

Full wwPDB X-ray Structure Validation Report (i)

Jun 25, 2024 – 08:26 PM EDT

:	6Y9M
:	Crystal structure of TSWV glycoprotein N ectodomain (sGn)
:	Dessau, M.; Bahat, Y.
:	2020-03-10
:	3.40 Å(reported)
	: : : : :

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1026 (3.48-3.32)
Clashscore	141614	1055 (3.48-3.32)
Ramachandran outliers	138981	1038 (3.48-3.32)
Sidechain outliers	138945	1038 (3.48-3.32)
RSRZ outliers	127900	2173 (3.50-3.30)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Qualit	y of chain		
_		22.4	4%	_	_	
1	А	284	50%	18%	•	31%
			6%			
1	В	284	47%	23%	•	29%
			7%			
1	С	284	48%	21%		31%
			4%			
1	D	284	46%	23%	•	30%
_	_					
2	E	2	50%		50%	

Mol	Chain	Length	Quality	of chain
2	F	2	50%	50%
2	Н	2	100%	%
2	Ι	2	100%	%
2	Κ	2	50%	50%
2	L	2	50%	50%
3	G	4	75%	25%
4	J	3	33%	67%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	NAG	Н	2	-	-	-	Х
2	NAG	Ι	1	Х	-	-	-
2	NAG	K	1	-	-	-	Х
2	NAG	Κ	2	-	-	-	Х
3	NAG	G	1	-	-	-	Х
3	NAG	G	2	-	-	-	Х
3	BMA	G	3	-	-	-	Х
3	FUC	G	4	-	-	-	Х
5	PO4	В	508	-	-	-	Х

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 6441 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	105	Total	С	Ν	0	\mathbf{S}	0	0	0
1	A	195	1514	955	252	298	9	0	0	0
1	р	201	Total	С	Ν	0	S	0	0	0
1	D	201	1564	988	260	307	9			0
1	C	106	Total	С	Ν	0	S	0	0	0
1		190	1520	956	253	302	9	0	0	0
1	П	100	Total	С	Ν	0	S	0	0	0
1	D	199	1550	979	258	304	9	0	0	0

• Molecule 1 is a protein called Glycoprotein.

• Molecule 2 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	Е	2	Total C N O 28 16 2 10	0	0	0
2	F	2	Total C N O 28 16 2 10	0	0	0
2	Н	2	Total C N O 28 16 2 10	0	0	0
2	Ι	2	Total C N O 28 16 2 10	0	0	0
2	K	2	Total C N O 28 16 2 10	0	0	0
2	L	2	Total C N O 28 16 2 10	0	0	0

• Molecule 3 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopy ranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
3	G	4	Total 49	C 28	N 2	O 19	0	0	0

• Molecule 4 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
4	J	3	Total 39	C 22	N 2	0 15	0	0	0

• Molecule 5 is PHOSPHATE ION (three-letter code: PO4) (formula: O_4P).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
5	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
5	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
6	С	1	Total 5	0 4	S 1	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	5	Total O 5 5	0	0
7	В	1	Total O 1 1	0	0
7	С	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Glycoprotein

PHE ALA GLU SER THR THR THR CLU CLU CLU SER THR THR THR THR	VAL VAL 110 1110 1111 1112 1120 1120 1120 1120	V132 V133 V133 V135 V135 R137 R137 R139 R139 V143 V143 V143 V143 V143 V143 V143 V143 V143 V135	L153 R165 L177 L177 P178 P178 F183	F190 1191 5193 5193 1193 1193 1197	
D198 N199 T203 T209 N210 V213 D223	C224 K225 T225 T226 T226 T226 T226 T228 T2249 T249 T249 T249 T249	K251 K252 K252 K265 K260 K260 K260 K260 K260 K260 K260 K260	1273 1273 1274 1275 1276 1276 1277 1277 1277 1277 1278 1283 1283 1283	K291 1292 R293 R294 T295	
V299 R300 D301 C302 C302 C302 L103 L178 L178 SER L178 SER SER	TILE TYR LYR LYR LYS CHA ALA ALA ALA ALA ALA ASN PHE				
• Molecule 1: C	Glycoprotein				
Chain D:	46%	23% •	30%	_	
LYS VAL GLU ILE ILE ARG GLY ASP HIS PRO GLU	VAL TYR TYR ASP ASP ASP ALA GLU VAL CLU VAL THR ALA ALA SER SER	GLN ARG ARG ALA ALA ILEU CLEU CLEU CLEU ASN LEU MET LEU	GLU SER GLN THR PRO GLY THR ARG GLN GLU	CLU SER THR ILE PRO ILE	
PHE GLU SER SER THR THR GLU LYS THR THR THR	VAL SER ASP ASP 1110 N112 N113 T129 T129 T129 T129 T129 T129 T129 T129	N138 N139 N139 N139 N139 N139 N143 N143 N143 N143 N143 N143 N143 N143	P170 P173 N179 F183 V185 V185	1202 1203 1203 1209 N210	
L215 Q216 S221 1226 1227 K228 S228 S228 S228 N230	F231 F231 N233 N233 F236 F235 F235 F235 F245 F245 F245 F246 F246 F246 F246 F246 F246 F246 F246	K252 K255 K255 K255 K256 K260 K260 K260 K260 K260 K260 K260 K26	1271 F272 F272 L277 D278 C269 H281 H281 C266 C266 C266 C266	R298 V299 B300 K305	
Y306 S307 S307 SER ILE TYR LYS GLN THR ALA ALA CYS	TLE PHE				
• Molecule 2: 2 opyranose	2-acetamido-2-deoxy-l	beta-D-glucopyrano	se- $(1-4)$ -2-acetam	ido-2-deoxy-bet	a-D-gluc
Chain E:	50%		50%	-	
NAG1 NAG2					
• Molecule 2: 2 opyranose	2-acetamido-2-deoxy-l	beta-D-glucopyrano	se-(1-4)-2-acetant	ido-2-deoxy-bet	a-D-gluc
Chain F:	50%		50%	-	
NAG2 NAG2					
• Molecule 2: 2 opyranose	2-acetamido-2-deoxy-l	beta-D-glucopyrano	se-(1-4)-2-acetam	ido-2-deoxy-bet	a-D-gluc
Chain H:		100%		_	
NAG1 NAG2					

