

Full wwPDB X-ray Structure Validation Report (i)

Oct 23, 2024 – 11:38 PM EDT

PDB ID	:	1YWH
Title	:	crystal structure of urokinase plasminogen activator receptor
Authors	:	Llinas, P.; Le Du, M.H.; Gardsvoll, H.; Dano, K.; Ploug, M.; Gilquin, B.;
		Stura, E.A.; Menez, A.
Deposited on	:	2005-02-18
Resolution	:	2.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	164625	3333 (2.70-2.70)
Clashscore	180529	3684 (2.70-2.70)
Ramachandran outliers	177936	3633 (2.70-2.70)
Sidechain outliers	177891	3633 (2.70-2.70)
RSRZ outliers	164620	3333 (2.70-2.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
			20%					
1	А	313		51%	26%	6% •	14%	
			16%					
1	С	313		51%	25%	6% •	17%	
			16%					
1	Ε	313		53%	25%	5%	16%	
			13%					
1	G	313		50%	27%	6%	18%	
			16%					
1	Ι	313		47%	29%	9%	16%	

Mol	Chain	Length	Quality of chain				
1	К	313	19%	22%/	6%	199/	
1		010	15%	23 /8	078 •	1078	
1	М	313	50%	27%	7%	16%	
1	Ο	313	52%	26%	•	18%	
		10	15%				
2	В	13	31% 23%	54%		15%	
2	D	13	38%	62%			
2	F	13	<u>31%</u> 69%		31%		
2	Η	13	46%	Ę	54%		
2	J	13	54%		46%		
2	L	13	38%	38%	15%	8%	
2	Ν	13	69%		31%		
2	Р	13	54%		46%		
3	Q	3	67%		33%		
3	S	3		100%			
3	Т	3	67%		33%		
3	b	3		100%			
4	R	2		100%			
4	U	2		100%			
4	V	2	50%		50%		
4	Х	2	50%		50%		
4	Y	2		100%			
4	a	2		100%			
4	d	2	50%		50%		
4	g	2	50%		50%		
5	W	2		100%			
5	f	2		100%			

Continued from previous page...MolChainLength

Mol	Chain	Length		Quality of chain	
6	Z	5	20%	80%	
6	с	5		100%	
6	е	5		100%	
6	h	5	20%	80%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	FUC	Q	3	Х	-	-	-
3	NAG	S	1	Х	-	-	-
3	FUC	S	3	Х	-	-	-
3	FUC	Т	3	Х	-	-	-
3	FUC	b	3	Х	-	-	-
4	FUC	R	2	Х	-	-	-
4	FUC	U	2	Х	-	-	-
4	FUC	V	2	Х	-	-	-
4	NAG	Х	1	Х	-	-	-
4	FUC	Х	2	Х	-	-	-
4	FUC	Y	2	Х	-	-	-
4	FUC	a	2	Х	-	-	-
4	FUC	d	2	Х	-	-	-
4	FUC	g	2	Х	-	-	-
6	NAG	Ζ	1	Х	-	-	-
6	NAG	с	1	Х	-	-	-
6	NAG	е	1	Х	-	-	-
6	NAG	h	1	Х	-	-	-
7	NAG	А	317	Х	-	-	-
7	NAG	А	321	Х	-	-	-
7	NAG	С	316	Х	-	-	-
7	NAG	С	321	Х	-	-	-
7	NAG	К	331	Х	-	-	-
7	NAG	0	321	Х	-	-	-
8	SO4	K	810	-	-	Х	-

1YWH

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 18552 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	269	Total	С	Ν	0	S	0	0	0
	A	208	2040	1222	377	407	34	0	0	0
1	С	250	Total	С	Ν	0	S	0	0	0
	U	239	1985	1188	368	395	34	0	0	0
1	F	262	Total	С	Ν	0	S	0	0	0
	Ľ	202	2006	1202	370	400	34	0	0	0
1	С	G 258	Total	С	Ν	0	S	0	0	0
	G		1978	1186	363	395	34	0	0	0
1	т	264	Total	С	Ν	0	S	0	0	0
	1	204	2008	1201	372	401	34	0	0	U
1	K	257	Total	С	Ν	Ο	S	0	0	0
	Γ	207	1969	1180	363	392	34	0	0	0
1	М	263	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	111	203	2016	1204	374	404	34	0	0	0
1	0	258	Total	С	Ν	0	S	0	0	0
	0	258	1970	1180	362	394	34	0	0	

• Molecule 1 is a protein called Urokinase plasminogen activator surface receptor.

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	200	GLN	ASN	conflict	UNP Q9UMV0
С	200	GLN	ASN	conflict	UNP Q9UMV0
Е	200	GLN	ASN	conflict	UNP Q9UMV0
G	200	GLN	ASN	conflict	UNP Q9UMV0
Ι	200	GLN	ASN	conflict	UNP Q9UMV0
K	200	GLN	ASN	conflict	UNP Q9UMV0
М	200	GLN	ASN	conflict	UNP Q9UMV0
0	200	GLN	ASN	conflict	UNP Q9UMV0

• Molecule 2 is a protein called antagonist peptide.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	В	13	Total C N O 116 78 17 21	0	0	0
2	D	13	Total C N O 116 78 17 21	0	0	0
2	F	13	Total C N O 116 78 17 21	0	0	0
2	Н	13	Total C N O 116 78 17 21	0	0	0
2	J	13	Total C N O 116 78 17 21	0	0	0
2	L	13	Total C N O 116 78 17 21	0	0	0
2	Ν	13	Total C N O 116 78 17 21	0	0	0
2	Р	13	Total C N O 116 78 17 21	0	0	0

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	Q	3	Total C N O 38 22 2 14	0	0	0
3	S	3	Total C N O 38 22 2 14	0	0	0
3	Т	3	Total C N O 38 22 2 14	0	0	0
3	b	3	Total C N O 38 22 2 14	0	0	0

• Molecule 4 is an oligosaccharide called alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-bet a-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
4	R	2	Total C N O 24 14 1 9	0	0	0
4	U	2	Total C N O 24 14 1 9	0	0	0
4	V	2	Total C N O 24 14 1 9	0	0	0
4	Х	2	Total C N O 24 14 1 9	0	0	0
4	Y	2	Total C N O 24 14 1 9	0	0	0
4	a	2	Total C N O 24 14 1 9	0	0	0
4	d	2	Total C N O 24 14 1 9	0	0	0
4	g	2	Total C N O 24 14 1 9	0	0	0

• Molecule 5 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace	
5	W	2	Total C 28 16	N 2	O 10	0	0	0
5	f	2	Total C 28 16	N 2	O 10	0	0	0

• Molecule 6 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
6	Z	5	Total	С	Ν	Ο	0	0	0
0		0	61	34	2	25	0		
6		F	Total	С	Ν	0	0	0	0
0	С	5	61	34	2	25	0		0

Contr	Continued from previous page									
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace				
6	е	5	Total C N O 61 34 2 25	0	0	0				
6	h	5	Total C N O 61 34 2 25	0	0	0				

• Molecule 7 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	1	Total C N O 14 8 1 5	0	0
7	А	1	Total C N O 14 8 1 5	0	0
7	С	1	Total C N O 14 8 1 5	0	0
7	С	1	Total C N O 14 8 1 5	0	0
7	Е	1	Total C N O 14 8 1 5	0	0
7	G	1	Total C N O 14 8 1 5	0	0
7	Ι	1	Total C N O 14 8 1 5	0	0
7	K	1	Total C N O 14 8 1 5	0	0
7	K	1	Total C N O 14 8 1 5	0	0

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	5	1	1 5

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
7	М	1	Total 14	C 8	N 1	O 5	0	0
7	О	1	Total 14	C 8	N 1	O 5	0	0

 $\bullet\,$ Molecule 8 is SULFATE ION (three-letter code: SO4) (formula: O4S).

