

Full wwPDB X-ray Structure Validation Report (i)

Jun 18, 2024 – 02:19 AM EDT

PDB ID	:	5YMR
Title	:	The Crystal Structure of IseG
Authors	:	Lin, L.; Zhang, J.; Xing, M.; Hua, G.; Guo, C.; Hu, Y.; Wei, Y.; Ang, E.;
		Zhao, H.; Zhang, Y.; Yuchi, Z.
Deposited on	:	2017-10-22
Resolution	:	2.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	3907 (2.40-2.40)
Clashscore	141614	4398 (2.40-2.40)
Ramachandran outliers	138981	4318 (2.40-2.40)
Sidechain outliers	138945	4319 (2.40-2.40)
RSRZ outliers	127900	3811 (2.40-2.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	808	78%	20%	••
1	В	808	76%	21%	••
1	С	808	78%	20%	••
1	D	808	79%	19%	••

$5 \mathrm{YMR}$

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 25800 atoms, of which 68 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Α	toms			ZeroOcc	AltConf	Trace
1	В	708	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	D	190	6251	3980	1062	1177	32			0
1	П	708	Total	С	Ν	Ο	S	0	0	0
1		190	6232	3970	1059	1171	32			0
1	С	707	Total	С	Ν	Ο	S	0	0	0
	191	6229	3961	1061	1175	32	0	0	0	
1	1 A	708	Total	С	Ν	Ο	S	0	0	0
	198	6219	3962	1052	1173	32	0	U	0	

• Molecule 1 is a protein called Formate acetyltransferase.

There are 24 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	21	SER	-	expression tag	UNP Q727N1
В	22	ASN	-	expression tag	UNP Q727N1
В	23	ALA	-	expression tag	UNP Q727N1
В	133	ALA	GLU	engineered mutation	UNP Q727N1
В	134	ALA	ASP	engineered mutation	UNP Q727N1
В	136	ALA	ARG	engineered mutation	UNP Q727N1
D	21	SER	-	expression tag	UNP Q727N1
D	22	ASN	-	expression tag	UNP Q727N1
D	23	ALA	-	expression tag	UNP Q727N1
D	133	ALA	GLU	engineered mutation	UNP Q727N1
D	134	ALA	ASP	engineered mutation	UNP Q727N1
D	136	ALA	ARG	engineered mutation	UNP Q727N1
С	21	SER	-	expression tag	UNP Q727N1
С	22	ASN	-	expression tag	UNP Q727N1
С	23	ALA	-	expression tag	UNP Q727N1
С	133	ALA	GLU	engineered mutation	UNP Q727N1
С	134	ALA	ASP	engineered mutation	UNP Q727N1
С	136	ALA	ARG	engineered mutation	UNP Q727N1
А	21	SER	-	expression tag	UNP Q727N1
А	22	ASN	-	expression tag	UNP Q727N1
А	23	ALA	-	expression tag	UNP Q727N1

Continu	Continued from previous page								
Chain	Residue	Modelled	Actual	Comment	Reference				
А	133	ALA	GLU	engineered mutation	UNP Q727N1				
А	134	ALA	ASP	engineered mutation	UNP Q727N1				
А	136	ALA	ARG	engineered mutation	UNP Q727N1				

• Molecule 2 is 2-hydroxyethyl sulfonic acid (three-letter code: 8X3) (formula: $C_2H_6O_4S$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
2	В	1	Total	С	Η	0	S	0	0
2	D	I	12	2	5	4	1	0	0
2	л	1	Total	С	Η	Ο	\mathbf{S}	0	0
		1	12	2	5	4	1	0	0
2	С	1	Total	С	Η	0	S	0	0
	U	L	12	2	5	4	1	0	0
2	Δ	1	Total	С	Η	Ο	S	0	0
	A		12	2	5	4	1	0	U

• Molecule 3 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
3	В	1	Total	С	Η	Ο	0	0
0	D	1	14	3	8	3	0	0
3	В	1	Total	С	Η	Ο	0	0
0	D	1	14	3	8	3	0	0
2	Л	1	Total	С	Η	Ο	0	0
5	D	1	14	3	8	3	0	0
2	С	1	Total	С	Η	Ο	0	0
0	U		14	3	8	3	0	0
2	٨	1	Total	С	Η	Ο	0	0
5	Л	1	14	3	8	3	0	0
3	Δ	1	Total	С	Η	0	0	0
5	А		14	3	8	3	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	204	Total O 204 204	0	0
4	D	154	Total O 154 154	0	0
4	С	161	Total O 161 161	0	0
4	А	218	Total O 218 218	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Formate acetyltransferase

• Molecule 1: Formate acetyltransferase

R676 P679 P679 P679 P679 P679 P685 P694 P679 P679 P679 P685 P685 P694 P711 P7118 P7128 P7165 P7176 P7176

M828

• Molecule 1: Formate acetyltransferase

 \bullet Molecule 1: Formate acetyltransferase

Chain A:	78%	20% ••
SER ASN ASN ARG ARG ARG ARG ARG CU V32 CU CU CU CU CU CU CU CU CU CU CU CU CU	N70 174 174 197 1997 1997 1997 1998 1998 1110 1110 1115 11120 11130	A133 A134 1137 1142 1142 1150 1150 1150 1150 1150 1150
q172 q172 1181 1181 1183 1183 1190 1190 1190 1190 1190 1190 1190 119	7230 1231 1235 1235 1265 1265 1265 1265 1265 1265 1265 126	1310 1311 1310 1314 1317 1325 1325 1325 1329 1329 1329 1329 1329 1329 1329 1329
1335 1335 1337 1333 1333 1333 1333 1333	83399 8400 8400 8400 8403 1404 1404 1428 1428 1428 6434 6433 6434 8468 8464 8468	R470 D475 1476 1477 8477 8477 8477 8487 6481 4483 1493 1493 1493 1493
D513 E516 Y527 Y527 Y527 R549 R549 R549 R549 R566 L572 L572 L572 L572 L572 L572 L572	L055 F586 F587 F581 F591 F591 F591 F603 E612 E612 E612 L616 L616 L616 L616 L616 L616 L616 C622	G 625 G 625 K 625 K 651 K 663 R 664 R 663 R 664 R 663 R 664 R 663 R 665 S 666 S 665 S 665
6670 M671 V675 K676 F677 F680 F679 F680 F688 F688 F688 F688 F688 F688 F688	D7 35 R7 36 N7 42 17 43 F7 44 F7 44 F7 45 L7 69 L7 69 L7 63 L7 64 L7 64	V778 R795 R795 R800 R800 F814 L811 L811 L814 L819 L819 L819 L819 L819

V827 M828

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	110.11Å 159.44Å 115.38Å	Deperitor
a, b, c, α , β , γ	90.00° 91.66° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	48.27 - 2.40	Depositor
Resolution (A)	48.27 - 2.40	EDS
% Data completeness	98.4 (48.27-2.40)	Depositor
(in resolution range)	87.5 (48.27-2.40)	EDS
R _{merge}	0.15	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.32 (at 2.39 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.11.1_2575	Depositor
B B c	0.212 , 0.262	Depositor
It, Itfree	0.212 , 0.262	DCC
R_{free} test set	15307 reflections (9.99%)	wwPDB-VP
Wilson B-factor (Å ²)	19.7	Xtriage
Anisotropy	0.642	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.36 , 18.9	EDS
L-test for $twinning^2$	$< L > = 0.45, < L^2 > = 0.28$	Xtriage
	0.033 for l,k,-h	
Estimated twinning fraction	0.087 for h,-k,-l	Xtriage
	0.035 for l,-k,h	
F_o, F_c correlation	0.90	EDS
Total number of atoms	25800	wwPDB-VP
Average B, all atoms $(Å^2)$	27.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.77% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 8X3, GOL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
INIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.44	0/6377	0.58	0/8673
1	В	0.43	0/6409	0.58	2/8713~(0.0%)
1	С	0.40	0/6387	0.56	0/8683
1	D	0.41	0/6390	0.57	0/8685
All	All	0.42	0/25563	0.57	2/34754~(0.0%)

