

wwPDB EM Validation Summary Report (i)

Sep 1, 2024 – 12:12 AM JST

PDB ID	:	8YHA
EMDB ID	:	EMD-39286
Title	:	Type I-EHNH Cascade-ssDNA complex
Authors	:	Li, Z.
Deposited on	:	2024-02-27
Resolution	:	3.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.38.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	388	72%	17% • 10%
2	В	272	76%	22% •
3	С	61	44% 41%	15%
4	D	378	72%	21% 6%
4	Е	378	84%	14% ••
4	F	378	86%	12% ••
4	G	378	80%	18% •
4	Н	378	82%	16% •

Continued on next page...

Conti	nued fron	n previous	page		
Mol	Chain	Length	Quality of chair	n	
4	Ι	378	60% 1	.0% •	30%
	_				
5	J	535	66%	16%	• 17%
6	K	174	83%		11% • 5%
	-	-			
7	'T'	56	45% 3	9%	16%

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 28503 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called CRISPR system Cascade subunit CasD.

Mol	Chain	Residues		At		AltConf	Trace		
1	А	349	Total 2756	C 1736	N 512	0 489	S 19	0	0

• Molecule 2 is a protein called CRISPR-associated endoribonuclease Cse3.

Mol	Chain	Residues		Ate	AltConf	Trace			
2	В	268	Total 2174	C 1397	N 388	0 384	${ m S}{ m 5}$	0	0

• Molecule 3 is a RNA chain called 61-nt crRNA.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
3	С	61	Total 1303	C 584	N 239	O 420	Р 60	0	0

• Molecule 4 is a protein called CRISPR system Cascade subunit CasC.

Mol	Chain	Residues		At	oms			AltConf	Trace
4	Л	355	Total	С	Ν	0	\mathbf{S}	0	0
4	D	000	2792	1771	488	522	11	0	0
4	E	375	Total	С	Ν	0	S	0	0
4	Ľ	515	2923	1848	510	553	12	0	0
4	F	372	Total	С	Ν	0	\mathbf{S}	0	0
-1	4 I'		2897	1830	506	549	12	0	0
4	C	370	Total	С	Ν	0	\mathbf{S}	0	0
-1	G	510	2882	1821	503	546	12	0	0
4	н	371	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
-1	11	511	2891	1827	505	547	12	0	0
4	T	266	Total	$\overline{\mathrm{C}}$	Ν	Ō	\mathbf{S}	0	0
	L	200	2056	1308	356	385	7	0	0

• Molecule 5 is a protein called CRISPR-associated protein Cse1 (CRISPR_cse1).

Mol	Chain	Residues		At	AltConf	Trace			
5	J	442	Total 3521	C 2260	N 602	O 640	S 19	0	0

• Molecule 6 is a protein called CRISPR-associated protein Cse2 (CRISPR_cse2).

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	K	165	Total 1356	C 878	N 239	O 233	S 6	0	0

• Molecule 7 is DNA/RNA hybrid called DNA/RNA (47-MER).

Mol	Chain	Residues		At	toms		AltConf	Trace	
7	Т	47	Total 950	C 457	N 158	O 288	Р 47	0	0

• Molecule 8 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
8	А	1	Total Zn 1 1	0
8	J	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: CRISPR system Cascade subunit CasD

• Molecule 4: CRISPR system Cascade subunit CasC

Chain E:	84%	14% ••
M1 E4 M7 M7 M7 M4 M4 M6 M4 M6 M6 M6 M6 M8 K8 M8 K8 M8 K87 K87 K87 K87 K87 K87 K87 K87 K87 K8	N92 D94 D94 D110 L111 L111 L112 V129 V129 V129 L144 L144 L144 L144 L144 L144 L144 L14	L171 L171 A174 A174 D194 D194 M209 M209 C214
K217 Y218 Y218 1236 H239 H239 N252 N252 N252 N252 N252 N252 N255 N252 N255 N252 N255 N25 N2	N306 17 1617 1617 1726 1633 1633 1633 1636 1636 1636 1636 16	dLY
• Molecule 4: CRISPR system Ca	scade subunit CasC	
Chain F:	86%	12% ••
M1 13 13 13 13 13 13 13 10 11 11 11 11 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	W78 K91 K98 K98 K104 L111 L111 L111 L111 L111 L111 L111 L	K161 K162 S163 S164 N164 P184 P184 D199
q203 1221 1221 1221 4261 4263 H265 F273 K274 F274 F274 F274 F274 F274 F265 C324 C324 C324 C324 C324 C324 C324 C324	E368 S372 LYS LYS LYS LYS CYS GLY	
• Molecule 4: CRISPR system Ca	scade subunit CasC	
Chain G:	80%	18% •
M1 L2 L2 F29 F29 C33 C33 C33 C33 C33 C44 C33 C44 C44 C44	168 169 169 169 184 184 184 184 184 184 184 186 186 186 186 186 187 197 1100 1110 1111	V115 L116 D117 L120 G121 G121 E124 V129
q135 8178 8178 1181 1181 1181 1195 1195 1195 1195 119	1278 1278 1286 1286 1286 1286 1286 1286 1311 1311 1311 1335 1336 1336 1336 133	1347 1348 1349 1353 1353 1353 1353 1353 1353 1353
E368 LY3 LY3 SER LY3 ALA ALA GLY GLY		
• Molecule 4: CRISPR system Ca	scade subunit CasC	
Chain H:	82%	16% •
M1 18 18 18 18 18 18 18 18 18 14 14 14 14 14 16 16 16 16	168 E74 E74 K79 K80 K87 K87 K87 K87 K87 K87 K87 K93 K95 K93 K95 K93 K96 K93	D110 L111 A112 A113 1114 V115 N118 L122
q128 D141 1142 P151 P151 P153 D153 D153 D153 V195 V195 V195 V195 V195 V195 V195 V195	2254 2257 0257 1292 1296 1296 1296 1296 1296 1332 1332 1332 1332 1332 1332 1332 133	K371 SER LYS ALA TYR TYR ILE GLY GLY
• Molecule 4: CRISPR system Ca	scade subunit CasC	
Chain I: 60%	10% • 30%	
	PROTEIN DATA BANK	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	63162	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	54	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	2200	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.26	0/2824	0.57	0/3831
2	В	0.25	0/2232	0.54	0/3022
3	С	0.26	0/1459	0.86	0/2273
4	D	0.26	0/2847	0.51	0/3847
4	Ε	0.25	0/2981	0.48	0/4031
4	F	0.26	0/2954	0.49	0/3995
4	G	0.25	0/2939	0.48	0/3976
4	Н	0.26	0/2948	0.48	0/3987
4	Ι	0.26	0/2102	0.49	0/2849
5	J	0.25	0/3621	0.52	0/4927
6	Κ	0.25	0/1386	0.52	0/1866
7	Т	0.54	0/1060	1.02	0/1631
All	All	0.27	0/29353	0.56	0/40235