Mol	Chain	Residues	Aton	ns	ZeroOcc	AltConf	
8	Λ	1	Total (D S	0	0	
0	Л	1	5 4	4 1	0	0	
8	Δ	1	Total (D S	0	0	
0	11	5 4 1	-	5 4 1		0	
8	Δ	1	Total (D S	0	0	
0	11	1	5 4	4 1	0	0	
8	С	1	Total (D S	0	0	
0	U	1	5 4	4 1	0	0	
8	С	1	Total (D S	0	0	
	0	I	5 4	4 1	0	0	
8	С	1	Total (D S	0	0	
0	U	I	5 4	4 1	0	0	
8	E	1	Total (D S	0	0	
0	Ľ	1	5 4	4 1	0	0	
8	E	1	Total (D S	0	0	
0		1	5 4	4 1		U	
8	E	1	Total (\overline{S}		0	
0		1	5 4	4 1	0	0	

Continued from previous page...

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf
8	G	1	Total O 5 4	S 1	0	0
8	G	1	Total O 5 4	S 1	0	0
8	G	1	Total O 5 4	S 1	0	0
8	G	1	Total O 5 4	S 1	0	0
8	Ι	1	Total O 5 4	S 1	0	0
8	Ι	1	Total O 5 4	S 1	0	0
8	Ι	1	Total O 5 4	S 1	0	0
8	К	1	Total O 5 4	S 1	0	0
8	К	1	Total O 5 4	S 1	0	0
8	М	1	Total O 5 4	S 1	0	0
8	М	1	Total O 5 4	S 1	0	0
8	О	1	Total O 5 4	S 1	0	0

• Molecule 9 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	А	81	Total O 81 81	0	0
9	В	5	Total O 5 5	0	0
9	С	85	Total O 85 85	0	0
9	D	2	Total O 2 2	0	0
9	Е	98	Total O 98 98	0	0
9	F	8	Total O 8 8	0	0
9	G	88	Total O 88 88	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	Н	4	Total O 4 4	0	0
9	Ι	87	Total O 87 87	0	0
9	J	3	Total O 3 3	0	0
9	K	83	Total O 83 83	0	0
9	L	2	Total O 2 2	0	0
9	М	91	Total O 91 91	0	0
9	Ν	1	Total O 1 1	0	0
9	О	106	Total O 106 106	0	0
9	Р	5	Total O 5 5	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Urokinase plasminogen activator surface receptor

 \bullet Molecule 1: Urokinase plasminogen activator surface receptor

• Molecule 1: Urokinase plasminogen activator surface receptor

 \bullet Molecule 1: Urokinase plasminogen activator surface receptor

N233 Y236 Y236 S2354 Y236 S2354 R239 R239 R239 R239 R239 R246 R266 R27 R267 R266 R27 R266 R27 R266 R27 R266 R27 R266 R27 R266 R27 R27 R267 R267

MET THR ALA ARG LEU TRP GLY GLY CLEU LEU LLEU TRP THR THR

• Molecule 2: antagonist peptide

Chain L:	23% 38%	38%	15% 8%
K501 6 8502 0 0503 0 1503 1 8503 1 1508 1 10	122		
• Molecule 2	: antagonist peptide		
Chain N:	23%	/o	31%
K501 S502 D503 A504 K507 S511 S512 S512			
• Molecule 2	: antagonist peptide		
Chain P:	31% 54%		46%
K501 S502 D503 A504 K507 Y508 S512 S512	9 9 2		

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-ace tamido-2-deoxy-beta-D-glucopyranose

Chain Q:	67%	33%

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-ace tamido-2-deoxy-beta-D-glucopyranose

Chai	S: 100%
NAG1 NAG2 FUC3	
• Mo tami	ecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-ace o-2-deoxy-beta-D-glucopyranose

Chain T:	67%	33%
NAG1 NAG2 FUC3		

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-ace tamido-2-deoxy-beta-D-glucopyranose

Chain b:

100%

NAG1 NAG2 FUC3

• Molecule 4:	alpha-L-fucopy ranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopy ranose
Chain R:	100%
NAG1 FUC2	
• Molecule 4:	alpha-L-fucopy ranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopy ranose
Chain U:	100%
NAG1 FUC2	
• Molecule 4:	alpha-L-fucopy ranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopy ranose
Chain V:	50% 50%
NAG1 FUC2	
• Molecule 4:	alpha-L-fucopy ranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopy ranose
Chain X:	50% 50%
NAG1 FUC2	
• Molecule 4:	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose
• Molecule 4: Chain Y:	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose
• Molecule 4: Chain Y:	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose
• Molecule 4: Chain Y:	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose 100% alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose
 Molecule 4: Chain Y: Molecule 4: Molecule 4: Chain a: 	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose 100% alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose
Molecule 4: Chain Y: Onecule 4: Molecule 4: Chain a:	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose 100% alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose
 Molecule 4: Chain Y: Molecule 4: Chain a: Chain a: Molecule 4: 	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose 100% alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose 100%
 Molecule 4: Chain Y: Molecule 4: Chain a: Chain a: Molecule 4: Chain a: 	alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose 100% lopha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 4: alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

Chain g:

50%

NAG1 FUC2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain W:	
----------	--

100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain f:

100%

NAG1 NAG2

 \bullet Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Z∙	20%	80%
	2070	0070

NAG1 NAG2 BMA3 MAN4 MAN5

 • Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain c:

100%

NAG1 NAG2 BMA3 MAN4 MAN5

 \bullet Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

Chain e:

100%

NAG1 NAG2 BMA3 MAN4 MAN5

 \bullet Molecule 6: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain h:	20%	80%
NAG1 NAG2 BMA3 MAN4 MAN5		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	106.93Å 136.83Å 140.54Å	Depositor
a, b, c, α , β , γ	90.00° 97.27° 90.00°	Depositor
Bosolution(A)	24.85 - 2.70	Depositor
Resolution (A)	24.85 - 2.70	EDS
% Data completeness	97.2 (24.85-2.70)	Depositor
(in resolution range)	97.1 (24.85-2.70)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	0.09	Depositor
$< I/\sigma(I) > 1$	$2.70 (at 2.72 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0003	Depositor
B B.	0.245 , 0.315	Depositor
II, II free	0.281 , 0.347	DCC
R_{free} test set	5335 reflections (4.99%)	wwPDB-VP
Wilson B-factor $(Å^2)$	50.6	Xtriage
Anisotropy	0.107	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33, 51.1	EDS
L-test for $twinning^2$	$ < L >=0.50, < L^2>=0.34$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.87	EDS
Total number of atoms	18552	wwPDB-VP
Average B, all atoms $(Å^2)$	58.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 13.00% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MAN, NAG, ALC, DLY, BMA, SO4, FUC, DSN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	ond lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.55	2/2072~(0.1%)	0.87	11/2791~(0.4%)	
1	С	0.62	3/2016~(0.1%)	0.87	10/2713~(0.4%)	
1	Е	0.54	0/2037	0.85	4/2742~(0.1%)	
1	G	0.54	0/2009	0.90	10/2704~(0.4%)	
1	Ι	0.53	1/2039~(0.0%)	0.85	9/2746~(0.3%)	
1	K	0.60	1/2000~(0.1%)	0.85	6/2693~(0.2%)	
1	М	0.52	0/2047	0.87	7/2755~(0.3%)	
1	0	0.50	0/2001	0.82	7/2695~(0.3%)	
2	В	0.63	0/91	0.86	1/116~(0.9%)	
2	D	0.56	0/91	0.82	1/116~(0.9%)	
2	F	0.61	0/91	0.82	0/116	
2	Н	0.67	0/91	0.88	1/116~(0.9%)	
2	J	0.71	0/91	0.96	1/116~(0.9%)	
2	L	0.54	0/91	0.86	0/116	
2	N	0.56	0/91	0.92	1/116~(0.9%)	
2	Р	0.49	0/91	0.84	0/116	
All	All	0.55	7/16949~(0.0%)	0.86	69/22767~(0.3%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	3
1	Е	0	1
1	G	0	1
1	Ι	0	1
1	Κ	0	2
All	All	0	8

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Κ	268	LYS	CE-NZ	14.47	1.85	1.49
1	С	273	HIS	CE1-NE2	13.68	1.64	1.32
1	С	273	HIS	CG-ND1	11.19	1.63	1.38
1	А	233	ASN	CG-ND2	6.80	1.49	1.32
1	Ι	268	LYS	CE-NZ	5.75	1.63	1.49
1	С	273	HIS	CG-CD2	5.33	1.44	1.35
1	А	233	ASN	CG-OD1	5.20	1.35	1.24

All (7) bond length outliers are listed below:

All (69) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	0	141	ASP	CB-CG-OD2	7.49	125.04	118.30
1	А	102	ASP	CB-CG-OD2	6.97	124.57	118.30
1	А	262	ASP	CB-CG-OD2	6.68	124.31	118.30
1	Ι	141	ASP	CB-CG-OD2	6.54	124.19	118.30
2	Н	503	ASP	CB-CG-OD2	6.45	124.10	118.30
1	Ι	124	ASP	CB-CG-OD2	6.37	124.03	118.30
1	А	141	ASP	CB-CG-OD2	6.30	123.97	118.30
1	G	22	ASP	CB-CG-OD2	6.27	123.94	118.30
1	Е	124	ASP	CB-CG-OD2	6.18	123.87	118.30
1	K	275	ASP	CB-CG-OD2	6.16	123.84	118.30
1	С	124	ASP	CB-CG-OD2	6.11	123.80	118.30
1	С	138	PRO	N-CA-CB	6.08	110.60	103.30
1	С	262	ASP	CB-CG-OD2	6.05	123.75	118.30
1	Е	176	CYS	CA-CB-SG	-6.05	103.11	114.00
1	0	22	ASP	CB-CG-OD2	6.04	123.73	118.30
1	М	141	ASP	CB-CG-OD2	6.03	123.72	118.30
1	Ι	138	PRO	N-CA-CB	6.02	110.53	103.30
1	Ι	74	ASP	CB-CG-OD2	6.00	123.70	118.30
1	G	102	ASP	CB-CG-OD2	5.97	123.67	118.30
2	N	503	ASP	CB-CG-OD2	5.97	123.67	118.30
1	А	31	LEU	CA-CB-CG	5.88	128.83	115.30
1	G	212	LEU	CA-CB-CG	5.88	128.82	115.30
1	С	74	ASP	CB-CG-OD2	5.84	123.56	118.30
1	K	214	ASP	CB-CG-OD2	5.76	123.48	118.30
1	0	163	ASP	CB-CG-OD2	5.70	123.43	118.30
1	М	124	ASP	CB-CG-OD2	5.69	123.42	118.30
1	0	214	ASP	CB-CG-OD2	5.68	123.41	118.30
1	С	163	ASP	CB-CG-OD2	5.66	123.40	118.30
1	K	102	ASP	CB-CG-OD2	5.63	123.37	118.30
1	G	141	ASP	CB-CG-OD2	5.63	123.37	118.30
1	G	140	ASP	CB-CG-OD2	5.61	123.35	118.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	0	124	ASP	CB-CG-OD2	5.60	123.34	118.30
1	С	214	ASP	CB-CG-OD2	5.58	123.32	118.30
1	0	254	ASP	CB-CG-OD2	5.57	123.31	118.30
1	С	273	HIS	CG-ND1-CE1	-5.57	98.47	105.70
1	G	254	ASP	CB-CG-OD2	5.56	123.31	118.30
1	А	163	ASP	CB-CG-OD2	5.49	123.24	118.30
1	Ι	102	ASP	CB-CG-OD2	5.47	123.23	118.30
1	М	163	ASP	CB-CG-OD2	5.47	123.22	118.30
1	С	254	ASP	CB-CG-OD2	5.47	123.22	118.30
1	Κ	163	ASP	CB-CG-OD2	5.46	123.22	118.30
1	Ι	275	ASP	CB-CG-OD2	5.46	123.21	118.30
2	J	503	ASP	CB-CG-OD2	5.46	123.21	118.30
1	Е	74	ASP	CB-CG-OD2	5.46	123.21	118.30
1	Κ	141	ASP	CB-CG-OD2	5.43	123.18	118.30
1	А	22	ASP	CB-CG-OD2	5.40	123.16	118.30
1	С	102	ASP	CB-CG-OD2	5.35	123.12	118.30
1	А	9	ASN	CB-CA-C	-5.35	99.69	110.40
1	С	140	ASP	CB-CG-OD2	5.34	123.11	118.30
1	М	275	ASP	CB-CG-OD2	5.33	123.10	118.30
1	Ι	214	ASP	CB-CG-OD2	5.32	123.09	118.30
1	Е	277	ASP	CB-CG-OD2	5.31	123.08	118.30
1	М	25	ARG	NE-CZ-NH1	-5.31	117.65	120.30
2	В	503	ASP	CB-CG-OD2	5.29	123.06	118.30
1	G	25	ARG	NE-CZ-NH2	-5.29	117.65	120.30
1	0	262	ASP	CB-CG-OD2	5.28	123.05	118.30
1	А	124	ASP	CB-CG-OD2	5.25	123.02	118.30
1	М	74	ASP	CB-CG-OD2	5.22	123.00	118.30
1	А	277	ASP	CB-CG-OD2	5.21	122.99	118.30
1	Ι	55	LEU	CA-CB-CG	5.20	127.26	115.30
1	G	214	ASP	CB-CG-OD2	5.19	122.97	118.30
1	Ι	11	ASP	CB-CG-OD2	5.15	122.94	118.30
2	D	503	ASP	CB-CG-OD2	5.12	122.91	118.30
1	G	124	ASP	CB-CG-OD2	5.11	122.90	118.30
1	М	22	ASP	CB-CG-OD2	5.10	122.89	118.30
1	А	214	ASP	CB-CG-OD2	5.09	122.89	118.30
1	G	163	ASP	CB-CG-OD2	5.08	122.87	118.30
1	K	254	ASP	CB-CG-OD2	5.05	122.84	118.30
1	А	254	ASP	CB-CG-OD2	5.03	122.83	118.30