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	736	ARG	NE-CZ-NH1	5.25	122.92	120.30
1	В	736	ARG	NE-CZ-NH2	-5.04	117.78	120.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	6219	0	5936	131	0
1	В	6251	0	5992	128	0
1	С	6229	0	5937	119	0
1	D	6232	0	5965	120	0
2	А	7	5	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	В	7	5	0	0	0
2	С	7	5	0	0	0
2	D	7	5	0	1	0
3	А	12	16	16	1	0
3	В	12	16	16	1	0
3	С	6	8	8	0	0
3	D	6	8	8	2	0
4	А	218	0	0	9	0
4	В	204	0	0	2	0
4	С	161	0	0	6	0
4	D	154	0	0	10	0
All	All	25732	68	23878	489	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (489) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:48:VAL:HG21	1:B:137:VAL:HG21	1.28	1.07
1:C:36:LEU:HD11	1:C:404:LEU:HD11	1.36	1.07
1:A:775:GLN:HE22	1:A:803:GLY:H	1.03	1.01
1:D:347:TRP:HZ3	1:D:398:SER:HG	1.04	0.97
1:D:659:VAL:HG12	1:D:733:MET:HE1	1.41	0.97
1:B:299:GLN:HG2	1:B:303:ARG:HH12	1.27	0.97
1:D:335:THR:HG22	1:D:337:ASP:H	1.30	0.95
1:C:775:GLN:HE22	1:C:803:GLY:H	1.08	0.94
1:A:46:ILE:HD11	1:A:120:LEU:HD13	1.51	0.92
1:C:32:VAL:HG22	1:C:35:ILE:HG13	1.51	0.92
1:A:187:ARG:HD2	4:A:1169:HOH:O	1.71	0.91
1:D:36:LEU:HD22	1:D:348:VAL:HG23	1.52	0.90
1:B:775:GLN:HE22	1:B:803:GLY:H	1.18	0.89
1:B:299:GLN:HG2	1:B:303:ARG:NH1	1.89	0.86
1:A:347:TRP:HZ3	1:A:398:SER:HG	1.24	0.86
1:A:335:THR:HG22	1:A:338:SER:H	1.37	0.85
1:C:335:THR:HG22	1:C:337:ASP:H	1.39	0.85
1:B:46:ILE:HD12	1:B:130:ILE:HG12	1.62	0.82
1:B:501:LYS:HG2	1:B:689:VAL:HG23	1.61	0.82
1:C:501:LYS:HG2	1:C:689:VAL:CG2	2.10	0.82
1:C:668:GLU:HG3	4:C:1033:HOH:O	1.79	0.81
1:C:32:VAL:HG23	1:C:35:ILE:H	1.44	0.81

	louo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:299:GLN:HG2	1:C:303:ARG:HH12	1.45	0.80
1:D:335:THR:HG22	1:D:337:ASP:N	1.95	0.80
1:C:659:VAL:HG12	1:C:733:MET:HE1	1.65	0.79
1:B:347:TRP:HZ3	1:B:398:SER:HG	1.28	0.79
1:D:811:LEU:HG	1:D:815:LEU:HD23	1.67	0.77
1:A:292:VAL:HG13	1:A:346:MET:HE1	1.66	0.77
1:D:292:VAL:HG13	1:D:346:MET:CE	2.16	0.76
1:B:365:PHE:C	1:B:681:THR:HG22	2.07	0.76
1:B:46:ILE:HD11	1:B:120:LEU:HD13	1.68	0.75
1:D:659:VAL:HG12	1:D:733:MET:CE	2.16	0.75
1:A:299:GLN:HG2	1:A:303:ARG:HH12	1.52	0.75
1:B:32:VAL:HG11	1:B:344:GLU:HB3	1.67	0.75
1:C:501:LYS:HG2	1:C:689:VAL:HG23	1.70	0.74
1:C:36:LEU:HD11	1:C:404:LEU:CD1	2.17	0.73
1:B:299:GLN:CG	1:B:303:ARG:HH12	1.99	0.73
1:A:775:GLN:HE22	1:A:803:GLY:N	1.84	0.73
1:C:659:VAL:HG12	1:C:733:MET:CE	2.18	0.73
1:C:299:GLN:HG2	1:C:303:ARG:NH1	2.04	0.73
1:A:430:LYS:HE2	1:A:750:VAL:O	1.89	0.72
1:D:340:LEU:HD13	1:D:394:LEU:HD11	1.70	0.72
1:B:501:LYS:HG2	1:B:689:VAL:CG2	2.18	0.72
1:C:197:GLU:OE2	1:C:201:LYS:HE3	1.89	0.72
1:A:347:TRP:HZ3	1:A:398:SER:OG	1.71	0.71
1:A:116:ALA:HB1	1:A:120:LEU:CD1	2.20	0.71
1:D:292:VAL:HG13	1:D:346:MET:HE1	1.73	0.71
1:A:775:GLN:NE2	1:A:803:GLY:H	1.83	0.71
1:D:668:GLU:HB3	1:A:224:CYS:SG	2.30	0.71
1:D:668:GLU:HG3	4:D:1063:HOH:O	1.90	0.70
1:D:105:TYR:CD1	1:D:307:LYS:HB2	2.26	0.70
1:D:521:GLU:HG3	4:D:1061:HOH:O	1.90	0.69
1:A:668:GLU:HG3	4:A:1034:HOH:O	1.92	0.69
1:A:292:VAL:HG13	1:A:346:MET:CE	2.22	0.69
1:A:586:PHE:CE2	1:A:675:VAL:HG13	2.28	0.68
1:C:52:LYS:HE3	1:C:141:GLU:OE2	1.93	0.68
1:B:48:VAL:CG2	1:B:137:VAL:HG21	2.15	0.68
1:A:314:ASN:HD21	1:A:350:MET:HE3	1.59	0.67
1:A:299:GLN:HG2	1:A:303:ARG:NH1	2.08	0.67
1:A:622:CYS:HB3	4:A:1206:HOH:O	1.93	0.67
1:B:105:TYR:CE2	1:B:307:LYS:HB2	2.30	0.67
1:A:483:TYR:CE2	1:A:587:GLU:HG2	2.30	0.67
1:D:501:LYS:HG2	1:D:689:VAL:CG2	2.24	0.67

