33	0.86	0
54	5MU	Z	55	54	19,22,23	4.56	7 (36%)	28,32,35	3.82	9 (32%)
22	G7M	a	2069	22	20,26,27	2.42	8 (40%)	17,39,42	1.15	1 (5%)
22	OMU	a	2552	22	19,22,23	2.52	6 (31%)	26,31,34	1.90	<mark>5 (19%)</mark>
22	5MU	a	747	22	19,22,23	4.41	7 (36%)	28,32,35	3.84	10 (35%)
54	OMC	Z	33	54	19,22,23	2.72	7 (36%)	26,31,34	0.76	0
22	OMG	a	2251	22,54	18,26,27	2.57	7 (38%)	19,38,41	1.55	4 (21%)
22	1MG	a	745	22	18,26,27	2.43	5 (27%)	19,39,42	1.46	<mark>3 (15%)</mark>
1	UR3	А	1498	1	19,22,23	2.43	6 (31%)	26,32,35	1.33	1 (3%)
33	4D4	1	81	33	9,11,12	1.81	3 (33%)	8,13,15	2.05	<mark>3 (37%)</mark>
1	PSU	А	516	56,1	18,21,22	1.05	3 (16%)	22,30,33	1.74	<mark>5 (22%)</mark>
1	G7M	А	527	1	20,26,27	<mark>2.51</mark>	7 (35%)	17,39,42	1.07	1 (5%)
11	IAS	K	119	11	6,7,8	1.02	0	6,8,10	1.28	1 (16%)
55	1MA	V	9	55	16,25,26	0.88	0	18,37,40	0.89	0
22	PSU	a	955	22	18,21,22	1.19	1 (5%)	22,30,33	1.97	4 (18%)
22	6MZ	a	1618	22	18,25,26	1.92	2 (11%)	16,36,39	2.32	3 (18%)

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Tink	Bond lengths			B	Bond ang	gles
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
22	H2U	a	2449	22	18,21,22	1.49	3 (16%)	21,30,33	0.96	2 (9%)
22	PSU	a	2457	22	18,21,22	1.20	2 (11%)	22,30,33	2.05	5 (22%)
1	5MC	А	967	1	18,22,23	<mark>3.52</mark>	7 (38%)	26,32,35	1.05	1 (3%)
22	5MU	a	1939	22	19,22,23	4.36	7 (36%)	28,32,35	<mark>3.92</mark>	10 (35%)
25	MEQ	d	150	25	8,9,10	1.33	1 (12%)	5,10,12	1.42	1 (20%)
55	5MC	V	47	55	18,22,23	<mark>3.56</mark>	8 (44%)	26,32,35	1.07	2 (7%)
1	2MG	А	966	1	18,26,27	2.03	<mark>6 (33%)</mark>	16,38,41	1.54	4 (25%)
22	PSU	a	746	56,22	18,21,22	1.11	3 (16%)	22,30,33	1.74	3 (13%)
22	PSU	a	2604	22	18,21,22	1.11	1 (5%)	22,30,33	1.92	4 (18%)
1	5MC	А	1407	1	18,22,23	<mark>3.34</mark>	7 (38%)	26,32,35	1.10	2 (7%)
22	3TD	a	1915	22	18,22,23	<mark>3.86</mark>	7 (38%)	22,32,35	1.83	3 (13%)
55	5MC	V	38	55	18,22,23	3.46	8 (44%)	26,32,35	1.22	2 (7%)
1	MA6	А	1519	1	18,26,27	1.28	2 (11%)	19,38,41	1.74	3 (15%)
22	5MC	a	1962	22	18,22,23	<mark>-3.31</mark>	7 (38%)	26,32,35	1.15	2 (7%)
55	1MA	V	57	55	16,25,26	0.90	0	18,37,40	0.85	0
55	5MU	V	53	55	19,22,23	4.41	7 (36%)	28,32,35	3.80	9 (32%)
12	D2T	L	89	12	7,9,10	1.19	0	6,11,13	2.24	3 (50%)
55	2MG	V	6	55	18,26,27	2.02	6 (33%)	16,38,41	1.48	4 (25%)
1	4OC	А	1402	56,1	20,23,24	2.75	8 (40%)	26,32,35	0.96	2(7%)
54	4SU	Z	8	54	18,21,22	<mark>3.97</mark>	8 (44%)	26,30,33	2.35	5 (19%)
22	PSU	a	1917	22	18,21,22	1.09	3 (16%)	22,30,33	1.93	5 (22%)
22	2MG	a	2445	22	18,26,27	1.95	6 (33%)	16,38,41	1.60	4 (25%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
22	2MG	a	1835	22	-	0/5/27/28	0/3/3/3
54	PSU	Ζ	56	54	-	0/7/25/26	0/2/2/2
22	PSU	а	1911	22	-	0/7/25/26	0/2/2/2
22	PSU	a	2580	22	-	0/7/25/26	0/2/2/2
55	H2U	V	19	55	-	3/7/38/39	0/2/2/2
55	PSU	V	54	55	-	0/7/25/26	0/2/2/2
1	2MG	А	1516	1	-	0/5/27/28	0/3/3/3
22	6MZ	a	2030	22	-	2/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
55	5MC	V	48	55	-	2/7/25/26	0/2/2/2
22	PSU	a	2504	22	-	2/7/25/26	0/2/2/2
22	2MA	a	2503	56,22	_	1/3/25/26	0/3/3/3
1	2MG	А	1207	1	-	0/5/27/28	0/3/3/3
55	PSU	V	13	55	-	0/7/25/26	0/2/2/2
1	MA6	А	1518	1	-	0/7/29/30	0/3/3/3
22	OMC	a	2498	56,22	-	0/9/27/28	0/2/2/2
22	PSU	a	2605	22	-	0/7/25/26	0/2/2/2
54	H2U	Z	21	54	-	5/7/38/39	0/2/2/2
54	5MU	Z	55	54	-	2/7/25/26	0/2/2/2
22	G7M	a	2069	22	-	2/3/25/26	0/3/3/3
22	OMU	a	2552	22	-	0/9/27/28	0/2/2/2
22	5MU	a	747	22	-	0/7/25/26	0/2/2/2
54	OMC	Z	33	54	-	0/9/27/28	0/2/2/2
22	OMG	a	2251	22,54	-	0/5/27/28	0/3/3/3
22	1MG	a	745	22	-	0/3/25/26	0/3/3/3
1	UR3	А	1498	1	-	0/7/25/26	0/2/2/2
33	4D4	1	81	33	-	2/11/12/14	-
1	PSU	А	516	56,1	-	0/7/25/26	0/2/2/2
1	G7M	А	527	1	-	3/3/25/26	0/3/3/3
11	IAS	K	119	11	-	0/7/7/8	-
55	1MA	V	9	55	-	2/3/25/26	0/3/3/3
22	PSU	a	955	22	-	0/7/25/26	0/2/2/2
22	6MZ	a	1618	22	-	0/5/27/28	0/3/3/3
22	H2U	a	2449	22	-	0/7/38/39	0/2/2/2
22	PSU	a	2457	22	-	0/7/25/26	0/2/2/2
1	5MC	А	967	1	-	0/7/25/26	0/2/2/2
22	5MU	a	1939	22	-	0/7/25/26	0/2/2/2
25	MEQ	d	150	25	-	2/8/9/11	-
55	5MC	V	47	55	-	3/7/25/26	0/2/2/2
1	2MG	А	966	1	-	1/5/27/28	0/3/3/3
22	PSU	a	746	56,22	-	1/7/25/26	0/2/2/2
22	PSU	a	2604	22	-	0/7/25/26	0/2/2/2
1	5MC	А	1407	1	-	0/7/25/26	0/2/2/2
22	3TD	a	1915	22	-	$1/7/\overline{25/26}$	0/2/2/2
55	5MC	V	38	55	-	1/7/25/26	0/2/2/2
1	MA6	А	1519	1	-	3/7/29/30	0/3/3/3
22	5MC	a	1962	22	-	0/7/25/26	0/2/2/2
55	1MA	V	57	55	-	$0/3/25\overline{/26}$	0/3/3/3
55	5MU	V	53	55	-	0/7/25/26	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
12	D2T	L	89	12	-	1/7/12/14	-
55	2MG	V	6	55	-	0/5/27/28	0/3/3/3
1	4OC	А	1402	56,1	-	1/9/29/30	0/2/2/2
54	4SU	Ζ	8	54	-	0/7/25/26	0/2/2/2
22	PSU	a	1917	22	-	0/7/25/26	0/2/2/2
22	2MG	a	2445	22	-	2/5/27/28	0/3/3/3