Continued from previous page...

There are no chirality outliers.

All (8) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	230	GLU	Peptide
1	А	272	ASN	Peptide
1	А	61	LEU	Peptide
1	Е	61	LEU	Peptide
1	G	208	GLU	Peptide
1	Ι	80	ASN	Peptide
1	Κ	102	ASP	Peptide
1	Κ	61	LEU	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2040	0	1885	59	0
1	С	1985	0	1840	72	0
1	Е	2006	0	1864	66	0
1	G	1978	0	1836	62	0
1	Ι	2008	0	1850	67	0
1	K	1969	0	1825	65	0
1	М	2016	0	1868	56	0
1	0	1970	0	1823	55	0
2	В	116	0	112	9	0
2	D	116	0	112	7	0
2	F	116	0	112	3	0
2	Н	116	0	112	3	0
2	J	116	0	112	2	0
2	L	116	0	112	7	0
2	N	116	0	112	2	0
2	Р	116	0	112	6	0
3	Q	38	0	34	0	0
3	S	38	0	34	0	0
3	Т	38	0	34	0	0
3	b	38	0	34	0	0
4	R	24	0	22	0	0
4	U	24	0	22	1	0
4	V	24	0	22	0	0
4	Х	24	0	22	0	0
4	Y	24	0	22	1	0
4	a	24	0	22	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	d	24	0	22	0	0
4	g	24	0	22	0	0
5	W	28	0	25	2	0
5	f	28	0	25	0	0
6	Ζ	61	0	52	0	0
6	с	61	0	52	0	0
6	е	61	0	52	0	0
6	h	61	0	52	0	0
7	А	28	0	26	0	0
7	С	28	0	26	0	0
7	Ε	14	0	13	0	0
7	G	14	0	13	0	0
7	Ι	14	0	13	0	0
7	Κ	28	0	26	0	0
7	М	14	0	13	0	0
7	0	14	0	13	0	0
8	А	15	0	0	1	0
8	С	15	0	0	1	0
8	Е	15	0	0	0	0
8	G	20	0	0	1	0
8	Ι	15	0	0	1	0
8	Κ	10	0	0	3	0
8	М	10	0	0	1	0
8	Ο	5	0	0	0	0
9	А	81	0	0	2	0
9	В	5	0	0	0	0
9	\mathbf{C}	85	0	0	1	0
9	D	2	0	0	1	0
9	Ε	98	0	0	4	0
9	F	8	0	0	1	0
9	G	88	0	0	3	0
9	Н	4	0	0	0	0
9	Ι	87	0	0	1	0
9	J	3	0	0	0	0
9	K	83	0	0	4	0
9	L	2	0	0	1	0
9	М	91	0	0	3	0
9	Ν	1	0	0	0	0
9	0	106	0	0	4	0
9	Р	5	0	0	1	0
All	All	18552	0	16400	495	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including

hydrogen atoms). The all-atom clashscore for this structure is 15.

All (495) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:K:268:LYS:CE	1:K:268:LYS:NZ	1.85	1.38
1:C:273:HIS:HB3	1:C:274:PRO:HD3	1.11	1.10
1:C:273:HIS:HB3	1:C:274:PRO:CD	1.86	1.05
1:C:55:LEU:HB3	1:C:66:LEU:HD23	1.35	1.04
1:G:55:LEU:HD23	1:G:123:LEU:HD12	1.46	0.97
1:M:29:VAL:HB	1:M:66:LEU:HD13	1.45	0.96
1:M:4:MET:CE	1:M:75:LEU:HD22	2.00	0.91
1:C:273:HIS:CB	1:C:274:PRO:HD3	2.01	0.90
1:G:32:TRP:CE2	1:G:62:LYS:HB3	2.06	0.90
1:G:195:TYR:H	1:G:272:ASN:HD21	1.13	0.90
1:G:198:LYS:NZ	8:G:817:SO4:O2	2.05	0.90
1:O:32:TRP:CD1	1:O:62:LYS:HB3	2.08	0.89
1:G:55:LEU:HD23	1:G:123:LEU:CD1	2.05	0.87
1:K:27:THR:HG23	1:K:68:GLU:HG2	1.53	0.87
1:E:184:LEU:HD22	1:E:216:ARG:HD3	1.55	0.87
1:C:8:THR:HG21	1:E:12:CYS:H	1.40	0.86
1:C:32:TRP:CE2	1:C:62:LYS:HB3	2.09	0.86
1:G:7:LYS:HG3	1:G:9:ASN:HD21	1.42	0.84
1:A:32:TRP:CD1	1:A:62:LYS:HB3	2.12	0.84
1:I:4:MET:H	1:I:77:ASN:HD21	1.23	0.83
1:O:9:ASN:ND2	9:O:916:HOH:O	2.11	0.83
1:M:4:MET:HE2	1:M:75:LEU:HD22	1.58	0.83
1:C:8:THR:CG2	1:E:12:CYS:H	1.91	0.83
1:G:205:CYS:HB3	1:G:237:MET:HE2	1.61	0.82
1:E:91:ARG:NH1	1:E:116:ARG:HE	1.77	0.81
1:M:29:VAL:HB	1:M:66:LEU:CD1	2.11	0.80
2:P:508:TYR:HA	2:P:512:SER:HB3	1.63	0.80
1:I:32:TRP:CE2	1:I:62:LYS:HB3	2.17	0.80
1:C:195:TYR:H	1:C:272:ASN:HD21	1.25	0.80
1:E:32:TRP:CD1	1:E:62:LYS:HB3	2.16	0.80
1:E:54:THR:HG21	1:E:120:GLU:OE1	1.83	0.78
1:K:32:TRP:CD1	1:K:62:LYS:HB3	2.19	0.78
1:C:8:THR:HG21	1:E:12:CYS:N	1.99	0.77
2:F:508:TYR:HA	2:F:512:SER:HB3	1.65	0.77
2:B:508:TYR:HA	2:B:512:SER:HB3	1.67	0.77
1:I:239:ARG:HD3	1:I:272:ASN:HB3	1.67	0.75
1:C:268:LYS:H	1:C:268:LYS:HD3	1.51	0.75
1:K:157:ASN:ND2	1:K:245:SER:OG	2.20	0.75