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

100%

Chain I:

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K:	50%	50%	
NAG1 NAG2			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-D	9-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain L:	50%	50%	
NAG2 NAG2			
• Molecule 3: ha-L-fucopyra	beta-D-mannopyranose-(1-4 nose-(1-6)]2-acetamido-2-dec)-2-acetamido-2-deoxy-beta-D-gl xy-beta-D-glucopyranose	ucopyranose-(1-4)-[alp
Chain G:	75%	25%	•

NAG1 NAG2 BMA3 FUC4

Chain J: –	33%	67%

NAG1 NAG2 BMA3

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 2 2 21	Depositor
Cell constants	167.20Å 218.20Å 145.50Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	49.16 - 3.40	Depositor
Resolution (A)	49.16 - 3.40	EDS
% Data completeness	99.8 (49.16-3.40)	Depositor
(in resolution range)	99.8 (49.16-3.40)	EDS
R_{merge}	0.14	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$0.98 (at 3.40 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.17.1_3660	Depositor
D D.	0.259 , 0.283	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.265 , 0.288	DCC
R_{free} test set	1842 reflections (5.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	160.6	Xtriage
Anisotropy	0.004	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33, 143.2	EDS
L-test for $twinning^2$	$ < L >=0.46, < L^2>=0.29$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	6441	wwPDB-VP
Average B, all atoms $(Å^2)$	159.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.26% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, BMA, FUC, PO4, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
1VIOI		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.56	0/1542	0.74	1/2086~(0.0%)
1	В	0.52	0/1593	0.72	1/2153~(0.0%)
1	С	0.50	0/1548	0.70	0/2094
1	D	0.59	0/1579	0.89	4/2134~(0.2%)
All	All	0.55	0/6262	0.77	6/8467~(0.1%)

There are no bond length outliers.

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	D	298	ARG	NE-CZ-NH2	8.76	124.68	120.30
1	D	298	ARG	NE-CZ-NH1	-7.99	116.31	120.30
1	А	278	ASP	CB-CG-OD1	6.88	124.49	118.30
1	В	219	LYS	CD-CE-NZ	6.27	126.12	111.70
1	D	230	ASN	N-CA-CB	-5.26	101.13	110.60
1	D	298	ARG	CG-CD-NE	5.01	122.33	111.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1514	0	1514	45	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	1564	0	1570	75	0
1	С	1520	0	1514	50	0
1	D	1550	0	1554	62	0
2	Е	28	0	25	1	0
2	F	28	0	25	2	0
2	Н	28	0	25	0	0
2	Ι	28	0	25	0	0
2	Κ	28	0	25	0	0
2	L	28	0	25	0	0
3	G	49	0	43	3	0
4	J	39	0	34	2	0
5	А	10	0	0	1	0
5	В	10	0	0	1	0
5	С	5	0	0	0	0
6	С	5	0	0	1	0
7	A	5	0	0	0	0
7	В	1	0	0	0	0
7	С	1	0	0	0	0
All	All	6441	0	6379	215	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 17.

All (215) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:171:VAL:HG22	1:B:218:VAL:CG1	1.63	1.28
1:B:306:TYR:CE1	1:D:298:ARG:HD2	1.81	1.13
1:B:171:VAL:HG22	1:B:218:VAL:HG11	1.25	1.09
1:B:306:TYR:HE1	1:D:298:ARG:HD2	0.93	1.07
1:D:301:ASP:O	1:D:305:LYS:HG3	1.61	1.00
1:D:227:THR:O	1:D:228:LYS:CD	2.12	0.98
1:A:274:GLU:HG3	1:A:300:ARG:HD3	1.45	0.98
1:B:171:VAL:HG22	1:B:218:VAL:HG12	1.42	0.97
1:B:306:TYR:HE1	1:D:298:ARG:CD	1.77	0.96
1:B:171:VAL:CG2	1:B:218:VAL:CG1	2.45	0.94
1:C:274:GLU:OE2	1:C:300:ARG:NH2	2.00	0.94
1:D:227:THR:O	1:D:228:LYS:HD2	1.69	0.92
1:B:171:VAL:CG2	1:B:218:VAL:HG11	2.02	0.90
1:D:227:THR:O	1:D:228:LYS:CG	2.26	0.84
1:B:231:PHE:HZ	1:D:237:VAL:CG1	1.91	0.81