All (235) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	a	1915	3TD	C6-C5	11.56	1.48	1.35
54	Ζ	55	5MU	C6-N1	10.39	1.55	1.38
54	Ζ	55	5MU	C2-N1	10.25	1.54	1.38
55	V	53	5MU	C6-N1	9.83	1.54	1.38
22	a	747	5MU	C6-N1	9.81	1.54	1.38
22	a	1939	5MU	C6-N1	9.63	1.54	1.38
55	V	53	5MU	C2-N1	9.46	1.53	1.38
22	a	747	5MU	C2-N1	9.42	1.53	1.38
22	a	1939	5MU	C2-N1	9.10	1.53	1.38
54	Ζ	8	4SU	C4-N3	9.03	1.47	1.37
55	V	47	5MC	C6-C5	9.01	1.49	1.34
55	V	48	5MC	C6-C5	8.97	1.49	1.34
1	А	967	5MC	C6-C5	8.90	1.49	1.34
55	V	38	5MC	C6-C5	8.67	1.48	1.34
1	А	1407	5MC	C6-C5	8.65	1.48	1.34
54	Ζ	55	5MU	C4-C5	8.54	1.59	1.44
22	a	1962	5MC	C6-C5	8.29	1.48	1.34
55	V	53	5MU	C4-N3	-8.24	1.23	1.38
22	a	747	5MU	C4-C5	8.24	1.58	1.44
22	a	1939	5MU	C4-N3	-8.24	1.23	1.38
22	a	747	5MU	C4-N3	-8.19	1.23	1.38
55	V	53	5MU	C4-C5	8.18	1.58	1.44
22	а	1915	3TD	C2-N1	8.15	1.47	1.37
22	a	1939	5MU	C4-C5	8.08	1.58	1.44
54	Ζ	55	5MU	C4-N3	-7.71	1.24	1.38
54	Ζ	8	4SU	C2-N1	7.08	1.49	1.38
22	a	2503	2MA	C2-N3	7.05	1.46	1.31
55	V	47	5MC	C4-N3	6.78	1.45	1.34
1	A	967	5MC	C4-N3	6.72	1.45	1.34
55	V	48	5MC	C4-N3	6.70	1.45	1.34
55	V	38	5MC	C4-N3	6.64	1.45	1.34
22	a	1618	6MZ	C6-N6	6.37	1.45	1.35