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:123:LEU:HD22	1:M:170:CYS:HB3	1.69	0.75
1:M:195:TYR:H	1:M:272:ASN:HD21	1.36	0.74
1:O:29:VAL:HB	1:O:66:LEU:HD13	1.69	0.74
1:I:161:ASN:ND2	1:I:164:THR:H	1.85	0.74
1:I:123:LEU:HD22	1:I:170:CYS:HB3	1.70	0.73
1:M:98:CYS:HA	1:M:103:MET:HE3	1.70	0.73
1:A:75:LEU:C	1:A:77:ASN:H	1.90	0.73
1:A:275:ASP:O	1:A:276:LEU:HB2	1.88	0.73
2:J:508:TYR:CD2	2:J:512:SER:HB3	2.23	0.73
1:A:9:ASN:ND2	1:C:11:ASP:OD1	2.20	0.72
1:G:246:MET:HE2	1:G:252:LEU:HG	1.71	0.72
1:M:9:ASN:HD21	1:M:11:ASP:HB3	1.54	0.71
1:G:105:CYS:O	1:G:109:ARG:HG3	1.90	0.71
1:O:259:ASN:HD21	2:P:501:LYS:N	1.89	0.71
1:I:200:GLN:H	1:I:203:HIS:HD2	1.39	0.71
1:E:34:GLU:O	9:E:836:HOH:O	2.08	0.71
1:G:205:CYS:HB3	1:G:237:MET:CE	2.21	0.71
1:O:157:ASN:HA	1:O:243:THR:HG21	1.73	0.71
1:I:157:ASN:HA	1:I:243:THR:HG21	1.73	0.71
1:O:239:ARG:HD3	1:0:272:ASN:O	1.92	0.70
1:0:195:TYR:HB2	1:O:272:ASN:HB2	1.74	0.70
1:G:126:VAL:HG13	1:G:167:PHE:HB3	1.74	0.70
1:I:200:GLN:H	1:I:203:HIS:CD2	2.10	0.70
1:C:192:ARG:HD2	1:C:220:ASN:O	1.90	0.70
1:M:188:PRO:O	1:M:216:ARG:O	2.09	0.70
1:K:243:THR:HG22	1:K:246:MET:HG2	1.73	0.69
1:G:246:MET:CE	1:G:252:LEU:HG	2.23	0.69
1:G:274:PRO:C	1:G:276:LEU:H	1.96	0.69
8:K:810:SO4:O1	9:K:823:HOH:O	2.11	0.69
1:M:184:LEU:HD22	1:M:216:ARG:HG3	1.73	0.69
1:M:32:TRP:CE2	1:M:62:LYS:HB3	2.28	0.69
1:C:61:LEU:CA	1:O:61:LEU:CA	2.70	0.69
1:G:272:ASN:HD22	1:G:272:ASN:H	1.41	0.68
1:C:8:THR:HG22	9:E:822:HOH:O	1.91	0.68
1:A:53:ARG:NH1	1:A:251:HIS:HB3	2.09	0.68
1:A:230:GLU:HG2	1:A:233:ASN:H	1.57	0.68
1:E:9:ASN:ND2	1:G:11:ASP:OD1	2.22	0.67
1:C:268:LYS:H	1:C:268:LYS:CD	2.06	0.67
1:C:25:ARG:NH2	1:C:42:GLU:OE1	2.25	0.67
1:O:192:ARG:HG3	1:O:269:SER:HB3	1.77	0.66
1:C:10:GLY:O	9:C:860:HOH:O	2.12	0.66