	io ao pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:231:PHE:HZ	1:D:237:VAL:HG13	1.46	0.80
1:B:297:LYS:HA	1:B:300:ARG:HE	1.45	0.80
1:B:171:VAL:CG2	1:B:218:VAL:HG12	2.10	0.80
1:C:176:LYS:HE2	1:C:179:ASN:HD21	1.50	0.76
1:D:227:THR:O	1:D:228:LYS:HG2	1.85	0.75
1:C:223:ASP:O	1:C:241:SER:HB2	1.85	0.75
1:C:113:ASN:HD21	1:C:138:ASN:HD22	1.35	0.75
1:D:185:VAL:HG12	1:D:185:VAL:O	1.86	0.74
1:A:134:TYR:CD1	1:A:153:LEU:HD21	2.24	0.72
1:A:122:CYS:HB3	1:A:136:VAL:HG12	1.72	0.72
1:C:113:ASN:ND2	1:C:138:ASN:HD22	1.88	0.71
1:C:165:ARG:NH2	6:C:506:SO4:O4	2.24	0.70
1:A:202:ILE:HD13	1:A:213:VAL:HG23	1.73	0.70
1:D:137:GLU:OE1	1:D:142:ILE:HG13	1.91	0.69
1:D:246:MET:CE	1:D:286:GLY:HA3	2.23	0.68
1:D:129:THR:HG22	1:D:130:TYR:CE1	2.29	0.68
1:C:239:ILE:HD11	1:C:283:LEU:HD21	1.75	0.68
1:A:171:VAL:HB	1:A:218:VAL:CG1	2.25	0.67
1:C:249:LEU:HD23	1:C:261:VAL:HG22	1.76	0.67
1:C:111:PRO:HB3	1:C:203:THR:HG21	1.76	0.67
1:A:246:MET:HE1	1:A:286:GLY:HA3	1.76	0.66
1:C:273:THR:HG22	1:C:275:GLU:H	1.62	0.65
1:A:251:LYS:NZ	1:A:255:GLU:O	2.30	0.65
1:B:273:THR:N	1:B:276:MET:HE3	2.12	0.65
1:B:129:THR:HG22	1:B:130:TYR:CE1	2.33	0.64
1:D:226:ILE:O	1:D:228:LYS:HG2	1.99	0.63
1:D:298:ARG:HA	1:D:301:ASP:HB2	1.80	0.63
1:D:227:THR:C	1:D:228:LYS:HG2	2.19	0.63
1:B:265:SER:O	1:B:265:SER:OG	2.13	0.63
1:B:133:TYR:HD1	1:B:146:VAL:HG22	1.64	0.62
1:A:278:ASP:OD1	1:A:281:HIS:ND1	2.32	0.62
1:D:153:LEU:HA	1:D:156:CYS:SG	2.39	0.62
1:B:297:LYS:HB2	1:B:300:ARG:HH21	1.64	0.61
1:A:299:VAL:CG2	1:C:302:CYS:HB2	2.30	0.61
1:D:113:ASN:HD22	1:D:138:ASN:HD22	1.49	0.61
1:D:252:LYS:HE2	1:D:280:GLU:OE1	2.01	0.61
1:C:278:ASP:OD1	1:C:281:HIS:ND1	2.33	0.60
1:A:299:VAL:HG21	1:C:302:CYS:HB2	1.82	0.60
1:D:144:SER:HB2	1:D:202:ILE:HG22	1.83	0.60
1:C:128:SER:HB3	1:C:189:PHE:CE2	2.37	0.59
1:A:120:LEU:HD13	1:A:138:ASN:HB2	1.86	0.58

	i a pageini	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:290:ALA:HB1	1:C:231:PHE:CE2	2.39	0.58	
1:D:229:SER:OG	1:D:230:ASN:N	2.33	0.58	
4:J:1:NAG:H3	4:J:2:NAG:H83	1.85	0.58	
1:C:225:LYS:HE2	1:C:227:THR:HG21	1.86	0.58	
1:A:274:GLU:CG	1:A:300:ARG:HD3	2.27	0.57	
1:B:125:LYS:HB2	1:B:133:TYR:CD2	2.39	0.57	
1:B:231:PHE:CZ	1:D:237:VAL:CG1	2.81	0.57	
1:B:182:HIS:ND1	1:B:183:PHE:CE1	2.69	0.57	
1:A:246:MET:CE	1:A:286:GLY:HA3	2.34	0.57	
1:D:145:CYS:SG	1:D:203:THR:OG1	2.62	0.57	
1:A:296:ASN:OD1	1:A:297:LYS:N	2.38	0.57	
1:D:125:LYS:HD2	1:D:135:GLN:CD	2.24	0.57	
1:A:226:ILE:H	1:A:288:LYS:HE2	1.70	0.56	
1:C:113:ASN:OD1	1:C:143:TYR:HE2	1.88	0.56	
1:C:282:ASN:OD1	1:C:291:LYS:HA	2.06	0.56	
1:D:173:PRO:HG3	1:D:190:PHE:CE2	2.41	0.56	
1:C:193:GLU:OE2	1:C:199:ASN:ND2	2.39	0.56	
1:A:246:MET:HE1	1:A:286:GLY:CA	2.34	0.55	
1:B:230:ASN:ND2	1:B:237:VAL:HA	2.21	0.55	
1:C:120:LEU:HD21	1:C:138:ASN:HB2	1.88	0.55	
1:B:258:GLU:HG2	1:B:259:HIS:H	1.72	0.55	
1:A:216:GLN:HE22	1:D:216:GLN:NE2	2.05	0.55	
1:C:179:ASN:HB3	1:C:183:PHE:HD2	1.72	0.55	
1:C:252:LYS:HE2	1:C:280:GLU:HB2	1.89	0.55	
1:B:226:ILE:O	1:B:226:ILE:HD12	2.07	0.55	
1:D:191:ILE:HG13	1:D:202:ILE:HD11	1.88	0.54	
1:A:171:VAL:HB	1:A:218:VAL:HG11	1.89	0.54	
1:B:231:PHE:CZ	1:D:237:VAL:HG13	2.35	0.54	
1:A:196:THR:HG23	1:A:198:ASP:H	1.73	0.54	
1:C:176:LYS:HE2	1:C:179:ASN:ND2	2.21	0.54	
1:B:182:HIS:HE1	1:B:289:SER:OG	1.91	0.53	
1:B:112:ASN:HB2	3:G:1:NAG:H83	1.90	0.53	
1:B:249:LEU:HD23	1:B:262:ILE:CD1	2.38	0.53	
1:C:179:ASN:HB3	1:C:183:PHE:CD2	2.43	0.53	
1:D:129:THR:HG22	1:D:130:TYR:CD1	2.43	0.53	
1:D:227:THR:C	1:D:228:LYS:CG	2.76	0.53	
1:B:184:SER:O	1:B:251:LYS:HE3	2.09	0.53	
1:C:209:THR:HG22	1:C:210:ASN:N	2.24	0.52	
1:D:110:LEU:HD12	1:D:111:PRO:HD2	1.92	0.52	
1:B:230:ASN:HD22	1:B:237:VAL:HA	1.75	0.52	
1:D:248:TYR:HD1	1:D:264:PHE:CD1	2.28	0.51	