001000	naca jion	<i>i</i> precie	, al page.	••	1		A
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	a	1962	5MC	C4-N3	6.34	1.44	1.34
54	Z	8	4SU	C2-N3	6.27	1.49	1.38
22	a	2030	6MZ	C6-N6	6.16	1.45	1.35
55	V	47	5MC	C2-N3	6.12	1.48	1.36
54	Ζ	55	5MU	C6-C5	6.10	1.44	1.34
1	А	527	G7M	C2-N2	6.09	1.48	1.34
1	А	1407	5MC	C4-N3	6.08	1.44	1.34
55	V	48	5MC	C2-N3	6.06	1.48	1.36
1	А	967	5MC	C2-N3	6.02	1.48	1.36
1	А	1402	4OC	C4-N3	5.94	1.43	1.32
22	a	2069	G7M	C2-N2	5.91	1.48	1.34
55	V	38	5MC	C2-N3	5.90	1.48	1.36
22	a	747	5MU	C6-C5	5.82	1.44	1.34
55	V	53	5MU	C6-C5	5.76	1.44	1.34
1	А	1498	UR3	C2-N1	5.76	1.46	1.38
54	Ζ	8	4SU	C6-C5	5.75	1.48	1.35
1	А	1402	4OC	C6-C5	5.74	1.48	1.35
54	Ζ	33	OMC	C2-N3	5.69	1.47	1.36
54	Ζ	8	4SU	C4-S4	-5.69	1.57	1.68
22	a	1939	5MU	C6-C5	5.66	1.43	1.34
22	a	1962	5MC	C2-N3	5.62	1.47	1.36
22	a	2552	OMU	C2-N1	5.59	1.47	1.38
54	Ζ	33	OMC	C6-C5	5.56	1.48	1.35
1	А	1498	UR3	C6-C5	5.56	1.48	1.35
1	А	1407	5MC	C2-N3	5.55	1.47	1.36
22	a	2498	OMC	C6-C5	5.43	1.47	1.35
22	a	745	1MG	C2-N3	5.41	1.44	1.34
22	a	745	1MG	C2-N2	5.40	1.44	1.34
22	a	1915	3TD	C6-N1	5.34	1.45	1.36
22	a	2552	OMU	C2-N3	5.32	1.47	1.38
22	a	2498	OMC	C2-N3	5.26	1.47	1.36
22	a	2251	OMG	C4-N3	5.21	1.50	1.37
1	А	1402	4OC	C2-N3	5.14	1.46	1.36
22	a	2552	OMU	C6-C5	5.10	1.46	1.35
1	А	527	G7M	C2-N3	5.08	1.45	1.33
54	Ζ	8	4SU	C5-C4	4.98	1.49	1.42
22	a	2251	OMG	C2-N3	4.78	1.44	1.33
22	a	2069	G7M	C2-N3	4.77	1.44	1.33
1	А	966	2MG	C4-N3	4.71	1.48	1.37
55	V	6	2MG	C4-N3	4.71	1.48	1.37
22	a	1835	2MG	C4-N3	4.69	1.48	1.37
1	А	1207	2MG	C4-N3	4.69	1.48	1.37

		Dee	ne page.		7	O_{1}	
IVI01	Unain	Res	Type	Atoms		Observed(A)	Ideal(A)
55	V	48	5MC	C6-N1	4.68	1.40	1.38
22	a	2503	2MA	C4-N3	4.64	1.48	1.37
54	Z	33	OMC	C4-N4	4.60	1.44	1.33
55	V	47	5MC	C6-N1	4.55	1.45	1.38
1	A	527	G7M	C4-N3	4.53	1.48	1.37
1	A	967	5MC	C6-N1	4.52	1.45	1.38
1	A	1516	2MG	C4-N3	4.48	1.48	1.37
22	a	2251	OMG	C2-N2	4.48	1.44	1.34
22	a	2445	2MG	C4-N3	4.47	1.48	1.37
55	V	6	2MG	C2-N1	4.46	1.43	1.36
1	А	966	2MG	C2-N1	4.42	1.43	1.36
54	Ζ	33	OMC	C4-N3	4.40	1.43	1.34
1	А	1407	5MC	C6-N1	4.34	1.45	1.38
22	a	2069	G7M	C4-N3	4.33	1.47	1.37
22	a	2498	OMC	C4-N4	4.28	1.44	1.33
55	V	38	5MC	C6-N1	4.23	1.45	1.38
22	a	745	1MG	C4-N3	4.22	1.47	1.37
1	А	1516	2MG	C2-N1	4.17	1.43	1.36
22	a	1962	5MC	C6-N1	4.13	1.45	1.38
1	А	1207	2MG	C2-N1	4.12	1.43	1.36
1	А	1498	UR3	C2-N3	4.04	1.46	1.39
22	a	2251	OMG	C5-C4	-4.02	1.32	1.43
22	a	1835	2MG	C2-N1	3.99	1.43	1.36
55	V	47	5MC	C4-N4	3.96	1.44	1.34
22	a	2498	OMC	C4-N3	3.96	1.42	1.34
55	V	48	5MC	C2-N1	3.95	1.48	1.40
55	V	38	5MC	C4-N4	3.95	1.44	1.34
55	V	48	5MC	C4-N4	3.93	1.44	1.34
22	a	1915	3TD	C2-N3	3.91	1.47	1.38
1	A	967	5MC	C4-N4	3.86	1.44	1.34
1	A	1402	40C	C4-N4	3.79	1.43	1.35
22	a	1962	5MC	C4-N4	3.75	1.43	1.34
55	V	47	5MC	C2-N1	3.72	1.48	1.40
22	, a	2445	2MG	C2-N1	3 71	1 42	1.36
54	Z	33	OMC	C2-N1	3.65	1.47	1.40
55	V	38	5MC	C2-N1	3.64	1.17	1.10
1	A	967	5MC	C2-N1	3.63	1.47	1.40
1	A	1407	5MC	C4-N4	3.63	1 43	1.10
22	21	745	1MG	C5-C4	-3.57	1.10	1 43
22	ล	2449	H2U	C2-N3	-3.55	1 31	1.10
22	ล	2552	OMU	02 100	-3.54	1 16	1.00
1	A	1402	400	02-02 02-02	-3.54	1.10	1.20
1 -		<i></i>	- -------------				