	• • • • • • • •	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:25:ARG:NH2	1:G:42:GLU:OE1	2.24	0.66
1:I:195:TYR:HB2	1:I:272:ASN:HB2	1.78	0.65
1:C:157:ASN:HA	1:C:243:THR:HG21	1.79	0.65
1:K:109:ARG:O	1:K:110:HIS:HB2	1.97	0.65
1:M:226:THR:HG22	1:M:262:ASP:HB3	1.79	0.65
1:I:190:ASN:ND2	1:I:192:ARG:H	1.95	0.65
1:G:160:HIS:HE1	1:G:216:ARG:H	1.46	0.65
1:I:273:HIS:CD2	1:I:275:ASP:H	2.16	0.64
1:G:55:LEU:CD2	1:G:123:LEU:HD12	2.26	0.64
1:A:25:ARG:HG2	1:A:46:THR:HB	1.80	0.63
1:K:66:LEU:HD23	2:L:505:PHE:CD1	2.33	0.63
1:K:197:CYS:SG	1:K:239:ARG:HD2	2.38	0.63
1:E:185:GLU:CD	1:E:185:GLU:H	2.00	0.63
1:G:7:LYS:HG3	1:G:9:ASN:ND2	2.13	0.63
1:G:68:GLU:OE2	9:G:822:HOH:O	2.15	0.63
1:I:190:ASN:HD22	1:I:192:ARG:H	1.47	0.63
1:C:2:ARG:HD3	1:C:74:ASP:OD1	1.98	0.63
1:I:29:VAL:HB	1:I:66:LEU:HD13	1.80	0.63
1:M:104:SER:O	1:M:108:GLY:N	2.28	0.63
1:I:8:THR:HG22	1:K:10:GLY:O	1.99	0.63
8:A:801:SO4:O3	1:C:13:ARG:NH1	2.31	0.62
1:A:67:THR:OG1	1:A:81:SER:HB3	1.99	0.62
1:O:195:TYR:HB2	1:O:272:ASN:CB	2.28	0.62
1:K:246:MET:HE2	1:K:252:LEU:HD13	1.81	0.62
2:L:508:TYR:HA	2:L:512:SER:HB3	1.81	0.62
1:M:25:ARG:NH1	1:M:42:GLU:OE1	2.25	0.62
1:E:43:LYS:NZ	1:E:79:GLY:H	1.98	0.61
1:I:7:LYS:NZ	9:I:834:HOH:O	2.19	0.61
1:O:207:SER:C	1:O:209:GLU:H	2.04	0.61
1:M:246:MET:HE1	1:M:252:LEU:HG	1.81	0.61
1:I:13:ARG:HD2	8:I:804:SO4:O4	1.99	0.61
1:C:129:TRP:HZ3	1:C:140:ASP:O	1.83	0.61
1:G:60:GLY:O	1:K:61:LEU:O	2.18	0.61
1:M:25:ARG:HG2	1:M:26:THR:N	2.15	0.61
1:0:104:SER:O	1:O:108:GLY:HA3	2.01	0.61
1:O:247:CYS:HA	1:O:263:VAL:CG2	2.30	0.61
1:A:225:ALA:HB3	1:A:238:VAL:HG12	1.83	0.61
1:G:101:SER:OG	2:H:513:LYS:O	2.13	0.60
1:I:243:THR:HG22	1:I:246:MET:HG2	1.83	0.60
1:G:61:LEU:CA	1:K:61:LEU:CA	2.79	0.60
1:K:117:SER:HB2	1:K:120:GLU:HG3	1.82	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:I:116:ARG:O	1:I:117:SER:HB3	2.02	0.60
1:M:254:ASP:O	2:N:507:DLY:HE3	2.00	0.60
1:A:105:CYS:O	1:A:109:ARG:HG3	2.02	0.60
1:M:185:GLU:H	1:M:185:GLU:CD	2.04	0.60
1:A:10:GLY:O	1:G:8:THR:HG22	2.02	0.59
1:A:108:GLY:O	1:A:111:GLN:HB2	2.03	0.59
1:I:17:CYS:HB3	1:I:21:GLN:HB2	1.84	0.59
1:C:272:ASN:H	1:C:272:ASN:HD22	1.51	0.59
1:C:160:HIS:CE1	1:C:241:CYS:HB2	2.38	0.58
1:K:210:THR:HG21	1:K:274:PRO:HG3	1.84	0.58
1:C:9:ASN:HD22	1:C:9:ASN:H	1.49	0.58
1:G:205:CYS:CB	1:G:237:MET:HE2	2.33	0.58
1:A:28:ILE:HG12	1:A:41:VAL:HG22	1.86	0.58
1:C:59:THR:HG21	1:C:64:THR:OG1	2.04	0.58
1:C:226:THR:HG23	1:C:237:MET:HB3	1.85	0.58
2:D:501:LYS:HG3	1:E:13:ARG:NH2	2.19	0.58
1:E:54:THR:HG22	1:E:148:GLY:HA2	1.86	0.58
1:K:192:ARG:HH11	1:K:269:SER:HB2	1.69	0.58
1:G:225:ALA:HB3	1:G:238:VAL:HG12	1.86	0.58
1:M:5:GLN:HB2	1:M:15:GLU:HG2	1.86	0.58
1:A:114:GLN:O	1:A:116:ARG:NH1	2.36	0.57
2:D:508:TYR:CD2	2:D:512:SER:HB3	2.39	0.57
1:E:104:SER:HB3	1:E:106:GLU:HG3	1.86	0.57
1:E:121:GLN:HB3	1:E:171:CYS:O	2.03	0.57
1:E:182:LEU:HD21	1:E:187:LEU:HD21	1.85	0.57
1:O:243:THR:HG23	1:O:245:SER:HB2	1.85	0.57
1:C:164:THR:HG21	8:C:818:SO4:O1	2.04	0.57
1:K:27:THR:HG23	1:K:68:GLU:CG	2.30	0.57
1:O:160:HIS:CE1	1:O:215:CYS:HA	2.38	0.57
1:C:268:LYS:HD3	1:C:268:LYS:N	2.18	0.57
1:E:34:GLU:HG3	1:E:35:GLY:H	1.69	0.57
1:G:251:HIS:CE1	1:G:252:LEU:HD13	2.39	0.57
2:F:507:DLY:HE3	9:F:421:HOH:O	2.03	0.57
1:G:192:ARG:HG3	1:G:220:ASN:O	2.05	0.57
1:I:207:SER:OG	1:I:274:PRO:HG3	2.05	0.57
1:K:9:ASN:HD22	1:K:10:GLY:N	2.03	0.56
1:A:195:TYR:HB2	1:A:272:ASN:HB2	1.87	0.56
1:M:246:MET:CE	1:M:252:LEU:HG	2.35	0.56
1:O:247:CYS:HA	1:O:263:VAL:HG23	1.86	0.56
1:E:105:CYS:O	1:E:109:ARG:HG3	2.05	0.56
1:C:32:TRP:CD2	1:C:62:LYS:HB3	2.40	0.56