	louo pugom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:290:ALA:HB1	1:C:231:PHE:HE2	1.74	0.51	
1:C:113:ASN:HB2	1:C:143:TYR:HD2	1.74	0.51	
1:A:138:ASN:HD22	1:A:139:ASN:H	1.58	0.51	
1.C.249.LEU.CD1	1.C.251.LYS.HB2	2.41	0.51	
1:D:246:MET:HE1	1:D:286:GLY:HA3	1.93	0.50	
1:C:131:ASN:HB2	1:C:147:SER:O	2.11	0.50	
1:C:133:TYR:CE1	1:C:213:VAL:HG11	2.46	0.50	
1:D:236:THR:OG1	1:D:271:THR:HG22	2.12	0.50	
1:A:216:GLN:O	1:A:218:VAL:HG23	2.11	0.50	
1:A:138:ASN:ND2	1:A:139:ASN:H	2.09	0.50	
1:C:110:LEU:HD13	1:C:112:ASN:HD22	1.77	0.50	
1:D:184:SEB:HB3	1:D:251:LYS:HE2	1.93	0.49	
1:B:145:CYS:HB3	1:B:203:THB:OG1	2.12	0.49	
1:B:228:LYS:HA	1:D:231:PHE:CE1	2.47	0.49	
1:A:249:LEU:HD21	1:A:257:VAL:HG21	1.94	0.49	
1.B:249.LEU.HD11	1·B·251·LYS·HB2	1.94	0.49	
1.B.249.LEU.CD1	$1 \cdot B \cdot 251 \cdot LYS \cdot HB2$	2.43	0.49	
1:C:210:ASN:ND2	4:J:1:NAG:05	2.45	0.49	
1:C:257:VAL:HA	1:C:260:LYS:HZ3	1.77	0.49	
1·B·246·MET·HE1	1·B·286·GLY·HA2	1.94	0.49	
1:A:303:ILE:HD11	1:C:299:VAL:HG12	1.94	0.49	
1:A:201:PRO:HA	1:A:210:ASN:HA	1.95	0.48	
1:B:297:LYS:HA	1:B:300:ABG:NE	2.22	0.48	
2:F:1:NAG:H83	2:F:1:NAG:H3	1.94	0.48	
1:A:273:THR:H	1:A:276:MET:CE	2.26	0.48	
1:A:165:ARG:HH22	5:A:505:PO4:P	2.36	0.48	
1:B:185:VAL:HG22	1:B:185:VAL:O	2.14	0.48	
1:C:252:LYS:HE3	1:C:281:HIS:CE1	2.49	0.48	
1:A:264:PHE:HB2	1:A:268:ALA:HB2	1.96	0.48	
1:C:302:CYS:SG	1:C:303:ILE:N	2.87	0.48	
1:A:179:ASN:HB3	1:A:183:PHE:HD2	1.78	0.47	
1:C:278:ASP:HA	1:C:294:LYS:HG2	1.95	0.47	
1:C:177:LEU:N	1:C:177:LEU:HD23	2.29	0.47	
1:D:209:THR:OG1	1:D:210:ASN:N	2.47	0.47	
1:B:150:ALA:H	1:B:165:ARG:NH2	2.12	0.47	
1:B:251:LYS:HG2	1:B:252:LYS:O	2.15	0.47	
1:A:216:GLN:NE2	1:D:216:GLN:NE2	2.63	0.47	
1:B:127:ILE:HG12	1:B:132:VAL:HG23	1.97	0.47	
1:D:296:ASN:ND2	1:D:299:VAL:HG23	2.30	0.47	
1:A:129:THR:HG22	1:A:130:TYR:CE1	2.50	0.47	
1:B:255:GLU:HG2	1:B:256:ASN:N	2.30	0.47	