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:335:THR:HG22	1:C:337:ASP:N	2.10	0.67
1:B:612:THR:OG1	1:B:615:GLU:HG3	1.94	0.66
1:C:501:LYS:HG2	1:C:689:VAL:HG22	1.77	0.66
1:B:46:ILE:HD12	1:B:130:ILE:CG1	2.25	0.66
1:D:501:LYS:HG2	1:D:689:VAL:HG22	1.76	0.66
1:C:801:ILE:HD11	1:C:811:LEU:HD21	1.76	0.66
1:A:750:VAL:O	1:A:750:VAL:HG22	1.95	0.66
1:B:347:TRP:HZ3	1:B:398:SER:OG	1.78	0.65
1:D:105:TYR:CE1	1:D:307:LYS:HB2	2.30	0.65
1:D:769:LEU:HD23	1:C:416:ARG:HD2	1.78	0.65
1:D:340:LEU:HD13	1:D:394:LEU:CD1	2.26	0.65
1:D:346:MET:HG2	1:D:350:MET:CE	2.26	0.65
1:C:181:ASN:HA	4:C:1137:HOH:O	1.97	0.65
1:C:811:LEU:HG	1:C:815:LEU:HD23	1.79	0.65
1:A:116:ALA:HB1	1:A:120:LEU:HD12	1.79	0.64
1:A:120:LEU:HD11	1:A:358:ILE:HG22	1.78	0.64
1:B:252:LYS:HE2	1:B:256:GLU:OE2	1.98	0.64
1:C:32:VAL:CG2	1:C:35:ILE:H	2.10	0.64
1:D:209:GLU:O	1:D:213:GLU:HG3	1.98	0.64
1:C:749:CYS:SG	1:C:828:MET:HG3	2.39	0.63
1:D:663:ARG:HD2	1:D:733:MET:HE3	1.79	0.63
1:A:155:LEU:HD11	1:A:159:LEU:HD21	1.81	0.63
1:C:32:VAL:CG2	1:C:35:ILE:HG13	2.27	0.63
1:B:31:ARG:N	1:B:34:THR:HG1	1.97	0.62
1:C:423:TRP:HH2	1:C:753:GLU:HG3	1.64	0.62
1:A:115:THR:HG23	4:A:1091:HOH:O	2.00	0.62
1:D:36:LEU:HD22	1:D:348:VAL:CG2	2.26	0.62
1:C:317:MET:HE3	1:C:321:PHE:HE2	1.65	0.62
1:B:483:TYR:CE2	1:B:587:GLU:HG2	2.35	0.62
1:A:325:TYR:O	1:A:329:LEU:HB2	2.00	0.61
1:A:105:TYR:CD2	1:A:307:LYS:HB2	2.35	0.61
1:D:416:ARG:HE	3:D:902:GOL:H32	1.67	0.60
1:C:299:GLN:CG	1:C:303:ARG:HH12	2.15	0.60
1:A:343:LEU:HB3	1:A:347:TRP:CZ3	2.35	0.60
1:D:801:ILE:HD11	1:D:811:LEU:HD21	1.83	0.60
1:D:612:THR:OG1	1:D:615:GLU:HG3	2.01	0.60
1:D:135:ALA:O	1:D:139:VAL:HG23	2.02	0.59
1:D:587:GLU:OE1	1:D:676:ARG:CD	2.50	0.59
1:B:52:LYS:HE3	1:B:141:GLU:OE2	2.02	0.59
1:D:346:MET:HG2	1:D:350:MET:HE3	1.85	0.59
1:D:676:ARG:NH2	2:D:901:8X3:O5	2.31	0.58

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:428:THR:HG22	1:C:435:PHE:O	2.03	0.58
1:C:565:CYS:SG	1:C:572:LEU:HD13	2.42	0.58
1:B:48:VAL:HG21	1:B:137:VAL:CG2	2.19	0.58
1:B:808:PHE:HA	1:B:811:LEU:HD22	1.84	0.58
1:A:327:LYS:O	1:A:331:GLU:HG3	2.03	0.58
1:A:565:CYS:SG	1:A:572:LEU:HD13	2.43	0.58
1:B:423:TRP:HH2	1:B:753:GLU:HG3	1.68	0.58
1:B:172:GLN:HG3	1:B:174:LEU:HG	1.83	0.58
1:A:513:ASP:HB3	1:A:516:GLU:HG3	1.84	0.58
1:A:684:VAL:HG21	1:A:815:LEU:HB2	1.86	0.58
1:D:811:LEU:HG	1:D:815:LEU:CD2	2.33	0.58
1:C:524:TRP:O	1:C:528:VAL:HG23	2.04	0.58
1:B:749:CYS:SG	1:B:828:MET:HB3	2.43	0.58
1:B:494:LEU:O	1:B:514:PRO:HG3	2.04	0.57
1:C:165:LYS:HD2	1:C:506:ASP:O	2.04	0.57
1:D:626:GLY:O	1:D:627:LYS:HD3	2.05	0.57
1:A:688:ARG:HD2	1:A:814:ASP:OD2	2.03	0.57
1:C:201:LYS:O	1:C:284:PRO:HB3	2.04	0.57
1:A:183:THR:HA	1:A:186:PHE:CE1	2.39	0.57
1:A:658:SER:CB	1:A:675:VAL:HG11	2.35	0.57
1:B:230:ARG:HB3	1:B:231:PRO:HD3	1.86	0.57
1:C:775:GLN:NE2	1:C:803:GLY:H	1.90	0.56
1:B:818:ASP:O	1:B:822:ARG:HG3	2.05	0.56
1:B:36:LEU:HD13	1:B:348:VAL:HG23	1.87	0.56
1:D:430:LYS:HE2	1:D:756:SER:OG	2.05	0.56
1:C:86:ASP:HB3	4:C:1098:HOH:O	2.06	0.56
1:C:684:VAL:HG21	1:C:815:LEU:HB2	1.87	0.56
1:A:314:ASN:HD21	1:A:350:MET:CE	2.17	0.56
1:B:801:ILE:HD11	1:B:811:LEU:HD21	1.88	0.56
1:A:658:SER:HB3	1:A:675:VAL:CG1	2.35	0.56
1:D:489:ALA:HB2	1:D:534:PHE:CE2	2.41	0.56
1:A:105:TYR:CE2	1:A:307:LYS:HB2	2.41	0.56
1:B:201:LYS:O	1:B:284:PRO:HB3	2.05	0.55
1:D:292:VAL:HG13	1:D:346:MET:HE3	1.88	0.55
1:C:489:ALA:HB2	1:C:534:PHE:CE2	2.42	0.55
1:B:107:GLU:HA	1:B:146:TRP:CZ3	2.42	0.55
1:D:652:ARG:NE	4:D:1002:HOH:O	2.33	0.55
1:B:209:GLU:O	1:B:213:GLU:HG3	2.06	0.55
1:A:310:THR:HB	1:A:372:TRP:HB2	1.87	0.55
1:D:454:THR:OG1	1:D:457:GLU:HG3	2.06	0.55
1:B:46:ILE:HD12	1:B:130:ILE:CD1	2.37	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:56:GLU:HA	1:A:59:LYS:HE2	1.88	0.55
1:C:265:THR:O	1:C:269:GLU:HG3	2.07	0.55
1:B:292:VAL:HG13	1:B:346:MET:CE	2.37	0.55
1:B:367:GLU:H	1:B:681:THR:HG21	1.71	0.55
1:A:335:THR:CG2	1:A:337:ASP:H	2.19	0.55
1:B:344:GLU:HG3	1:B:402:PHE:CD1	2.40	0.55
1:A:612:THR:OG1	1:A:615:GLU:HG3	2.07	0.55
1:B:265:THR:O	1:B:269:GLU:HG3	2.07	0.54
1:D:190:ILE:HG23	1:D:480:GLY:HA2	1.89	0.54
1:A:41:ASN:HB2	1:A:795:ARG:HH12	1.73	0.54
1:A:230:ARG:HB3	1:A:231:PRO:HD3	1.88	0.54
1:B:105:TYR:CD2	1:B:307:LYS:HB2	2.42	0.54
1:B:598:LEU:HD12	1:B:654:ILE:HD11	1.90	0.54
1:A:616:LEU:O	1:A:620:LEU:HG	2.07	0.54
1:B:434:GLY:HA3	1:B:800:ARG:HB2	1.90	0.54
1:B:775:GLN:HE22	1:B:803:GLY:N	1.98	0.54
1:A:396:LEU:O	1:A:400:ARG:HG3	2.07	0.54
1:C:598:LEU:HD12	1:C:654:ILE:HD11	1.90	0.54
1:A:611:LEU:HD23	1:A:611:LEU:N	2.22	0.54
1:A:714:ASP:OD1	1:A:714:ASP:N	2.38	0.54
1:B:759:LEU:O	1:B:763:ILE:HG13	2.07	0.54
1:B:681:THR:HG23	1:B:681:THR:O	2.08	0.53
1:B:134:ALA:O	1:B:137:VAL:HG22	2.09	0.53
1:D:317:MET:CE	1:D:321:PHE:HE2	2.22	0.53
1:B:662:GLY:O	1:B:666:SER:HB2	2.08	0.53
1:A:470:ARG:HH11	1:A:475:ASP:HB3	1.74	0.53
1:D:587:GLU:OE1	1:D:676:ARG:HD3	2.07	0.53
1:D:775:GLN:HE22	1:D:803:GLY:HA2	1.73	0.53
1:A:116:ALA:HB1	1:A:120:LEU:HD11	1.91	0.53
1:D:36:LEU:HD13	1:D:39:PHE:CZ	2.44	0.53
1:C:84:TYR:CD2	1:C:94:ARG:HD3	2.44	0.53
1:D:230:ARG:HB3	1:D:231:PRO:HD3	1.91	0.52
1:D:52:LYS:HE2	1:D:141:GLU:OE2	2.10	0.52
1:A:327:LYS:HD2	4:A:1214:HOH:O	2.08	0.52
1:C:230:ARG:HB3	1:C:231:PRO:HD3	1.91	0.52
1:D:56:GLU:HA	1:D:59:LYS:HE2	1.92	0.52
1:D:416:ARG:HE	3:D:902:GOL:C3	2.23	0.52
1:A:591:PHE:CZ	1:A:651:ALA:HB1	2.45	0.52
1:D:549:ARG:HH22	1:D:573:HIS:CE1	2.28	0.52
1:B:236:ILE:O	1:B:239:VAL:HG12	2.10	0.51
1:D:370:ALA:HB1	1:D:372:TRP:CH2	2.46	0.51