	A h O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:M:9:ASN:ND2	1:M:11:ASP:HB3	2.20	0.56
1:E:251:HIS:HB3	9:E:908:HOH:O	2.06	0.56
1:G:75:LEU:C	1:G:77:ASN:H	2.08	0.56
1:A:106:GLU:O	1:A:107:ARG:HB3	2.06	0.55
1:A:176:CYS:SG	1:A:177:ASN:N	2.79	0.55
1:K:121:GLN:HB3	1:K:171:CYS:O	2.05	0.55
1:A:75:LEU:C	1:A:77:ASN:N	2.60	0.55
2:B:501:LYS:HE3	1:C:13:ARG:HH22	1.70	0.55
1:E:228:THR:HG21	1:E:233:ASN:ND2	2.22	0.55
1:A:200:GLN:HG3	1:A:203:HIS:HD2	1.70	0.55
1:A:273:HIS:HB3	1:A:274:PRO:HD3	1.88	0.55
1:K:149:TYR:C	1:K:150:LEU:HD12	2.27	0.55
1:O:121:GLN:HB3	1:0:171:CYS:0	2.06	0.55
1:M:1:LEU:HD13	1:M:1:LEU:O	2.06	0.55
1:A:205:CYS:HB3	1:A:237:MET:HE2	1.87	0.55
1:M:126:VAL:HG13	1:M:167:PHE:HB3	1.89	0.55
1:K:275:ASP:OD2	1:K:276:LEU:N	2.40	0.55
1:E:29:VAL:CG1	1:E:40:LEU:HB2	2.37	0.55
1:K:25:ARG:HD3	9:K:817:HOH:O	2.07	0.55
1:K:192:ARG:NH1	1:K:269:SER:HB2	2.21	0.55
1:O:239:ARG:HD2	1:O:272:ASN:HB3	1.87	0.55
1:G:160:HIS:CE1	1:G:216:ARG:H	2.25	0.54
1:O:55:LEU:HD21	1:0:57:TYR:CE2	2.43	0.54
1:M:18:ALA:HB3	1:M:21:GLN:HE21	1.72	0.54
1:C:257:SER:HA	1:E:16:GLU:OE1	2.07	0.54
1:I:14:VAL:HG21	2:P:504:ALC:HE23	1.89	0.54
1:M:32:TRP:O	1:M:33:GLU:HB2	2.07	0.54
1:E:25:ARG:HH21	1:E:42:GLU:HG2	1.72	0.54
1:K:9:ASN:HD21	1:K:11:ASP:HB3	1.73	0.54
1:0:257:SER:OG	2:P:507:DLY:NZ	2.40	0.54
1:C:60:GLY:O	1:O:61:LEU:O	2.25	0.54
1:K:192:ARG:HH12	1:K:268:LYS:NZ	2.06	0.53
1:C:199:GLY:HA2	1:C:236:TYR:CZ	2.43	0.53
1:I:47:HIS:HB3	1:I:49:GLU:OE2	2.08	0.53
2:L:513:LYS:HD2	1:M:73:LEU:HD22	1.90	0.53
1:E:43:LYS:HZ1	1:E:79:GLY:H	1.57	0.53
1:I:83:ARG:O	1:I:84:ALA:HB2	2.08	0.53
1:O:32:TRP:CG	1:O:62:LYS:HB3	2.41	0.53
1:K:9:ASN:HD22	1:K:9:ASN:C	2.10	0.53
1:E:142:ARG:HG3	1:E:142:ARG:HH11	1.72	0.53
1:I:195:TYR:HB3	1:I:210:THR:HG22	1.89	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:O:245:SER:HB3	1:O:252:LEU:HD23	1.90	0.53
1:C:230:GLU:HB2	1:E:18:ALA:CB	2.38	0.53
1:E:53:ARG:NH2	1:E:68:GLU:OE2	2.39	0.53
1:E:15:GLU:HG2	1:E:45:CYS:SG	2.49	0.53
1:M:122:CYS:O	1:M:170:CYS:HA	2.09	0.53
1:A:9:ASN:HB3	1:A:11:ASP:H	1.73	0.52
1:M:227:GLY:HA2	1:M:260:HIS:O	2.09	0.52
1:A:126:VAL:HG13	1:A:167:PHE:HB3	1.90	0.52
1:K:160:HIS:HE1	1:K:216:ARG:H	1.57	0.52
1:C:130:ILE:O	1:C:131:GLN:HB2	2.10	0.52
1:A:124:ASP:HB3	1:A:169:LYS:HG3	1.90	0.52
1:K:207:SER:C	1:K:209:GLU:H	2.13	0.52
1:M:181:ILE:HD12	1:M:181:ILE:H	1.74	0.52
2:B:501:LYS:HD3	1:C:16:GLU:HB2	1.91	0.52
1:G:189:GLN:OE1	1:G:189:GLN:N	2.39	0.52
1:A:126:VAL:HB	1:A:143:HIS:HD2	1.74	0.51
1:G:182:LEU:HD11	1:G:187:LEU:HD21	1.91	0.51
2:L:501:LYS:O	2:L:502:SER:HB2	2.10	0.51
1:A:32:TRP:CG	1:A:62:LYS:HB3	2.45	0.51
1:O:38:LEU:HD12	9:O:828:HOH:O	2.10	0.51
1:G:123:LEU:HD23	1:G:170:CYS:HB3	1.91	0.51
1:I:30:ARG:NH1	1:I:39:GLU:OE1	2.44	0.51
1:O:230:GLU:HG3	1:O:231:PRO:HA	1.92	0.51
1:M:5:GLN:O	1:M:12:CYS:HA	2.11	0.51
1:G:131:GLN:HG2	1:G:132:GLU:H	1.75	0.51
1:C:91:ARG:HB2	1:C:118:PRO:HB3	1.92	0.50
1:E:121:GLN:HE22	1:E:153:CYS:HB3	1.76	0.50
1:G:9:ASN:ND2	1:G:9:ASN:H	2.09	0.50
1:K:18:ALA:H	1:K:21:GLN:HE21	1.60	0.50
1:C:9:ASN:HD22	1:C:9:ASN:N	2.08	0.50
1:E:142:ARG:HH12	2:F:512:SER:C	2.13	0.50
1:O:55:LEU:HD21	1:O:57:TYR:HE2	1.77	0.50
1:E:66:LEU:HD12	1:E:67:THR:N	2.27	0.50
1:G:162:ASN:HD22	5:W:1:NAG:H82	1.76	0.50
1:E:115:CYS:HB3	1:E:120:GLU:CG	2.42	0.50
1:I:29:VAL:HG13	1:I:40:LEU:HB3	1.93	0.50
1:C:200:GLN:HE21	1:C:203:HIS:HB2	1.77	0.50
1:E:110:HIS:O	1:E:111:GLN:HB2	2.10	0.50
1:G:274:PRO:C	1:G:276:LEU:N	2.64	0.50
1:K:251:HIS:HD2	9:K:823:HOH:O	1.93	0.50
1:I:256:PHE:HB2	1:I:261:ILE:HD11	1.94	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:O:259:ASN:ND2	2:P:501:LYS:N	2.60	0.50
1:I:161:ASN:HD21	1:I:164:THR:H	1.58	0.50
1:I:226:THR:HG22	1:I:262:ASP:HB3	1.94	0.50
1:O:246:MET:HE1	1:O:252:LEU:HG	1.94	0.50
1:E:32:TRP:CG	1:E:62:LYS:HB3	2.46	0.49
1:I:149:TYR:O	1:I:150:LEU:HD13	2.12	0.49
1:A:61:LEU:CA	1:I:61:LEU:CA	2.90	0.49
2:J:508:TYR:HD2	2:J:512:SER:HB3	1.76	0.49
1:C:104:SER:OG	1:C:106:GLU:HG2	2.13	0.49
1:K:190:ASN:HB3	1:K:192:ARG:H	1.76	0.49
1:C:121:GLN:NE2	1:C:153:CYS:HB3	2.27	0.49
1:E:54:THR:CG2	1:E:120:GLU:OE1	2.59	0.49