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2756	0	2752	65	0

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	В	2174	0	2189	35	0
3	С	1303	0	659	23	0
4	D	2792	0	2791	47	0
4	Е	2923	0	2905	38	0
4	F	2897	0	2878	30	0
4	G	2882	0	2860	42	0
4	Н	2891	0	2873	38	0
4	Ι	2056	0	2016	25	0
5	J	3521	0	3453	50	0
6	K	1356	0	1398	17	0
7	Т	950	0	535	44	0
8	А	1	0	0	0	0
8	J	1	0	0	0	0
All	All	28503	0	27309	366	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

The worst 5 of 366 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:A:349:ARG:HH22	7:T:6:DG:H1'	1.13	1.11	
1:A:287:ARG:NH2	7:T:10:DA:OP1	1.87	1.06	
6:K:49:ARG:NH2	7:T:7:DC:H5	1.57	1.02	
6:K:49:ARG:HH22	7:T:7:DC:H5	1.01	0.96	
1:A:313:TYR:CD2	7:T:6:DG:C4	2.57	0.93	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	345/388~(89%)	321 (93%)	24 (7%)	0	100	100
2	В	266/272~(98%)	240 (90%)	26 (10%)	0	100	100
4	D	351/378~(93%)	322 (92%)	29 (8%)	0	100	100
4	Е	373/378~(99%)	357 (96%)	16 (4%)	0	100	100
4	F	370/378~(98%)	352 (95%)	18 (5%)	0	100	100
4	G	368/378~(97%)	359~(98%)	9 (2%)	0	100	100
4	Н	369/378~(98%)	355~(96%)	14 (4%)	0	100	100
4	Ι	260/378~(69%)	249 (96%)	11 (4%)	0	100	100
5	J	440/535~(82%)	396 (90%)	44 (10%)	0	100	100
6	Κ	163/174~(94%)	152 (93%)	11 (7%)	0	100	100
All	All	3305/3637~(91%)	3103 (94%)	202 (6%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	289/322~(90%)	280~(97%)	9~(3%)	35 60
2	В	235/238~(99%)	225~(96%)	10 (4%)	25 50
4	D	300/313~(96%)	288~(96%)	12 (4%)	27 52
4	Ε	312/313~(100%)	299~(96%)	13 (4%)	25 51
4	F	310/313~(99%)	301~(97%)	9~(3%)	37 61
4	G	308/313~(98%)	298~(97%)	10 (3%)	34 59
4	Н	309/313~(99%)	302~(98%)	7(2%)	45 67
4	Ι	218/313~(70%)	212~(97%)	6 (3%)	38 62
5	J	377/459~(82%)	361~(96%)	16 (4%)	25 51
6	K	144/153~(94%)	139 (96%)	5 (4%)	31 56
All	All	2802/3050~(92%)	2705 (96%)	97 (4%)	33 56

5 of 97 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
4	G	110	ASP
4	Ι	212	SER
4	G	135	GLN
4	Н	102	PHE
4	Ι	365	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
4	D	127	GLN
4	Е	86	ASN
4	F	9	GLN
5	J	178	GLN
5	J	200	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
3	С	60/61~(98%)	25~(41%)	1 (1%)
7	Т	0/56	-	-
All	All	60/117~(51%)	25 (41%)	1 (1%)

5 of 25 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
3	С	2	U
3	С	3	G
3	С	9	G
3	С	10	А
3	С	14	G

All (1) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
3	С	45	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 2 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