	, and page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:335:THR:N	1:C:338:SER:OG	2.31	0.51
1:A:317:MET:O	1:A:321:PHE:HB2	2.10	0.51
1:B:481:GLY:HA2	1:B:542:GLN:OE1	2.09	0.51
1:D:224:CYS:SG	1:A:668:GLU:HB3	2.51	0.51
1:C:588:TYR:HB3	1:C:677:TYR:CE2	2.46	0.51
1:D:447:LEU:HD11	1:D:736:ARG:NH1	2.25	0.51
1:C:111:ASP:N	1:C:111:ASP:OD1	2.43	0.51
1:B:225:ASP:HA	1:B:229:LYS:HB2	1.91	0.51
1:B:668:GLU:HB3	1:C:224:CYS:SG	2.51	0.51
1:D:117:ILE:HD12	1:D:130:ILE:HD13	1.93	0.51
1:C:470:ARG:HH11	1:C:475:ASP:HB3	1.76	0.51
1:B:292:VAL:HG13	1:B:346:MET:HE1	1.91	0.51
1:B:370:ALA:HB1	1:B:372:TRP:CH2	2.45	0.51
1:D:346:MET:HG2	1:D:350:MET:HE2	1.91	0.51
1:C:429:ILE:HD13	1:C:776:PHE:CD2	2.46	0.51
1:A:370:ALA:HB1	1:A:372:TRP:CH2	2.46	0.51
1:C:589:MET:HG3	1:C:686:PHE:CE2	2.46	0.50
1:A:335:THR:HG23	1:A:337:ASP:H	1.76	0.50
1:D:718:PRO:CG	1:D:828:MET:HA	2.41	0.50
1:B:307:LYS:NZ	1:B:355:ASP:OD1	2.41	0.50
1:A:587:GLU:OE1	1:A:676:ARG:HD2	2.11	0.50
1:D:150:THR:HG23	1:D:153:GLU:OE2	2.11	0.50
1:C:568:HIS:CG	1:C:578:PRO:HG2	2.47	0.50
1:C:743:ILE:O	1:C:776:PHE:HA	2.12	0.50
1:C:745:PHE:O	1:C:778:VAL:HA	2.11	0.50
1:A:335:THR:HG22	1:A:338:SER:N	2.16	0.50
1:B:626:GLY:O	1:B:627:LYS:HD3	2.12	0.50
1:D:416:ARG:HD2	1:C:769:LEU:HD23	1.93	0.50
1:B:722:LEU:HD11	1:B:762:PHE:CZ	2.46	0.49
1:C:105:TYR:CE1	1:C:307:LYS:HB2	2.47	0.49
1:A:470:ARG:NH1	1:A:475:ASP:HB3	2.28	0.49
1:A:587:GLU:OE1	1:A:676:ARG:CD	2.60	0.49
1:D:681:THR:O	1:D:685:PRO:HD2	2.12	0.49
1:C:611:LEU:HB2	1:C:615:GLU:OE2	2.12	0.49
1:B:775:GLN:NE2	1:B:803:GLY:H	1.99	0.49
1:B:827:VAL:O	1:B:828:MET:C	2.50	0.49
1:D:613:MET:O	1:D:617:ILE:HG12	2.12	0.49
1:C:801:ILE:HD11	1:C:806:ALA:HB3	1.94	0.49
1:A:718:PRO:CG	1:A:828:MET:HA	2.43	0.49
1:D:727:ASN:CB	4:D:1136:HOH:O	2.59	0.49
1:C:351:ALA:HA	1:C:406:TYR:CZ	2.47	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:652:ARG:NH2	4:D:1002:HOH:O	2.45	0.49
1:C:50:ARG:HD3	1:C:50:ARG:C	2.32	0.49
1:D:414:HIS:HB3	1:D:441:ASP:HB2	1.94	0.49
1:C:759:LEU:O	1:C:763:ILE:HG13	2.13	0.49
1:D:201:LYS:O	1:D:284:PRO:HB3	2.12	0.49
1:C:155:LEU:O	1:C:155:LEU:HD22	2.13	0.49
1:B:677:TYR:CD1	1:B:739:ARG:HG2	2.48	0.48
1:D:335:THR:CG2	1:D:337:ASP:H	2.14	0.48
1:A:149:LYS:O	3:A:903:GOL:O3	2.30	0.48
1:C:317:MET:CE	1:C:321:PHE:HE2	2.26	0.48
1:A:481:GLY:HA2	1:A:542:GLN:OE1	2.14	0.48
1:A:675:VAL:HG22	4:A:1180:HOH:O	2.12	0.48
1:D:551:ARG:NH2	4:D:1005:HOH:O	2.38	0.48
1:A:172:GLN:HG2	4:A:1155:HOH:O	2.12	0.48
1:D:156:ASN:ND2	1:D:172:GLN:HA	2.28	0.48
1:D:190:ILE:CG2	1:D:480:GLY:HA2	2.42	0.48
1:C:299:GLN:NE2	1:C:303:ARG:HH22	2.11	0.48
1:C:801:ILE:CD1	1:C:811:LEU:HD21	2.43	0.48
1:D:317:MET:HE2	1:D:321:PHE:CE2	2.48	0.48
1:D:759:LEU:O	1:D:763:ILE:HG13	2.13	0.48
1:B:595:VAL:HG11	1:B:640:TYR:HB2	1.95	0.48
1:D:601:ILE:HD11	1:D:694:PRO:HG2	1.95	0.48
1:D:745:PHE:O	1:D:778:VAL:HA	2.14	0.48
1:B:604:LEU:CD1	1:B:634:LEU:HA	2.43	0.48
1:B:747:PRO:HD2	1:B:780:ASN:ND2	2.29	0.47
1:D:100:ARG:HG2	1:D:352:GLN:HA	1.96	0.47
1:C:613:MET:O	1:C:617:ILE:HG12	2.13	0.47
1:D:111:ASP:HB3	4:D:1081:HOH:O	2.13	0.47
1:C:105:TYR:CD1	1:C:307:LYS:HB2	2.48	0.47
1:D:335:THR:H	1:D:338:SER:HG	1.59	0.47
1:D:513:ASP:HB3	1:D:516:GLU:HG3	1.96	0.47
1:A:676:ARG:HD3	1:A:678:VAL:HB	1.96	0.47
1:A:742:ASN:O	1:A:743:ILE:HD13	2.14	0.47
1:B:120:LEU:HD11	1:B:358:ILE:HG22	1.97	0.47
1:D:245:LEU:C	1:D:245:LEU:HD23	2.34	0.47
1:D:317:MET:O	1:D:321:PHE:HB2	2.15	0.47
1:C:187:ARG:HG3	1:C:189:SER:O	2.15	0.47
1:C:616:LEU:O	1:C:620:LEU:HG	2.13	0.47
1:D:280:VAL:HB	1:D:294:ALA:HB2	1.96	0.47
1:D:45:ARG:HA	1:D:129:ALA:O	2.15	0.47
1:D:74:LEU:HD21	1:D:305:GLU:HA	1.97	0.47