	A L O	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:C:265:SER:OG	1:C:266:GLY:N	2.47	0.47	
1:C:130:TYR:OH	1:C:261:VAL:HG21	2.14	0.46	
1:C:135:GLN:NE2	1:C:142:ILE:HD12	2.31	0.46	
1:A:185:VAL:HG12	1:A:218:VAL:O	2.15	0.46	
1:A:249:LEU:CD2	1:A:251:LYS:HB2	2.46	0.46	
1:B:170:PRO:HB2	1:B:221:SER:O	2.16	0.46	
1:B:282:ASN:HD22	1:B:291:LYS:HA	1.80	0.46	
1:B:187:THR:HB	1:B:215:LEU:HD11	1.98	0.46	
1:A:299:VAL:O	1:A:302:CYS:HB2	2.15	0.46	
1:B:133:TYR:HD1	1:B:146:VAL:CG2	2.27	0.46	
1:B:200:TYR:CE2	1:B:202:ILE:HD11	2.51	0.46	
1:C:110:LEU:HD13	1:C:112:ASN:ND2	2.30	0.46	
1:B:172:ILE:HG12	1:B:221:SER:HB2	1.97	0.45	
1:B:228:LYS:HA	1:D:231:PHE:HE1	1.81	0.45	
1:D:249:LEU:HD22	1:D:261:VAL:HG22	1.98	0.45	
1:B:249:LEU:HD23	1:B:262:ILE:HD12	1.98	0.45	
1:D:278:ASP:OD1	1:D:281:HIS:ND1	2.38	0.45	
1:C:113:ASN:HB2	1:C:143:TYR:CD2	2.50	0.45	
1:C:137:GLU:OE2	1:C:140:GLY:N	2.41	0.45	
1:A:179:ASN:HB3	1:A:183:PHE:CD2	2.52	0.45	
1:D:251:LYS:NZ	1:D:255:GLU:O	2.49	0.45	
1:B:273:THR:H	1:B:276:MET:HE3	1.80	0.45	
1:D:179:ASN:HB3	1:D:183:PHE:HD2	1.81	0.45	
1:B:185:VAL:HG23	1:B:249:LEU:HD21	1.98	0.45	
1:C:248:TYR:CD2	1:C:270:ILE:HD11	2.52	0.45	
1:B:120:LEU:HD21	1:B:138:ASN:HB2	1.99	0.44	
1:D:257:VAL:O	1:D:258:GLU:HG3	2.16	0.44	
1:B:167:SER:O	1:B:264:PHE:HE1	2.00	0.44	
1:B:299:VAL:HG22	1:D:306:TYR:HB2	1.99	0.44	
1:D:226:ILE:O	1:D:227:THR:C	2.54	0.44	
1:B:167:SER:O	1:B:264:PHE:CE1	2.70	0.44	
1:B:136:VAL:CG2	1:B:143:TYR:HB2	2.48	0.44	
1:D:257:VAL:HG12	1:D:260:LYS:HD3	1.98	0.44	
1:B:119:SER:HB3	3:G:1:NAG:H62	2.00	0.43	
1:B:136:VAL:HG22	1:B:143:TYR:O	2.19	0.43	
1:B:180:LYS:HG3	1:B:181:ARG:N	2.34	0.43	
1:C:191:ILE:HD12	1:C:191:ILE:HG23	1.72	0.43	
1:D:233:ASN:O	1:D:236:THR:N	2.45	0.43	
1:D:239:ILE:HG13	1:D:270:ILE:HD13	1.99	0.43	
1:A:134:TYR:CE1	1:A:153:LEU:HD21	2.54	0.43	
1:B:306:TYR:CE1	1:D:298:ARG:HB2	2.54	0.42	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:112:ASN:OD1	1:B:113:ASN:N	2.51	0.42	
1:D:232:ALA:O	1:D:233:ASN:C	2.57	0.42	
1:B:303:ILE:O	1:B:306:TYR:HB3	2.18	0.42	
1:C:135:GLN:HE22	1:C:142:ILE:HD12	1.83	0.42	
1:D:226:ILE:C	1:D:228:LYS:HG2	2.40	0.42	
1:D:245:ILE:HD11	1:D:263:SER:HB2	2.01	0.42	
1:A:138:ASN:ND2	1:A:139:ASN:N	2.68	0.42	
1:D:170:PRO:HG2	1:D:221:SER:O	2.19	0.42	
1:A:245:ILE:HD11	1:A:263:SER:HB2	2.01	0.42	
1:B:306:TYR:CE2	1:D:296:ASN:ND2	2.85	0.42	
2:F:1:NAG:O3	2:F:2:NAG:H82	2.19	0.42	
1:A:296:ASN:HD21	1:A:298:ARG:NH1	2.18	0.42	
1:B:129:THR:HG22	1:B:130:TYR:CD1	2.55	0.42	
1:C:122:CYS:HA	1:C:135:GLN:O	2.20	0.42	
1:D:272:PHE:CD2	1:D:277:LEU:HD21	2.55	0.42	
1:B:136:VAL:HG23	1:B:143:TYR:HB2	2.02	0.42	
1:B:260:LYS:HG3	1:B:260:LYS:O	2.20	0.42	
1:A:205:ASN:O	1:A:206:SER:OG	2.35	0.42	
1:B:250:ILE:N	1:B:250:ILE:HD12	2.35	0.42	
1:C:225:LYS:HG2	1:C:227:THR:HG23	2.02	0.41	
1:C:111:PRO:HB3	1:C:203:THR:CG2	2.47	0.41	
1:B:277:LEU:HD13	1:B:277:LEU:HA	1.78	0.41	
1:B:249:LEU:HD23	1:B:262:ILE:HD13	2.02	0.41	
1:A:128:SER:OG	1:A:131:ASN:OD1	2.34	0.41	
1:B:205:ASN:O	1:B:206:SER:OG	2.33	0.41	
1:A:183:PHE:HA	1:A:284:LEU:HD21	2.03	0.41	
1:B:182:HIS:HD2	5:B:507:PO4:O1	2.02	0.41	
2:E:1:NAG:O7	2:E:1:NAG:O3	2.38	0.41	
1:B:180:LYS:O	1:B:184:SER:OG	2.35	0.41	
1:B:172:ILE:CG1	1:B:221:SER:HB2	2.50	0.41	
1:B:306:TYR:CE1	1:D:298:ARG:CD	2.69	0.41	
1:D:179:ASN:HB3	1:D:183:PHE:CD2	2.56	0.40	
1:D:252:LYS:HB2	1:D:281:HIS:CD2	2.55	0.40	
1:B:112:ASN:HB2	3:G:1:NAG:C8	2.51	0.40	
1:A:192:SER:HB2	1:D:215:LEU:O	2.21	0.40	
1:B:203:THR:HA	1:B:207:TYR:O	2.21	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	193/284~(68%)	181 (94%)	12~(6%)	0	100	100
1	В	199/284~(70%)	188 (94%)	11 (6%)	0	100	100
1	\mathbf{C}	194/284~(68%)	$180 \ (93\%)$	14 (7%)	0	100	100
1	D	197/284~(69%)	183~(93%)	14 (7%)	0	100	100
All	All	783/1136~(69%)	732 (94%)	51 (6%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	179/260~(69%)	177~(99%)	2(1%)	73	86
1	В	185/260~(71%)	183~(99%)	2(1%)	73	86
1	С	180/260~(69%)	180 (100%)	0	100	100
1	D	183/260~(70%)	182 (100%)	1 (0%)	88	94
All	All	727/1040~(70%)	722~(99%)	5 (1%)	84	92