		<u> </u>	<u>ue page</u> .	••			
Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
22	a	2498	OMC	O2-C2	-3.54	1.17	1.23
22	a	2498	OMC	C2-N1	3.51	1.47	1.40
54	Z	8	4SU	O2-C2	-3.49	1.16	1.23
22	а	2449	H2U	C4-N3	-3.48	1.31	1.37
1	А	1519	MA6	C5-C4	-3.47	1.31	1.40
22	а	2445	2MG	C5-C4	-3.44	1.34	1.43
33	l	81	4D4	OB-CB	-3.43	1.36	1.43
1	А	527	G7M	C6-N1	3.40	1.42	1.37
22	а	1962	5MC	C2-N1	3.39	1.47	1.40
22	a	2030	6MZ	C5-C4	-3.38	1.32	1.40
1	А	1518	MA6	C5-C4	-3.37	1.32	1.40
22	a	1835	2MG	C5-C4	-3.34	1.34	1.43
22	a	2552	OMU	O4-C4	-3.34	1.18	1.24
22	a	2503	2MA	C5-C4	-3.31	1.34	1.43
22	a	1618	6MZ	C5-C4	-3.28	1.32	1.40
54	Ζ	33	OMC	O2-C2	-3.26	1.17	1.23
1	А	1516	2MG	C5-C4	-3.23	1.34	1.43
1	А	1402	4OC	C2-N1	3.21	1.46	1.40
1	А	1402	4OC	C5-C4	3.20	1.47	1.40
1	А	1407	5MC	O2-C2	-3.16	1.17	1.23
22	a	2069	G7M	C6-N1	3.11	1.42	1.37
1	А	1207	2MG	C5-C4	-3.10	1.35	1.43
22	a	2251	OMG	O6-C6	-3.06	1.17	1.23
55	V	19	H2U	C2-N3	-3.06	1.32	1.38
1	А	1407	5MC	C2-N1	3.04	1.46	1.40
22	a	1939	5MU	O2-C2	-3.03	1.17	1.23
1	А	966	2MG	C6-N1	2.99	1.42	1.37
22	a	1962	5MC	O2-C2	-2.99	1.18	1.23
55	V	19	H2U	C4-N3	-2.99	1.32	1.37
55	V	6	2MG	C6-N1	2.98	1.42	1.37
22	a	2069	G7M	O6-C6	-2.93	1.17	1.23
1	А	966	2MG	C5-C4	-2.91	1.35	1.43
55	V	13	PSU	C6-C5	2.88	1.38	1.35
1	А	1498	UR3	O2-C2	-2.86	1.17	1.22
1	А	1498	UR3	O4-C4	-2.85	1.17	1.23
22	a	2449	H2U	C2-N1	-2.85	1.31	1.35
1	А	1207	2MG	C6-N1	2.85	1.42	1.37
55	V	6	2MG	C5-C6	2.84	1.53	1.47
22	a	2251	OMG	C6-N1	2.80	1.42	1.37
54	Ζ	56	PSU	C6-C5	2.79	1.38	1.35
22	a	1835	2MG	C6-N1	2.77	1.42	1.37
54	Ζ	21	H2U	C2-N3	-2.77	1.33	1.38

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	a	747	5MU	O2-C2	-2.76	1.18	1.23
22	a	2251	OMG	C5-C6	2.74	1.53	1.47
22	a	2580	PSU	O4'-C1'	-2.74	1.40	1.43
1	А	966	2MG	C5-C6	2.74	1.53	1.47
1	А	527	G7M	C5-C6	2.73	1.52	1.45
54	Ζ	8	4SU	C6-N1	2.72	1.44	1.38
22	a	2445	2MG	O6-C6	-2.72	1.17	1.23
55	V	38	5MC	O2-C2	-2.69	1.18	1.23
55	V	6	2MG	C5-C4	-2.69	1.36	1.43
22	a	745	1MG	O6-C6	-2.68	1.17	1.22
55	V	47	5MC	O2-C2	-2.67	1.18	1.23
1	А	967	5MC	O2-C2	-2.63	1.18	1.23
1	А	527	G7M	O6-C6	-2.63	1.17	1.23
22	a	1835	2MG	O6-C6	-2.62	1.18	1.23
54	Ζ	21	H2U	C4-N3	-2.61	1.33	1.37
1	А	1207	2MG	C5-C6	2.58	1.52	1.47
55	V	53	5MU	O2-C2	-2.57	1.18	1.23
1	А	1516	2MG	C6-N1	2.55	1.41	1.37
22	a	1915	3TD	O4-C4	-2.54	1.17	1.23
54	Ζ	33	OMC	C6-N1	2.54	1.44	1.38
55	V	48	5MC	O2-C2	-2.53	1.19	1.23
22	a	2605	PSU	C4-C5	-2.53	1.37	1.44
22	a	1939	5MU	O4-C4	-2.50	1.18	1.23
22	a	2503	2MA	C2-N1	2.48	1.44	1.36
1	А	1516	2MG	O6-C6	-2.47	1.18	1.23
1	А	1516	2MG	C5-C6	2.47	1.52	1.47
55	V	54	PSU	C6-C5	2.46	1.38	1.35
22	a	2580	PSU	C4-C5	-2.46	1.37	1.44
22	a	2069	G7M	C5-C6	2.45	1.51	1.45
22	a	955	PSU	C4-C5	-2.45	1.37	1.44
1	А	1402	4OC	C6-N1	2.43	1.43	1.38
22	a	746	PSU	C4-C5	-2.42	1.37	1.44
1	А	527	G7M	C2-N1	2.40	1.43	1.37
1	А	1207	2MG	O6-C6	-2.38	1.18	1.23
22	a	2457	PSU	C4-C5	-2.38	1.37	1.44
33	1	81	4D4	CG-CB	-2.36	1.48	1.52
22	a	747	5MU	O4-C4	-2.36	1.19	1.23
55	V	53	5MU	O4-C4	-2.35	1.19	1.23
22	a	1917	PSU	C4-C5	-2.33	1.37	1.44
22	a	2552	OMU	C4-N3	2.32	1.42	1.38
1	A	1498	UR3	C6-N1	2.30	1.43	1.38
22	a	2457	PSU	$\overline{\text{O4'-C1'}}$	-2.29	1.40	1.43