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:310:THR:O	1:D:311:ILE:HB	2.15	0.47	
1:D:468:GLU:HG2	1:D:676:ARG:HH21	1.80	0.47	
1:D:714:ASP:OD1	1:D:714:ASP:N	2.45	0.47	
1:A:210:GLU:OE2	1:A:214:LYS:NZ	2.39	0.47	
1:A:335:THR:HG22	1:A:337:ASP:N	2.29	0.47	
1:A:428:THR:HG22	1:A:435:PHE:O	2.15	0.47	
1:A:815:LEU:O	1:A:819:LEU:HD13	2.15	0.47	
1:B:712:GLY:HA2	1:B:823:THR:OG1	2.15	0.47	
1:D:50:ARG:C	1:D:50:ARG:HD3	2.35	0.47	
1:D:818:ASP:O	1:D:822:ARG:HG3	2.15	0.47	
1:C:192:TRP:CZ2	1:C:572:LEU:HD21	2.50	0.47	
1:C:317:MET:HE2	1:C:395:PHE:HZ	1.80	0.47	
1:B:314:ASN:HD21	1:B:350:MET:HE3	1.80	0.47	
1:C:717:GLY:HA3	4:C:1015:HOH:O	2.14	0.47	
1:A:46:ILE:CD1	1:A:120:LEU:HD13	2.36	0.47	
1:A:493:VAL:HG21	1:A:527:TYR:HA	1.97	0.47	
1:B:319:GLN:NE2	1:B:387:ALA:HB1	2.30	0.47	
1:C:626:GLY:O	1:C:627:LYS:HD3	2.15	0.47	
1:A:347:TRP:HD1	1:A:350:MET:SD	2.38	0.47	
1:A:658:SER:HB3	1:A:675:VAL:HG11	1.96	0.47	
1:B:36:LEU:HD11	1:B:404:LEU:HD11	1.97	0.46	
1:B:311:ILE:HB	1:B:373:GLU:HG3	1.97	0.46	
1:B:347:TRP:CZ2	1:B:407:PRO:HG3	2.50	0.46	
1:A:430:LYS:HE2	1:A:750:VAL:HG22	1.97	0.46	
1:C:42:THR:O	1:C:100:ARG:NH1	2.41	0.46	
1:A:663:ARG:HB2	1:A:735:ASP:CG	2.35	0.46	
1:B:310:THR:HB	1:B:372:TRP:HB2	1.97	0.46	
1:D:169:ASP:HB2	1:D:177:ARG:HG3	1.96	0.46	
1:D:311:ILE:HD11	1:D:355:ASP:HB2	1.97	0.46	
1:C:317:MET:HE2	1:C:317:MET:HB3	1.58	0.46	
1:D:366:ASN:HB3	1:D:370:ALA:HB3	1.96	0.46	
1:C:311:ILE:HD11	1:C:355:ASP:HB2	1.98	0.46	
1:A:721:ILE:HD12	1:A:743:ILE:HD12	1.98	0.46	
1:B:128:PHE:CD2	1:B:356:LEU:HD13	2.51	0.46	
1:B:555:GLN:OE1	1:B:572:LEU:HD23	2.15	0.46	
1:D:317:MET:HE1	1:D:321:PHE:HE2	1.80	0.46	
1:C:36:LEU:HD12	1:C:39:PHE:CZ	2.50	0.46	
1:B:224:CYS:SG	1:C:668:GLU:HB3	2.56	0.46	
1:D:307:LYS:HE3	1:D:356:LEU:O	2.16	0.46	
1:D:468:GLU:CG	1:D:676:ARG:HH21	2.29	0.46	
1:A:434:GLY:HA3	1:A:800:ARG:HB2	1.98	0.46	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:187:ARG:HD2	4:D:1072:HOH:O	2.16	0.46
1:D:65:PRO:HG3	4:D:1125:HOH:O	2.15	0.46
1:A:190:ILE:HG23	1:A:480:GLY:HA2	1.98	0.46
1:A:402:PHE:CE2	1:A:404:LEU:HB2	2.51	0.46
1:B:51:ALA:HB2	1:B:104:LEU:HB2	1.98	0.46
1:B:617:ILE:HG22	1:B:621:LYS:HD3	1.98	0.46
1:D:32:VAL:O	1:D:36:LEU:HB2	2.15	0.46
1:C:343:LEU:HB3	1:C:347:TRP:CH2	2.51	0.46
1:A:265:THR:O	1:A:269:GLU:HG3	2.16	0.46
1:B:549:ARG:HH22	1:B:573:HIS:CE1	2.34	0.45
1:A:562:HIS:CE1	1:A:564:LEU:HB2	2.51	0.45
1:B:32:VAL:HG21	1:B:344:GLU:HG2	1.98	0.45
1:C:317:MET:O	1:C:321:PHE:HB2	2.16	0.45
1:A:130:ILE:HD11	1:A:134:ALA:CB	2.46	0.45
1:A:663:ARG:HB2	1:A:735:ASP:OD1	2.17	0.45
1:B:684:VAL:HG21	1:B:815:LEU:HB2	1.98	0.45
1:D:192:TRP:CZ2	1:D:572:LEU:HD21	2.51	0.45
1:B:402:PHE:CE2	1:B:404:LEU:HB2	2.51	0.45
1:B:524:TRP:O	1:B:528:VAL:HG23	2.16	0.45
1:D:800:ARG:NH2	1:D:805:SER:OG	2.44	0.45
1:C:317:MET:HE1	1:C:395:PHE:CE2	2.51	0.45
1:C:340:LEU:HD21	1:C:398:SER:HA	1.98	0.45
1:A:97:TYR:CG	1:A:98:GLN:N	2.84	0.45
1:A:429:ILE:HD13	1:A:776:PHE:CD2	2.51	0.45
1:B:97:TYR:CG	1:B:98:GLN:N	2.85	0.45
1:D:602:LYS:HE2	1:D:607:GLU:OE2	2.17	0.45
1:B:416:ARG:HD3	1:A:769:LEU:HD23	1.97	0.45
1:B:828:MET:O	1:B:828:MET:CG	2.65	0.45
1:C:595:VAL:HG21	1:C:651:ALA:HB2	1.97	0.45
1:A:343:LEU:HB3	1:A:347:TRP:CH2	2.51	0.45
1:A:130:ILE:CD1	1:A:134:ALA:HB3	2.47	0.45
1:A:344:GLU:HG2	1:A:402:PHE:CD1	2.52	0.45
1:A:588:TYR:HB3	1:A:677:TYR:CE2	2.52	0.45
1:D:204:PHE:HD2	1:D:281:PRO:HB2	1.81	0.45
1:A:110:GLY:HA2	4:A:1187:HOH:O	2.17	0.45
1:A:745:PHE:O	1:A:778:VAL:HA	2.16	0.45
1:C:190:ILE:HG23	1:C:480:GLY:HA2	1.99	0.45
1:A:258:ALA:HB2	1:A:270:LEU:CB	2.46	0.45
1:A:479:SER:OG	1:A:549:ARG:NH1	2.47	0.45
1:B:520:TRP:CE2	1:B:602:LYS:HD2	2.52	0.45
1:C:714:ASP:OD1	1:C:714:ASP:N	2.36	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:626:GLY:O	1:A:627:LYS:HD3	2.17	0.45
1:B:84:TYR:CD1	1:B:94:ARG:HD3	2.52	0.44
1:D:267:LYS:O	1:D:271:GLU:HG3	2.17	0.44
1:A:32:VAL:HG11	1:A:344:GLU:HB3	1.99	0.44
1:A:669:LEU:HB2	1:A:671:MET:HG2	1.99	0.44
1:A:603:LYS:HE3	1:A:608:ASP:OD2	2.17	0.44
1:B:43:ARG:HH11	1:B:43:ARG:CB	2.30	0.44
1:B:800:ARG:HD3	1:B:804:TYR:O	2.17	0.44
1:C:32:VAL:HG23	1:C:35:ILE:N	2.24	0.44
1:C:549:ARG:HH22	1:C:573:HIS:CE1	2.36	0.44
1:C:91:ILE:CA	1:C:273:MET:HE2	2.48	0.44
1:C:108:LEU:HD11	1:C:185:SER:C	2.37	0.44
1:A:335:THR:CG2	1:A:337:ASP:N	2.80	0.44
1:A:658:SER:HB3	1:A:675:VAL:HG13	1.98	0.44
1:B:113:LEU:HD13	1:B:138:VAL:HG13	1.99	0.44
1:B:172:GLN:HG3	1:B:174:LEU:CD1	2.47	0.44
1:B:308:THR:HG21	1:B:312:VAL:HA	1.99	0.44
1:D:800:ARG:HD2	1:D:804:TYR:O	2.17	0.44
1:B:90:LEU:HG	3:B:902:GOL:H2	2.00	0.44
1:C:535:LEU:HD13	1:C:661:TYR:CG	2.53	0.44
1:C:722:LEU:HD11	1:C:762:PHE:CZ	2.52	0.44
1:A:299:GLN:CG	1:A:303:ARG:HH12	2.26	0.44
1:B:172:GLN:HG3	1:B:174:LEU:CG	2.48	0.44
1:B:367:GLU:HG3	1:B:681:THR:HG21	1.99	0.44
1:C:226:ASN:O	1:C:231:PRO:HD3	2.17	0.44
1:D:156:ASN:HD21	1:D:172:GLN:HA	1.82	0.43
1:A:448:TYR:CZ	1:A:583:LEU:HD13	2.53	0.43
1:B:468:GLU:CG	1:B:676:ARG:HH21	2.32	0.43
1:D:718:PRO:HG2	1:D:828:MET:HA	1.99	0.43
1:C:317:MET:HE2	1:C:395:PHE:CZ	2.53	0.43
1:D:128:PHE:CD2	1:D:356:LEU:HD13	2.53	0.43
1:D:416:ARG:NH1	4:D:1024:HOH:O	2.52	0.43
1:C:638:PRO:HB3	1:C:644:ASP:OD2	2.19	0.43
1:B:666:SER:N	1:B:667:PRO:CD	2.81	0.43
1:D:679:PRO:O	1:D:680:PHE:HB2	2.18	0.43
1:A:666:SER:N	1:A:667:PRO:CD	2.81	0.43
1:B:46:ILE:HD12	1:B:130:ILE:HD11	2.00	0.43
1:C:591:PHE:CZ	1:C:651:ALA:HB1	2.54	0.43
1:A:477:TYR:HB2	1:A:582:ASN:HA	2.00	0.43
1:C:292:VAL:HG13	1:C:346:MET:HE3	2.00	0.43
1:C:411:ALA:HB1	1:C:421:TYR:OH	2.18	0.43