All (5) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	138	ASN
1	А	181	ARG

Continued from previous page...

Mol	Chain	Res	Type
1	В	145	CYS
1	В	265	SER
1	D	227	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	113	ASN
1	А	138	ASN
1	А	182	HIS
1	А	216	GLN
1	А	230	ASN
1	В	230	ASN
1	В	282	ASN
1	С	112	ASN
1	С	113	ASN
1	С	179	ASN
1	D	113	ASN
1	D	216	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

19 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths Bond ar		ond ang	ngles		
	Type	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAG	E	1	2,1	14,14,15	0.99	1 (7%)	17,19,21	1.75	1 (5%)
2	NAG	Е	2	2	14,14,15	1.01	1 (7%)	17,19,21	1.29	2 (11%)
2	NAG	F	1	2,1	14,14,15	0.79	1 (7%)	17,19,21	1.94	3 (17%)
2	NAG	F	2	2	14,14,15	0.39	0	17,19,21	0.64	0
3	NAG	G	1	3,1	14,14,15	0.76	1 (7%)	17,19,21	0.75	0
3	NAG	G	2	3	14,14,15	0.82	1 (7%)	17,19,21	0.94	1 (5%)
3	BMA	G	3	3	11,11,12	0.95	1 (9%)	15,15,17	0.79	0
3	FUC	G	4	3	10,10,11	1.29	1 (10%)	14,14,16	1.00	1 (7%)
2	NAG	Н	1	2,1	14,14,15	0.42	0	17,19,21	1.23	2 (11%)
2	NAG	Н	2	2	14,14,15	1.08	1 (7%)	17,19,21	1.07	1 (5%)
2	NAG	Ι	1	2,1	14,14,15	1.77	3 (21%)	17,19,21	1.43	2 (11%)
2	NAG	Ι	2	2	14,14,15	0.23	0	17,19,21	0.97	2 (11%)
4	NAG	J	1	4	14,14,15	0.84	1 (7%)	17,19,21	1.39	2 (11%)
4	NAG	J	2	4	14,14,15	1.15	2 (14%)	17,19,21	1.54	2 (11%)
4	BMA	J	3	4	11,11,12	1.14	0	15,15,17	0.71	0
2	NAG	K	1	2,1	14,14,15	0.84	1 (7%)	17,19,21	1.18	2 (11%)
2	NAG	K	2	2	14,14,15	0.25	0	17,19,21	0.66	0
2	NAG	L	1	2,1	14,14,15	0.76	1 (7%)	17,19,21	0.76	0
2	NAG	L	2	2	14,14,15	0.58	0	17,19,21	0.56	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	Е	1	2,1	-	3/6/23/26	0/1/1/1
2	NAG	Е	2	2	-	4/6/23/26	0/1/1/1
2	NAG	F	1	2,1	-	5/6/23/26	0/1/1/1
2	NAG	F	2	2	-	0/6/23/26	0/1/1/1
3	NAG	G	1	3,1	-	3/6/23/26	0/1/1/1
3	NAG	G	2	3	-	1/6/23/26	0/1/1/1
3	BMA	G	3	3	-	0/2/19/22	0/1/1/1
3	FUC	G	4	3	-	-	0/1/1/1
2	NAG	Н	1	2,1	-	1/6/23/26	0/1/1/1
2	NAG	Н	2	2	-	1/6/23/26	0/1/1/1
2	NAG	Ι	1	2,1	1/1/5/7	2/6/23/26	0/1/1/1
2	NAG	Ι	2	2	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	J	1	4	-	3/6/23/26	0/1/1/1
4	NAG	J	2	4	-	4/6/23/26	0/1/1/1
4	BMA	J	3	4	-	0/2/19/22	0/1/1/1
2	NAG	К	1	2,1	-	4/6/23/26	0/1/1/1
2	NAG	К	2	2	-	2/6/23/26	0/1/1/1
2	NAG	L	1	2,1	-	0/6/23/26	0/1/1/1
2	NAG	L	2	2	-	2/6/23/26	0/1/1/1