Contro	naca jion	" precede	ius puge.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	a	2604	PSU	C4-C5	-2.27	1.37	1.44
22	a	2503	2MA	CM2-C2	2.26	1.55	1.49
22	a	1911	PSU	C4-C5	-2.26	1.37	1.44
1	А	516	PSU	C4-C5	-2.26	1.37	1.44
54	Ζ	55	5MU	O2-C2	-2.25	1.18	1.23
1	А	516	PSU	C6-C5	2.24	1.37	1.35
22	a	2504	PSU	C6-C5	2.24	1.37	1.35
1	А	966	2MG	O6-C6	-2.24	1.18	1.23
22	a	1915	3TD	O2-C2	-2.23	1.19	1.23
22	a	2498	OMC	C6-N1	2.23	1.43	1.38
1	А	1519	MA6	C4-N3	-2.21	1.32	1.35
55	V	54	PSU	C4-C5	-2.20	1.37	1.44
1	А	1518	MA6	C4-N3	-2.20	1.32	1.35
55	V	19	H2U	C2-N1	-2.18	1.32	1.35
55	V	6	2MG	O6-C6	-2.18	1.18	1.23
22	a	746	PSU	O4'-C1'	-2.18	1.40	1.43
1	А	516	PSU	O4'-C1'	-2.16	1.40	1.43
54	Ζ	55	5MU	O4-C4	-2.16	1.19	1.23
22	a	2069	G7M	C2-N1	2.16	1.43	1.37
22	a	2504	PSU	C4-C5	-2.15	1.38	1.44
33	1	81	4D4	CD-NE	-2.14	1.41	1.46
22	a	2445	2MG	C6-N1	2.14	1.41	1.37
25	d	150	MEQ	CG-CD	-2.13	1.47	1.51
22	a	1835	2MG	C5-C6	2.12	1.51	1.47
22	a	2069	G7M	C5-C4	-2.10	1.34	1.39
22	a	1917	PSU	C6-C5	2.10	1.37	1.35
22	a	1911	PSU	O4'-C1'	-2.06	1.41	1.43
55	V	38	5MC	CM5-C5	2.06	1.55	1.50
22	a	2445	2MG	C5-C6	2.06	1.51	1.47
22	a	1917	PSU	O4'-C1'	-2.05	1.41	1.43
22	a	746	PSU	C6-C5	2.05	1.37	1.35
55	V	48	5MC	CM5-C5	2.04	1.55	1.50
22	a	1911	PSU	C6-C5	2.02	1.37	1.35
55	V	47	5MC	CM5-C5	2.01	1.55	1.50
22	a	1915	3TD	O4'-C1'	-2.01	1.41	1.43

All (181) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
54	Ζ	55	5MU	C5-C4-N3	13.09	126.49	115.31
22	a	1939	5MU	C5-C4-N3	12.87	126.30	115.31
55	V	53	5MU	C5-C4-N3	12.81	126.25	115.31

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	a	747	5MU	C5-C4-N3	12.52	126.00	115.31
22	a	1939	5MU	C5-C6-N1	-11.20	111.81	123.34
22	a	747	5MU	C5-C6-N1	-10.88	112.14	123.34
54	Ζ	55	5MU	C5-C6-N1	-10.81	112.22	123.34
55	V	53	5MU	C5-C6-N1	-10.71	112.32	123.34
54	Ζ	8	4SU	C4-N3-C2	-8.24	119.34	127.34
22	a	2030	6MZ	C9-N6-C6	-7.13	116.73	122.87
22	a	1618	6MZ	C9-N6-C6	-6.27	117.47	122.87
22	a	2552	OMU	C4-N3-C2	-6.10	118.53	126.58
1	А	1518	MA6	N3-C2-N1	-5.99	119.32	128.68
22	a	1915	3TD	N1-C2-N3	5.95	120.84	116.14
1	А	1519	MA6	N3-C2-N1	-5.86	119.52	128.68
22	a	2030	6MZ	N3-C2-N1	-5.72	119.74	128.68
54	Ζ	55	5MU	O4-C4-C5	-5.71	118.28	124.90
22	a	1939	5MU	C4-N3-C2	-5.67	120.01	127.35
22	a	2580	PSU	N1-C2-N3	5.63	121.51	115.13
22	a	1618	6MZ	N3-C2-N1	-5.57	119.97	128.68
55	V	53	5MU	O4-C4-C5	-5.47	118.56	124.90
22	a	2457	PSU	N1-C2-N3	5.45	121.30	115.13
22	a	747	5MU	C4-N3-C2	-5.42	120.34	127.35
54	Ζ	8	4SU	C5-C4-N3	5.41	119.70	114.69
22	a	1939	5MU	O4-C4-C5	-5.36	118.69	124.90
54	Ζ	55	5MU	C4-N3-C2	-5.28	120.52	127.35
22	a	747	5MU	O4-C4-C5	-5.25	118.81	124.90
22	a	2457	PSU	C4-N3-C2	-5.21	118.83	126.34
22	a	955	PSU	N1-C2-N3	5.14	120.95	115.13
22	a	2605	PSU	C4-N3-C2	-5.13	118.95	126.34
55	V	53	5MU	C4-N3-C2	-5.12	120.72	127.35
1	А	1498	UR3	C4-N3-C2	-5.12	119.74	124.56
22	a	1917	PSU	C4-N3-C2	-5.05	119.07	126.34
22	a	1911	PSU	C4-N3-C2	-5.04	119.08	126.34
22	a	955	PSU	C4-N3-C2	-5.04	119.08	126.34
22	a	746	PSU	C4-N3-C2	-4.98	119.16	126.34
22	a	1911	PSU	N1-C2-N3	4.98	120.77	115.13
55	V	54	PSU	C4-N3-C2	-4.97	119.17	126.34
22	a	2604	PSU	C4-N3-C2	-4.94	119.22	126.34
22	a	2604	PSU	N1-C2-N3	4.94	120.72	115.13
55	V	54	PSU	N1-C2-N3	4.93	120.72	115.13
55	V	13	PSU	N1-C2-N3	4.93	120.72	115.13
22	a	2580	PSU	C4-N3-C2	-4.90	119.28	126.34
22	a	2605	PSU	N1-C2-N3	4.89	120.67	115.13
22	a	1917	PSU	N1-C2-N3	4.88	120.66	115.13