	, and page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:51:ALA:CB	1:A:142:ILE:HD13	2.48	0.43
1:B:176:SER:HB2	4:B:1110:HOH:O	2.18	0.43
1:C:710:SER:HB3	4:C:1124:HOH:O	2.18	0.43
1:A:429:ILE:HD13	1:A:776:PHE:HD2	1.83	0.43
1:D:225:ASP:HA	1:D:229:LYS:HB2	2.00	0.43
1:D:684:VAL:HB	1:D:685:PRO:CD	2.49	0.43
1:C:562:HIS:HB3	1:C:565:CYS:HB2	2.00	0.43
1:D:648:ASP:OD2	1:D:724:SER:OG	2.26	0.43
1:C:467:THR:O	1:C:772:TRP:NE1	2.51	0.43
1:A:74:LEU:HD21	1:A:305:GLU:HA	2.00	0.43
1:A:750:VAL:O	1:A:750:VAL:CG2	2.66	0.43
1:B:813:PRO:HD2	4:B:1156:HOH:O	2.18	0.43
1:D:798:ILE:CG2	1:D:805:SER:HB3	2.49	0.43
1:C:57:SER:CB	1:C:73:ALA:HA	2.49	0.43
1:B:190:ILE:HG23	1:B:480:GLY:HA2	2.01	0.42
1:B:267:LYS:O	1:B:271:GLU:HG3	2.18	0.42
1:D:396:LEU:O	1:D:400:ARG:HG3	2.19	0.42
1:A:759:LEU:O	1:A:763:ILE:HG13	2.20	0.42
1:C:603:LYS:HE3	1:C:608:ASP:OD2	2.19	0.42
1:A:370:ALA:HA	1:A:804:TYR:CE2	2.53	0.42
1:B:183:THR:HA	1:B:186:PHE:CE2	2.54	0.42
1:B:688:ARG:HD3	1:B:814:ASP:OD2	2.19	0.42
1:C:659:VAL:HG12	1:C:733:MET:HE2	1.98	0.42
1:A:191:GLN:HB2	1:A:464:SER:OG	2.18	0.42
1:B:125:GLU:HG2	1:B:367:GLU:OE2	2.19	0.42
1:B:207:ILE:HG21	1:B:560:SER:HB2	2.02	0.42
1:B:423:TRP:CH2	1:B:753:GLU:HG3	2.50	0.42
1:D:106:PRO:HB2	1:D:146:TRP:CD1	2.55	0.42
1:D:197:GLU:OE2	1:D:201:LYS:HE3	2.19	0.42
1:C:416:ARG:NH1	4:C:1023:HOH:O	2.52	0.42
1:B:310:THR:HB	1:B:372:TRP:HE3	1.84	0.42
1:B:335:THR:H	1:B:338:SER:HB3	1.83	0.42
1:D:416:ARG:HD3	1:C:768:ASP:O	2.20	0.42
1:D:484:ILE:HB	1:D:486:PHE:CE2	2.55	0.42
1:C:483:TYR:CE2	1:C:587:GLU:HG2	2.55	0.42
1:A:310:THR:O	1:A:311:ILE:HB	2.19	0.42
1:B:66:LEU:HB3	1:B:67:PRO:HD3	2.02	0.42
1:B:192:TRP:CZ2	1:B:572:LEU:HD21	2.55	0.42
1:B:535:LEU:HD21	1:B:586:PHE:CE2	2.54	0.42
1:B:219:ASP:OD2	1:C:665:TYR:OH	2.31	0.42
1:B:371:HIS:CE1	1:B:406:TYR:CE2	3.08	0.42

			Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:107:GLU:HB2	4:A:1024:HOH:O	2.18	0.42	
1:A:236:ILE:HD12	1:A:560:SER:HB3	2.02	0.42	
1:B:438:LEU:O	1:B:773:HIS:HA	2.20	0.42	
1:B:597:SER:HB3	1:B:694:PRO:HD2	2.01	0.42	
1:C:476:THR:HG21	1:C:580:GLY:HA3	2.02	0.42	
1:B:299:GLN:CD	1:B:303:ARG:HH12	2.23	0.42	
1:B:364:ALA:O	1:B:681:THR:CG2	2.68	0.42	
1:B:477:TYR:HB2	1:B:582:ASN:HA	2.02	0.42	
1:D:253:LEU:O	1:D:257:LEU:HG	2.20	0.42	
1:C:56:GLU:HA	1:C:59:LYS:HE2	2.02	0.42	
1:C:224:CYS:O	1:C:228:GLU:HB2	2.20	0.42	
1:B:87:ASP:O	1:B:88:HIS:HB2	2.19	0.41	
1:B:562:HIS:CE1	1:B:564:LEU:HB2	2.54	0.41	
1:B:587:GLU:OE1	1:B:676:ARG:CD	2.68	0.41	
1:D:51:ALA:CB	1:D:142:ILE:HD13	2.50	0.41	
1:C:156:ASN:ND2	1:C:172:GLN:HA	2.35	0.41	
1:A:150:THR:HG23	1:A:153:GLU:OE2	2.19	0.41	
1:A:502:TYR:OH	1:A:689:VAL:HG21	2.20	0.41	
1:D:565:CYS:SG	1:D:572:LEU:HD13	2.60	0.41	
1:C:370:ALA:HB1	1:C:372:TRP:CH2	2.55	0.41	
1:A:681:THR:O	1:A:685:PRO:HD2	2.20	0.41	
1:B:364:ALA:O	1:B:681:THR:HG23	2.20	0.41	
1:A:209:GLU:O	1:A:213:GLU:HG3	2.20	0.41	
1:A:658:SER:HB2	1:A:675:VAL:HG11	1.99	0.41	
1:D:84:TYR:CG	1:D:94:ARG:HD3	2.55	0.41	
1:C:310:THR:HB	1:C:372:TRP:CE3	2.55	0.41	
1:C:470:ARG:NH1	1:C:475:ASP:HB3	2.34	0.41	
1:C:586:PHE:CZ	1:C:675:VAL:HB	2.55	0.41	
1:C:601:ILE:HD11	1:C:694:PRO:HG2	2.02	0.41	
1:A:513:ASP:HB3	1:A:516:GLU:CG	2.50	0.41	
1:D:722:LEU:HD11	1:D:762:PHE:CZ	2.55	0.41	
1:C:317:MET:HE1	1:C:395:PHE:HE2	1.85	0.41	
1:C:734:ARG:H	1:C:734:ARG:HG3	1.58	0.41	
1:A:130:ILE:HD11	1:A:134:ALA:HB3	2.03	0.41	
1:A:679:PRO:O	1:A:680:PHE:HB2	2.21	0.41	
1:A:721:ILE:CD1	1:A:743:ILE:HD12	2.50	0.41	
1:B:50:ARG:HD3	1:B:50:ARG:C	2.41	0.41	
1:C:738:ALA:HA	1:C:772:TRP:CD2	2.56	0.41	
1:B:468:GLU:N	1:B:468:GLU:CD	2.74	0.41	
1:D:405:HIS:HB3	1:D:798:ILE:HD13	2.01	0.41	
1:D:165:LYS:HB3	1:D:165:LYS:HE3	1.65	0.41	

Atom-1	Atom-2	Interatomic	Clash
	1100111 2	distance $(Å)$	overlap (Å)
1:C:97:TYR:CG	1:C:98:GLN:N	2.89	0.41
1:A:749:CYS:HB2	1:A:826:ASP:HA	2.02	0.41
1:B:106:PRO:HB2	1:B:146:TRP:CD1	2.56	0.41
1:B:684:VAL:HB	1:B:685:PRO:CD	2.51	0.41
1:D:684:VAL:HG21	1:D:815:LEU:HB2	2.02	0.41
1:A:133:ALA:O	1:A:137:VAL:HG23	2.20	0.41
1:C:59:LYS:HA	1:C:145:PHE:CE1	2.56	0.41
1:C:494:LEU:O	1:C:514:PRO:HG3	2.21	0.41
1:A:800:ARG:HD3	1:A:804:TYR:O	2.21	0.41
1:B:604:LEU:HD12	1:B:634:LEU:HD23	2.03	0.40
1:C:664:ARG:HG2	1:C:665:TYR:CE2	2.55	0.40
1:B:245:LEU:C	1:B:245:LEU:HD23	2.42	0.40
1:A:611:LEU:HD23	1:A:611:LEU:H	1.84	0.40
1:B:391:LEU:HA	1:B:391:LEU:HD12	1.86	0.40
1:A:187:ARG:HG3	1:A:189:SER:O	2.22	0.40
1:A:535:LEU:HD13	1:A:661:TYR:CG	2.57	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	А	796/808~(98%)	775 (97%)	20 (2%)	1 (0%)	51	68
1	В	796/808~(98%)	771 (97%)	24 (3%)	1 (0%)	51	68
1	С	795/808~(98%)	771 (97%)	23 (3%)	1 (0%)	51	68
1	D	796/808~(98%)	773 (97%)	22 (3%)	1 (0%)	51	68
All	All	3183/3232 (98%)	3090 (97%)	89 (3%)	4 (0%)	51	68

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	311	ILE
1	D	311	ILE
1	С	311	ILE
1	А	311	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	642/680~(94%)	630~(98%)	12 (2%)	57 75
1	В	649/680~(95%)	630~(97%)	19 (3%)	42 62
1	С	642/680~(94%)	621 (97%)	21 (3%)	38 57
1	D	643/680~(95%)	624 (97%)	19 (3%)	41 61
All	All	2576/2720~(95%)	2505~(97%)	71 (3%)	43 63