All (16) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Ι	1	NAG	C1-C2	-4.37	1.45	1.52
2	Ι	1	NAG	O5-C1	-4.27	1.36	1.43
2	Н	2	NAG	O5-C1	-3.72	1.37	1.43
2	Е	2	NAG	O5-C1	-3.55	1.38	1.43
2	Е	1	NAG	O5-C1	3.02	1.48	1.43
4	J	2	NAG	C1-C2	3.00	1.56	1.52
3	G	1	NAG	C1-C2	2.72	1.56	1.52
3	G	4	FUC	C1-C2	2.71	1.58	1.52
3	G	2	NAG	C1-C2	2.57	1.56	1.52
4	J	2	NAG	O5-C1	-2.56	1.39	1.43
2	Κ	1	NAG	O5-C1	-2.50	1.39	1.43
4	J	1	NAG	O5-C1	2.49	1.47	1.43
2	F	1	NAG	O5-C1	-2.39	1.39	1.43
2	L	1	NAG	O5-C1	2.09	1.47	1.43
2	Ι	1	NAG	C4-C5	2.05	1.57	1.53
3	G	3	BMA	C1-C2	2.03	1.56	1.52

All (21) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Ε	1	NAG	C1-O5-C5	6.72	121.30	112.19
2	F	1	NAG	C2-N2-C7	5.27	130.41	122.90
2	Ι	1	NAG	C3-C4-C5	4.41	118.10	110.24
4	J	2	NAG	C4-C3-C2	4.00	116.88	111.02
4	J	2	NAG	C1-O5-C5	-3.95	106.84	112.19
2	F	1	NAG	C1-C2-N2	3.76	116.91	110.49
2	Κ	1	NAG	C1-O5-C5	3.36	116.74	112.19
2	Е	2	NAG	C3-C4-C5	3.36	116.22	110.24
2	Н	1	NAG	C2-N2-C7	3.03	127.22	122.90
2	Е	2	NAG	C4-C3-C2	2.99	115.40	111.02

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
4	J	1	NAG	C2-N2-C7	2.99	127.16	122.90
4	J	1	NAG	O4-C4-C5	-2.95	101.98	109.30
2	Н	2	NAG	C4-C3-C2	2.43	114.58	111.02
3	G	2	NAG	C1-O5-C5	2.43	115.48	112.19
3	G	4	FUC	C1-C2-C3	2.29	112.48	109.67
2	Ι	1	NAG	O5-C5-C4	2.26	116.34	110.83
2	Ι	2	NAG	C1-O5-C5	2.22	115.20	112.19
2	Ι	2	NAG	C2-N2-C7	2.20	126.03	122.90
2	Н	1	NAG	C3-C4-C5	2.19	114.14	110.24
2	F	1	NAG	O3-C3-C4	2.08	115.16	110.35
2	Κ	1	NAG	O4-C4-C5	-2.02	104.27	109.30

All (1) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
2	Ι	1	NAG	C1

All (37) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	Н	1	NAG	C3-C2-N2-C7
2	Ι	2	NAG	C3-C2-N2-C7
4	J	1	NAG	C3-C2-N2-C7
2	Ι	1	NAG	O5-C5-C6-O6
2	Ι	1	NAG	C4-C5-C6-O6
2	F	1	NAG	C4-C5-C6-O6
2	Κ	1	NAG	C4-C5-C6-O6
2	F	1	NAG	O5-C5-C6-O6
2	Κ	1	NAG	O5-C5-C6-O6
2	L	2	NAG	O5-C5-C6-O6
4	J	1	NAG	O5-C5-C6-O6
2	Е	2	NAG	C4-C5-C6-O6
2	Е	1	NAG	C4-C5-C6-O6
3	G	1	NAG	C4-C5-C6-O6
2	L	2	NAG	C4-C5-C6-O6
2	Е	2	NAG	C8-C7-N2-C2
2	Е	2	NAG	O7-C7-N2-C2
2	F	1	NAG	C8-C7-N2-C2
2	F	1	NAG	O7-C7-N2-C2
2	К	1	NAG	C8-C7-N2-C2
2	Κ	1	NAG	O7-C7-N2-C2
4	J	2	NAG	C8-C7-N2-C2

Mol	Chain	Res	Type	Atoms
4	J	2	NAG	O7-C7-N2-C2
2	Е	2	NAG	O5-C5-C6-O6
4	J	1	NAG	C4-C5-C6-O6
2	Н	2	NAG	C1-C2-N2-C7
3	G	1	NAG	O5-C5-C6-O6
4	J	2	NAG	C4-C5-C6-O6
2	Е	1	NAG	O5-C5-C6-O6
3	G	1	NAG	C1-C2-N2-C7
2	Κ	2	NAG	C1-C2-N2-C7
3	G	2	NAG	C3-C2-N2-C7
4	J	2	NAG	O5-C5-C6-O6
2	Е	1	NAG	C1-C2-N2-C7
2	Κ	2	NAG	O5-C5-C6-O6
2	F	1	NAG	C3-C2-N2-C7
2	Ι	2	NAG	O5-C5-C6-O6

Continued from previous page...

There are no ring outliers.