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	a	747	5MU	N3-C2-N1	4.86	121.35	114.89
22	a	1939	5MU	N3-C2-N1	4.86	121.35	114.89
22	a	2504	PSU	N1-C2-N3	4.80	120.57	115.13
22	a	2504	PSU	C4-N3-C2	-4.79	119.43	126.34
54	Ζ	56	PSU	C4-N3-C2	-4.72	119.54	126.34
55	V	13	PSU	C4-N3-C2	-4.70	119.57	126.34
1	А	516	PSU	C4-N3-C2	-4.58	119.75	126.34
54	Ζ	56	PSU	N1-C2-N3	4.46	120.19	115.13
55	V	53	5MU	N3-C2-N1	4.42	120.76	114.89
22	a	746	PSU	N1-C2-N3	4.27	119.97	115.13
22	a	745	1MG	C5-C6-N1	4.27	120.32	113.90
54	Ζ	55	5MU	N3-C2-N1	4.26	120.55	114.89
1	А	516	PSU	N1-C2-N3	4.21	119.90	115.13
22	a	2552	OMU	N3-C2-N1	4.18	120.44	114.89
22	a	2030	6MZ	C2-N1-C6	4.13	120.13	116.59
22	a	1915	3TD	C4-N3-C2	-4.12	120.14	124.61
22	a	2503	2MA	C5-C6-N1 4.06 121.02		114.02	
22	a	747	5MU	C5M-C5-C6 -4.04 117.45		122.85	
22	a	1835	2MG	C5-C6-N1 4.02 121.04		121.04	113.95
22	a	2552	OMU	C5-C4-N3 4.00 120.83		120.83	114.84
55	V	38	5MC	C5-C6-N1	-3.99	119.23	123.34
54	Ζ	8	4SU	N3-C2-N1 3.95 120.14		114.89	
22	a	1939	5MU	C5M-C5-C6	-3.95	117.57	122.85
1	А	1207	2MG	C5-C6-N1	3.93	120.89	113.95
54	Ζ	8	4SU	C5-C4-S4	-3.90	119.44	124.47
22	a	2445	2MG	C5-C6-N1 3.86 120.77		113.95	
1	А	966	2MG	C5-C6-N1 3.79 120.65		113.95	
1	А	1407	5MC	C5-C6-N1	-3.76	119.47	123.34
22	a	2251	OMG	C5-C6-N1	3.72	120.52	113.95
55	V	53	5MU	C5M-C5-C6	-3.70	117.91	122.85
22	a	1962	5MC	C5-C6-N1	-3.69	119.54	123.34
1	А	1516	2MG	C5-C6-N1	3.67	120.44	113.95
55	V	47	5MC	C5-C6-N1	-3.61	119.62	123.34
55	V	6	2MG	C5-C6-N1	3.58	120.28	113.95
55	V	53	5MU	C5M-C5-C4	3.57	122.69	118.77
22	a	747	5MU	C5M-C5-C4	$3.5\overline{6}$	$122.6\overline{8}$	118.77
12	L	89	D2T	OD2-CG-CB	3.52	120.76	113.15
33	1	81	$4D\overline{4}$	NE-CZ-NH2	3.50	$126.8\overline{5}$	120.70
22	a	1939	$5M\overline{U}$	C5M-C5-C4	3.49	$122.6\overline{0}$	118.77
22	a	2251	OMG	C2-N1-C6	-3.45	118.74	125.10
54	Z	55	5MU	$C5M-C5-C\overline{6}$	-3.40	118.31	122.85
12	L	89	D2T	OD1-CG-CB	-3.38	115.35	122.44