All (71) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	36	LEU
1	В	43	ARG
1	В	70	TRP
1	В	166	LEU
1	В	172	GLN
1	В	181	ASN
1	В	187	ARG
1	В	191	GLN
1	В	297	PHE
1	В	344	GLU
1	В	468	GLU
1	В	536	LYS
1	В	629	ASP
1	В	666	SER
1	В	681	THR
1	В	734	ARG
1	В	736	ARG
1	В	811	LEU

Mol	Chain	Res	Type
1	В	818	ASP
1	D	36	LEU
1	D	37	GLU
1	D	70	TRP
1	D	165	LYS
1	D	166	LEU
1	D	174	LEU
1	D	187	ARG
1	D	297	PHE
1	D	348	VAL
1	D	431	ASP
1	D	468	GLU
1	D	536	LYS
1	D	551	ARG
1	D	664	ARG
1	D	676	ARG
1	D	689	VAL
1	D	754	GLU
1	D	800	ARG
1	D	811	LEU
1	С	45	ARG
1	С	70	TRP
1	С	155	LEU
1	С	166	LEU
1	С	181	ASN
1	С	187	ARG
1	С	191	GLN
1	С	297	PHE
1	С	337	ASP
1	С	340	LEU
1	С	468	GLU
1	С	689	VAL
1	С	710	SER
1	С	734	ARG
1	С	736	ARG
1	С	761	SER
1	С	779	ILE
1	С	783	THR
1	С	811	LEU
1	С	819	LEU
1	С	826	ASP
1	А	70	TRP

Mol	Chain	Res	Type
1	А	166	LEU
1	А	181	ASN
1	А	187	ARG
1	А	329	LEU
1	А	335	THR
1	А	468	GLU
1	А	494	LEU
1	А	664	ARG
1	А	675	VAL
1	А	736	ARG
1	А	811	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	299	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

10 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	True	Chain	Dec	Pog Link Bond lengths					Bond angles			
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2		
3	GOL	А	903	-	5,5,5	0.32	0	$5,\!5,\!5$	0.56	0		
2	8X3	В	901	-	6,6,6	2.03	1 (16%)	7,8,8	2.39	2 (28%)		
3	GOL	D	902	-	5,5,5	0.43	0	$5,\!5,\!5$	0.76	0		
2	8X3	А	901	-	6,6,6	3.84	1 (16%)	7,8,8	1.20	1 (14%)		
3	GOL	С	902	-	5,5,5	0.33	0	$5,\!5,\!5$	0.50	0		
2	8X3	D	901	-	6,6,6	2.03	1 (16%)	7,8,8	1.67	1 (14%)		
3	GOL	В	902	-	5,5,5	0.49	0	$5,\!5,\!5$	0.49	0		
2	8X3	С	901	-	6,6,6	3.04	1 (16%)	7,8,8	1.63	1 (14%)		
3	GOL	А	902	-	5,5,5	0.50	0	$5,\!5,\!5$	0.64	0		
3	GOL	В	903	-	5,5,5	0.49	0	$5,\!5,\!5$	0.77	0		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GOL	А	903	-	-	2/4/4/4	-
2	8X3	В	901	-	-	4/4/4/4	-
3	GOL	D	902	-	-	4/4/4/4	-
2	8X3	А	901	-	-	4/4/4/4	-
3	GOL	С	902	-	-	2/4/4/4	-
2	8X3	D	901	-	-	4/4/4/4	-
3	GOL	В	902	-	-	3/4/4/4	-
2	8X3	С	901	-	-	4/4/4/4	-
3	GOL	А	902	-	-	2/4/4/4	-
3	GOL	В	903	-	-	0/4/4/4	-

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	А	901	8X3	C2-S3	9.22	1.90	1.77
2	С	901	8X3	C2-S3	7.28	1.87	1.77
2	В	901	8X3	C2-S3	4.74	1.84	1.77
2	D	901	8X3	C2-S3	4.63	1.84	1.77

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	В	901	8X3	O7-S3-C2	-5.20	100.66	106.92
2	D	901	8X3	O7-S3-C2	-3.37	102.86	106.92
2	С	901	8X3	O6-C1-C2	-2.79	104.77	110.38
2	А	901	8X3	O7-S3-C2	-2.16	104.31	106.92
2	В	901	8X3	O5-S3-C2	-2.15	104.32	106.92

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
2	В	901	8X3	C1-C2-S3-O4
2	В	901	8X3	C1-C2-S3-O5
2	D	901	8X3	C1-C2-S3-O4
2	D	901	8X3	C1-C2-S3-O5
2	D	901	8X3	C1-C2-S3-O7
2	С	901	8X3	C1-C2-S3-O5
2	А	901	8X3	C1-C2-S3-O5
2	А	901	8X3	C1-C2-S3-O7
3	В	902	GOL	O1-C1-C2-C3
3	D	902	GOL	O1-C1-C2-C3
3	D	902	GOL	C1-C2-C3-O3
3	С	902	GOL	O1-C1-C2-C3
3	А	902	GOL	O1-C1-C2-C3
3	А	903	GOL	C1-C2-C3-O3
3	D	902	GOL	O1-C1-C2-O2
3	D	902	GOL	O2-C2-C3-O3
3	С	902	GOL	O1-C1-C2-O2
3	А	903	GOL	O2-C2-C3-O3
3	В	902	GOL	O1-C1-C2-O2
3	А	902	GOL	O1-C1-C2-O2
2	С	901	8X3	C1-C2-S3-O4
2	А	901	8X3	C1-C2-S3-O4
2	В	901	8X3	C1-C2-S3-O7
2	С	901	8X3	C1-C2-S3-O7
2	В	901	8X3	O6-C1-C2-S3
2	D	901	8X3	O6-C1-C2-S3
2	С	901	8X3	O6-C1-C2-S3
3	В	902	GOL	C1-C2-C3-O3
2	А	901	8X3	O6-C1-C2-S3

All (29) torsion outliers are listed below:

There are no ring outliers.

4 monomers are involved in 5 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	А	903	GOL	1	0
3	D	902	GOL	2	0
2	D	901	8X3	1	0
3	В	902	GOL	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#	₽RSR	RZ>2	$OWAB(Å^2)$	Q<0.9
1	А	798/808~(98%)	-0.83	0	100	100	14, 22, 34, 52	0
1	В	798/808~(98%)	-0.80	0	100	100	15, 24, 40, 54	0
1	С	797/808~(98%)	-0.68	0	100	100	18, 29, 45, 57	0
1	D	798/808~(98%)	-0.71	0	100	100	19, 28, 43, 56	0
All	All	3191/3232 (98%)	-0.76	0	100	100	14, 25, 42, 57	0

There are no RSRZ outliers to report.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
3	GOL	В	902	6/6	0.93	0.12	29,35,43,46	0
3	GOL	А	903	6/6	0.93	0.27	32,41,48,49	0
3	GOL	А	902	6/6	0.95	0.14	23,33,44,44	0
3	GOL	В	903	6/6	0.95	0.10	30,39,47,52	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
3	GOL	D	902	6/6	0.96	0.08	$28,\!35,\!42,\!45$	0
3	GOL	С	902	6/6	0.97	0.09	37,45,51,62	0
2	8X3	С	901	7/7	0.99	0.08	17,25,30,30	0
2	8X3	А	901	7/7	0.99	0.09	13,19,24,24	0
2	8X3	В	901	7/7	0.99	0.12	15,19,23,23	0
2	8X3	D	901	7/7	0.99	0.08	17,25,29,29	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