6 monomers are involved in 8 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	J	1	NAG	2	0
2	F	2	NAG	1	0
2	Е	1	NAG	1	0
2	F	1	NAG	2	0
4	J	2	NAG	1	0
3	G	1	NAG	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

6 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Tuna Chain Dag		Tinle	Bond lengths			Bond angles				
IVIOI	Type	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
5	PO4	С	507	-	4,4,4	0.90	0	$6,\!6,\!6$	0.38	0
5	PO4	В	507	-	4,4,4	0.87	0	$6,\!6,\!6$	0.89	0
5	PO4	А	506	-	4,4,4	0.84	0	6,6,6	0.44	0
6	SO4	С	506	-	4,4,4	0.20	0	6,6,6	0.70	0
5	PO4	А	505	-	4,4,4	0.97	0	$6,\!6,\!6$	0.15	0
5	PO4	В	508	-	4,4,4	0.86	0	$6,\!6,\!6$	0.89	0

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	В	507	PO4	1	0
6	С	506	SO4	1	0
5	А	505	PO4	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	А	195/284~(68%)	0.59	12 (6%) 20 2	21	103,144,197,244	0
1	В	201/284~(70%)	0.66	17 (8%) 10 11	2	113, 163, 220, 240	0
1	С	196/284~(69%)	0.74	20 (10%) 6 8	8	102,150,205,248	0
1	D	199/284~(70%)	0.69	12 (6%) 21 2	23	30, 150, 210, 269	0
All	All	791/1136~(69%)	0.67	61 (7%) 13 1	5	30, 152, 211, 269	0

All (61) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	137	GLU	6.4
1	В	272	PHE	4.6
1	В	138	ASN	4.5
1	А	295	THR	4.4
1	С	277	LEU	4.3
1	А	294	LYS	4.0
1	А	235	TYR	3.9
1	D	270	ILE	3.7
1	С	293	PRO	3.6
1	С	276	MET	3.5
1	D	138	ASN	3.5
1	D	248	TYR	3.4
1	А	248	TYR	3.3
1	С	137	GLU	3.2
1	С	153	LEU	3.2
1	В	140	GLY	3.1
1	А	272	PHE	3.1
1	С	259	HIS	3.1
1	С	272	PHE	3.0
1	D	141	VAL	3.0
1	А	270	ILE	3.0

Mol	Chain	Res	Type	RSRZ	
1	С	300	ARG	2.9	
1	С	136	VAL	2.9	
1	D	136	VAL	2.9	
1	В	153	LEU	2.8	
1	В	295	THR	2.8	
1	В	292	ILE	2.6	
1	В	141	VAL	2.6	
1	С	121	LYS	2.6	
1	В	113	ASN	2.6	
1	С	303	ILE	2.6	
1	А	226	ILE	2.5	
1	С	113	ASN	2.5	
1	D	259	HIS	2.5	
1	С	138	ASN	2.5	
1	С	295	THR	2.5	
1	А	303	ILE	2.5	
1	В	124	ILE	2.5	
1	В	137	GLU	2.4	
1	С	292	ILE	2.4	
1	С	231	PHE	2.4	
1	D	135	GLN	2.4	
1	В	247	GLY	2.3	
1	В	214	SER	2.3	
1	D	162	LEU	2.3	
1	А	283	LEU	2.3	
1	В	202	ILE	2.3	
1	В	229	SER	2.3	
1	С	134	TYR	2.2	
1	А	167	SER	2.1	
1	A	153	LEU	2.1	
1	В	299	VAL	2.1	
1	С	120	LEU	2.1	
1	D	130	TYR	2.1	
1	A	264	PHE	2.1	
1	D	272	PHE	2.1	
1	В	277	LEU	2.1	
1	В	262	ILE	2.0	
1	D	139	ASN	2.0	
1	С	197	GLN	2.0	
1	C	235	TYR	2.0	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} extsf{-factors}(\mathbf{A}^2)$	Q<0.9
3	BMA	G	3	11/12	0.48	0.60	297,305,311,316	0
4	NAG	J	2	14/15	0.48	0.37	260,264,269,271	0
2	NAG	Е	1	14/15	0.49	0.27	234,237,240,241	0
2	NAG	Ι	2	14/15	0.59	0.34	220,223,230,232	0
4	BMA	J	3	11/12	0.59	0.25	260,266,274,275	0
2	NAG	Е	2	14/15	0.65	0.38	244,249,254,259	0
2	NAG	L	1	14/15	0.67	0.27	198,201,204,206	0
2	NAG	Н	1	14/15	0.67	0.26	226,230,235,238	0
2	NAG	F	1	14/15	0.69	0.23	206,209,213,213	0
3	FUC	G	4	10/11	0.70	0.52	256,260,264,266	0
3	NAG	G	2	14/15	0.71	0.60	288,293,300,302	0
2	NAG	Н	2	14/15	0.72	0.45	241,246,252,253	0
3	NAG	G	1	14/15	0.73	0.50	271,275,284,288	0
2	NAG	K	1	14/15	0.74	0.47	212,219,228,231	0
2	NAG	K	2	14/15	0.75	0.44	235,240,249,250	0
2	NAG	Ι	1	14/15	0.77	0.38	205,210,217,218	0
4	NAG	J	1	14/15	0.77	0.31	230,235,238,240	0
2	NAG	L	2	14/15	0.79	0.30	218,221,225,225	0
2	NAG	F	2	14/15	0.83	0.23	226,230,236,237	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
5	PO4	В	507	5/5	0.35	0.34	208,214,228,236	0
5	PO4	А	506	5/5	0.66	0.40	171,177,215,215	0
5	PO4	В	508	5/5	0.66	0.58	167,182,199,231	0
5	PO4	С	507	5/5	0.68	0.27	185,189,204,206	0
5	PO4	А	505	5/5	0.76	0.21	174,178,193,194	0
6	SO4	С	506	5/5	0.91	0.21	145,147,160,177	0

6.5 Other polymers (i)

There are no such residues in this entry.