55

V

53

5 MU

Mol	Chain	in Res Type Atoms		Z	$Observed(^{o})$	$Ideal(^{o})$	
55	V	48	5MC	C5-C6-N1	-3.33	119.91	123.34
22	a	2580	PSU	C6-N1-C2	-3.33	119.28	122.68
1	А	967	5MC	C5-C6-N1	-3.24	120.01	123.34
1	А	1519	MA6	N1-C6-N6	-3.23	113.66	117.06
1	А	527	G7M	C2-N1-C6	-3.20	119.20	125.10
22	a	1618	6MZ	C2-N1-C6	3.19	119.33	116.59
22	a	2069	G7M	C2-N1-C6	-3.17	119.25	125.10
22	a	2445	2MG	CM2-N2-C2	-3.16	116.88	123.86
54	Ζ	55	5MU	C5M-C5-C4	3.09	122.17	118.77
55	V	54	PSU	O2-C2-N1	-3.08	119.40	122.79
22	a	1939	5MU	O2-C2-N1	-2.95	118.87	122.79
55	V	13	PSU	O2-C2-N1	-2.93	119.57	122.79
22	a	2580	PSU	O2-C2-N1	-2.90	119.59	122.79
1	А	1518	MA6	N1-C6-N6	-2.88	114.03	117.06
22	a	1835	2MG	O6-C6-C5	-2.85	118.80	124.37
22	a	955	PSU	O2-C2-N1	-2.85	119.65	122.79
22	a	2580	PSU	C6-C5-C4	2.81	120.17	118.20
22	a	1917	PSU	O2-C2-N1	-2.80	119.71	122.79
22	a	2552	OMU	O4-C4-C5	-2.78	120.28	125.16
33	1	81	4D4	CB-CA-C	-2.74	107.40	111.77
1	А	1516	2MG	C8-N7-C5	2.73	108.19	102.99
54	Ζ	56	PSU	O2-C2-N1	-2.71	119.80	122.79
22	a	2457	PSU	O2-C2-N1	-2.71	119.81	122.79
22	a	1939	5MU	O4-C4-N3	-2.66	115.01	120.12
22	a	2251	OMG	C8-N7-C5	2.65	108.03	102.99
1	А	1207	2MG	O6-C6-C5	-2.64	119.21	124.37
22	a	955	PSU	C6-N1-C2	-2.64	119.99	122.68
55	V	6	2MG	C8-N7-C5	2.63	108.01	102.99
22	a	2457	PSU	C6-N1-C2	-2.63	119.99	122.68
1	А	966	2MG	C8-N7-C5	2.62	107.99	102.99
1	А	1207	2MG	C8-N7-C5	2.62	107.98	102.99
55	V	38	5MC	CM5-C5-C6	-2.62	119.35	122.85
22	a	1835	2MG	C8-N7-C5	2.61	107.96	102.99
22	a	745	1MG	C8-N7-C5	2.61	107.95	102.99
22	a	1835	2MG	CM2-N2-C2	-2.60	118.11	123.86
22	a	2445	2MG	C8-N7-C5	2.60	107.94	102.99
22	a	2504	PSU	O2-C2-N1	-2.59	119.94	122.79
22	a	2604	PSU	O2-C2-N1	-2.59	119.94	122.79
1	А	966	2MG	O6-C6-C5	-2.58	119.33	124.37
22	a	747	5MU	O4-C4-N3	-2.57	115.19	120.12
22	a	1911	PSU	O2-C2-N1	-2.57	119.96	122.79

Continued from previous page...

Continued on next page...

120.12

115.19

-2.57

O4-C4-N3

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
55	V	13	PSU	C6-N1-C2	-2.56	120.07	122.68
22	a	747	5MU	O2-C2-N1	-2.55	119.39	122.79
54	Ζ	55	5MU	O4-C4-N3	-2.55	115.23	120.12
1	А	1516	2MG	CM2-N2-C2	-2.53	118.27	123.86
22	a	746	PSU	O2-C2-N1	-2.53	120.00	122.79
22	а	1915	3TD	C6-C5-C4	2.49	119.94	118.22
1	А	516	PSU	O2-C2-N1	-2.48	120.06	122.79
55	V	53	5MU	O2-C2-N1	-2.48	119.50	122.79
22	a	2580	PSU	O4'-C1'-C2'	2.46	108.61	105.14
25	d	150	MEQ	OE1-CD-CG	2.45	126.50	122.02
33	l	81	4D4	O-C-CA	-2.45	118.37	124.78
22	a	2503	2MA	C8-N7-C5	2.44	107.64	102.99
22	а	2251	OMG	O6-C6-C5	-2.44	119.61	124.37
22	а	2504	PSU	C6-N1-C2	-2.43	120.20	122.68
1	А	966	2MG	CM2-N2-C2	-2.42	118.52	123.86
12	L	89	D2T	O-C-CA	-2.42	118.45	124.78
54	Ζ	8	4SU	O2-C2-N1 -2.40 119.59		122.79	
22	a	2445	2MG	O6-C6-C5 -2.40 119.69		124.37	
22	a	1911	PSU	C6-N1-C2 -2.37 120.26		120.26	122.68
55	V	13	PSU	C6-C5-C4 2.36 119.85		119.85	118.20
22	a	2604	PSU	C6-N1-C2	-2.36	120.27	122.68
55	V	54	PSU	C6-N1-C2 -2.35 120.28		120.28	122.68
1	А	1519	MA6	C4-C5-N7	-2.32	106.99	109.40
1	А	1207	2MG	CM2-N2-C2	-2.31	118.77	123.86
22	a	2605	PSU	C6-N1-C2	-2.29	120.34	122.68
22	a	2605	PSU	O2-C2-N1 -2.27 120.29		120.29	122.79
55	V	6	2MG	CM2-N2-C2	CM2-N2-C2 -2.26 118.86		123.86
1	А	1516	2MG	O6-C6-C5	-2.26	119.96	124.37
1	А	1402	4OC	C6-C5-C4	2.24	119.70	116.96
55	V	6	2MG	O6-C6-C5	-2.23	120.02	124.37
1	А	1407	5MC	CM5-C5-C6	-2.22	119.88	122.85
22	a	2552	OMU	O2-C2-N1	-2.21	119.85	122.79
22	a	2457	PSU	C6-C5-C4	2.20	119.74	118.20
22	a	747	5MU	C6-C5-C4	2.20	119.87	118.03
1	А	516	PSU	O4'-C1'-C2'	2.19	108.24	105.14
22	a	1917	PSU	C6-C5-C4	2.19	119.73	118.20
22	a	1917	PSU	C6-N1-C2	-2.18	120.45	122.68
54	Z	55	5MU	O2-C2-N1	-2.14	119.94	122.79
22	a	1939	5MU	C6-C5-C4	2.14	119.82	118.03
1	A	1518	MA6	C4-C5-N7	-2.12	107.19	109.40
55	V	54	PSU	C6-C5-C4	2.10	119.67	118.20
22	a	2498	OMC	O2-C2-N3	-2.07	118.96	122.33

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	a	1911	PSU	C6-C5-C4	2.06	119.64	118.20
22	a	2449	H2U	C5-C6-N1	-2.06	104.84	111.61
22	a	745	1MG	O6-C6-C5	-2.06	120.55	124.19
1	А	1402	40C	CM4-N4-C4	-2.05	118.44	122.45
1	А	516	PSU	C6-N1-C2	-2.05	120.59	122.68
22	a	2449	H2U	C4-N3-C2	-2.04	124.10	125.79
11	K	119	IAS	OXT-C-CA	2.02	120.28	113.38
55	V	47	5MC	CM5-C5-C6	-2.02	120.15	122.85
22	a	1962	5MC	CM5-C5-C6	-2.01	120.16	122.85
54	Z	56	PSU	C6-C5-C4	2.00	119.60	118.20

There are no chirality outliers.

All (42) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	1519	MA6	O4'-C4'-C5'-O5'
54	Ζ	21	H2U	O4'-C1'-N1-C6
54	Ζ	21	H2U	C2'-C1'-N1-C6
22	a	2030	6MZ	O4'-C4'-C5'-O5'
55	V	47	5MC	C3'-C4'-C5'-O5'
55	V	48	5MC	O4'-C4'-C5'-O5'
54	Ζ	21	H2U	C2'-C1'-N1-C2
55	V	48	5MC	C3'-C4'-C5'-O5'
1	А	1519	MA6	C3'-C4'-C5'-O5'
22	a	2030	6MZ	C3'-C4'-C5'-O5'
55	V	9	1MA	O4'-C4'-C5'-O5'
55	V	47	5MC	O4'-C4'-C5'-O5'
25	d	150	MEQ	NE2-CD-CG-CB
25	d	150	MEQ	OE1-CD-CG-CB
1	А	527	G7M	C3'-C4'-C5'-O5'
55	V	9	1MA	C3'-C4'-C5'-O5'
1	А	1519	MA6	C5-C6-N6-C10
22	a	2445	2MG	C3'-C4'-C5'-O5'
22	a	2504	PSU	O4'-C4'-C5'-O5'
55	V	19	H2U	C2'-C1'-N1-C6
12	L	89	D2T	CG-CB-SB-CB1
54	Ζ	21	H2U	C4'-C5'-O5'-P
55	V	47	5MC	C4'-C5'-O5'-P
54	Ζ	21	H2U	O4'-C1'-N1-C2
1	A	1402	4OC	O4'-C4'-C5'-O5'
55	V	38	5MC	O4'-C4'-C5'-O5'
1	A	527	G7M	O4'-C4'-C5'-O5'

Mol	Chain	Res	Type	Atoms
1	А	966	2MG	C3'-C4'-C5'-O5'
22	a	2445	2MG	O4'-C4'-C5'-O5'
55	V	19	H2U	O4'-C1'-N1-C2
54	Ζ	55	5MU	C3'-C4'-C5'-O5'
33	l	81	4D4	OB-CB-CG-CD
22	а	2069	G7M	O4'-C4'-C5'-O5'
22	a	1915	3TD	O4'-C4'-C5'-O5'
55	V	19	H2U	C2'-C1'-N1-C2
54	Ζ	55	5MU	O4'-C4'-C5'-O5'
22	a	746	PSU	O4'-C1'-C5-C6
22	a	2069	G7M	C4'-C5'-O5'-P
22	a	2503	2MA	O4'-C4'-C5'-O5'
22	a	2504	PSU	C3'-C4'-C5'-O5'
33	1	81	4D4	O-C-CA-CB
1	А	527	G7M	C4'-C5'-O5'-P

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 283 ligands modelled in this entry, 283 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks					
10	J	1					

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	J	53:ILE	С	54:SER	Ν	1.19

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-33660. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 265

Y Index: 265

Z Index: 265

6.2.2 Raw map

X Index: 265

Y Index: 265

Z Index: 265

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 297

Y Index: 320

Z Index: 267

6.3.2 Raw map

X Index: 297

Y Index: 321

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.035. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 369 nm^3 ; this corresponds to an approximate mass of 333 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.398 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.398 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.51	-	-
Author-provided FSC curve	2.51	2.81	2.53
Unmasked-calculated*	2.84	3.14	2.88

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.84 differs from the reported value 2.51 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-33660 and PDB model 7Y7C. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.035 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.035).

9.4 Atom inclusion (i)

At the recommended contour level, 65% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.035) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.6580	0.6210
0	0.5890	0.6390
1	0.9040	0.7160
2	0.8660	0.7020
3	0.7470	0.6530
4	0.0570	0.4090
А	0.6340	0.5990
В	0.0000	0.2580
С	0.4630	0.6020
D	0.1740	0.5140
Ε	0.5800	0.6210
F	0.2090	0.5010
G	0.2480	0.5310
Н	0.4960	0.6220
Ι	0.3460	0.5610
J	0.2860	0.4790
K	0.4170	0.5760
L	0.6380	0.6460
М	0.3030	0.5650
Ν	0.4480	0.5740
0	0.4750	0.5900
Р	0.2590	0.5260
Q	0.3360	0.5580
R	0.3590	0.5460
S	0.3220	0.5530
T	0.2170	0.5140
U	0.1180	0.4510
V	0.5240	0.5850
X	0.5630	0.6040
Z	0.5490	0.5800
a	0.8100	0.6610
b	0.5920	0.6060
с	0.8150	0.6960
d	0.7120	0.6700
e	0.5010	0.6040

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
f	0.2580	0.5460
g	0.1660	0.4920
h	0.0330	0.4450
i	0.7590	0.6660
j	0.7280	0.6740
k	0.6340	0.6460
1	0.7780	0.6820
m	0.8310	0.6890
n	0.3740	0.5830
0	0.6210	0.6280
р	0.8220	0.6960
q	0.6010	0.6240
r	0.7500	0.6610
S	0.5370	0.6040
t	0.3950	0.5610
u	0.4620	0.5880
V	0.7670	0.6800
W	0.6610	0.6430
X	0.3030	0.5200
У	0.6980	0.6510
Z	0.7340	0.6730