1:K:207:SER:HA	1:K:210:THR:HG22	1.93	0.49
1:C:268:LYS:O	1:C:271:CYS:SG	2.70	0.49
1:K:192:ARG:HH12	1:K:268:LYS:HZ3	1.60	0.49
1:G:53:ARG:HG3	2:H:505:PHE:CE2	2.48	0.49
1:K:126:VAL:HG13	1:K:167:PHE:HB3	1.94	0.49
1:M:33:GLU:O	1:M:34:GLU:HB2	2.12	0.49
1:K:7:LYS:HD3	8:K:803:SO4:O4	2.12	0.49
1:O:190:ASN:HD21	1:O:217:GLY:N	2.11	0.49
1:I:108:GLY:O	1:I:111:GLN:HB2	2.12	0.49
1:I:204:GLY:O	1:I:209:GLU:HB3	2.13	0.49
1:C:9:ASN:H	1:C:9:ASN:ND2	2.10	0.49
1:E:22:ASP:OD2	1:E:48:SER:HA	2.12	0.49
1:K:157:ASN:HA	1:K:243:THR:HG21	1.95	0.49
1:M:73:LEU:O	1:M:74:ASP:C	2.51	0.49
1:O:29:VAL:HG13	1:O:40:LEU:HB2	1.94	0.49
1:G:25:ARG:HA	1:G:69:VAL:O	2.13	0.48
1:G:158:GLY:N	1:G:246:MET:HE3	2.28	0.48
1:A:60:GLY:O	1:I:61:LEU:O	2.31	0.48
1:K:63:ILE:HD11	1:K:113:LEU:HD21	1.94	0.48
1:I:247:CYS:HA	1:I:263:VAL:CG2	2.43	0.48
2:L:504:ALC:HE23	1:M:14:VAL:HG21	1.94	0.48
1:A:231:PRO:HD3	1:C:19:LEU:HB2	1.96	0.48
1:K:243:THR:HG23	1:K:245:SER:OG	2.13	0.48
1:A:51:THR:HG21	9:A:815:HOH:O	2.13	0.48
1:A:251:HIS:CE1	1:A:252:LEU:HD22	2.48	0.48
1:G:94:GLU:CD	1:G:175:LYS:HD2	2.34	0.48
1:A:51:THR:HG22	1:A:52:ASN:N	2.29	0.48
1:A:54:THR:HG21	1:A:120:GLU:OE1	2.14	0.48
1:C:230:GLU:HB2	1:E:18:ALA:HB2	1.95	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:55:LEU:HB3	1:C:66:LEU:CD2	2.25	0.48
1:I:246:MET:CE	1:I:252:LEU:HG	2.43	0.48
1:E:27:THR:OG1	1:E:68:GLU:HG3	2.13	0.48
1:M:8:THR:HG22	1:0:10:GLY:0	2.14	0.48
1:K:222:CYS:HB3	1:K:272:ASN:HB3	1.95	0.48
1:0:43:LYS:NZ	9:O:879:HOH:O	2.46	0.48
1:O:55:LEU:HD23	1:O:55:LEU:C	2.34	0.47
1:I:203:HIS:CG	1:I:204:GLY:N	2.82	0.47
2:B:501:LYS:HB3	1:C:16:GLU:OE2	2.14	0.47
1:G:61:LEU:O	1:K:60:GLY:O	2.33	0.47
1:K:268:LYS:HD2	1:K:268:LYS:HA	1.51	0.47
1:C:27:THR:OG1	1:C:68:GLU:HG2	2.13	0.47
1:I:114:GLN:HE21	1:I:114:GLN:HB2	1.56	0.47
1:A:67:THR:OG1	1:A:81:SER:CB	2.63	0.47
1:E:176:CYS:SG	1:E:177:ASN:N	2.85	0.47
1:K:190:ASN:ND2	1:K:219:MET:O	2.47	0.47
1:0:123:LEU:O	1:O:145:ARG:HA	2.14	0.47
1:I:104:SER:O	1:I:108:GLY:HA3	2.14	0.47
1:M:251:HIS:CD2	1:M:252:LEU:HD13	2.50	0.47
1:E:54:THR:HB	1:E:149:TYR:HB3	1.96	0.47
1:E:239:ARG:NH2	1:E:274:PRO:HA	2.30	0.47
1:I:56:SER:HB2	1:I:147:CYS:HB2	1.96	0.47
1:I:273:HIS:HD2	1:I:275:ASP:H	1.59	0.47
2:N:507:DLY:O	2:N:511:SER:HB2	2.15	0.47
1:C:53:ARG:HG3	2:D:505:PHE:CE2	2.50	0.47
1:A:43:LYS:O	1:A:44:SER:HB3	2.15	0.46
1:G:21:GLN:HG2	1:G:45:CYS:HB3	1.96	0.46
1:G:218:PRO:O	1:G:243:THR:HG22	2.16	0.46
1:A:157:ASN:HD22	1:A:245:SER:CB	2.28	0.46
1:I:2:ARG:HA	1:I:15:GLU:O	2.16	0.46
1:O:5:GLN:NE2	9:O:898:HOH:O	2.48	0.46
1:G:2:ARG:HA	1:G:15:GLU:O	2.16	0.46
1:K:66:LEU:HD23	2:L:505:PHE:HD1	1.79	0.46
1:M:100:SER:O	1:M:101:SER:C	2.54	0.46
1:O:157:ASN:HD22	1:0:245:SER:CB	2.28	0.46
1:A:249:HIS:HB2	1:A:252:LEU:HD23	1.97	0.46
1:C:8:THR:HG23	1:E:11:ASP:HA	1.97	0.46
1:G:32:TRP:CD2	1:G:62:LYS:HB3	2.49	0.46
1:A:222:CYS:HB2	1:A:271:CYS:SG	2.56	0.46
1:G:122:CYS:O	1:G:170:CYS:HA	2.15	0.46
1:E:259:ASN:O	1:E:261:ILE:N	2.48	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:G:239:ARG:NH2	1:G:274:PRO:HA	2.31	0.46
1:C:8:THR:CG2	1:E:12:CYS:N	2.64	0.46
1:G:276:LEU:HD11	9:G:901:HOH:O	2.15	0.46
1:C:268:LYS:HG2	1:C:271:CYS:HB3	1.98	0.46
1:A:34:GLU:O	9:A:834:HOH:O	2.21	0.45
1:A:40:LEU:HD23	2:B:504:ALC:HZ2	1.97	0.45
1:K:9:ASN:ND2	1:K:11:ASP:H	2.15	0.45
1:M:272:ASN:H	1:M:272:ASN:HD22	1.63	0.45
1:C:29:VAL:HG13	1:C:66:LEU:CD1	2.46	0.45
1:C:266:CYS:HB2	1:C:268:LYS:HE2	1.98	0.45
1:K:53:ARG:HG2	1:K:68:GLU:HB2	1.97	0.45
2:L:503:ASP:HB3	9:L:745:HOH:O	2.15	0.45
1:G:255:ALA:HB2	2:H:510:TRP:CE2	2.52	0.45
1:I:246:MET:HE1	1:I:252:LEU:HG	1.98	0.45
1:K:123:LEU:HD22	1:K:123:LEU:HA	1.82	0.45
1:M:169:LYS:HB3	1:M:169:LYS:HE2	1.78	0.45
1:A:7:LYS:HB2	1:A:9:ASN:HB2	1.98	0.45
1:C:8:THR:HG23	1:E:10:GLY:O	2.16	0.45
1:E:7:LYS:HB2	1:E:9:ASN:HB2	1.98	0.45
1:E:34:GLU:HG3	1:E:35:GLY:N	2.31	0.45
1:I:25:ARG:HH22	1:I:42:GLU:CD	2.19	0.45
1:M:243:THR:O	1:M:246:MET:HB2	2.16	0.45
1:E:249:HIS:HB3	1:E:251:HIS:CD2	2.51	0.45
1:K:32:TRP:CG	1:K:62:LYS:HB3	2.52	0.45
1:A:33:GLU:HG2	1:C:78:GLN:O	2.16	0.45
1:A:230:GLU:HA	1:A:231:PRO:C	2.37	0.45
1:E:89:ARG:N	9:E:851:HOH:O	2.49	0.45
1:M:208:GLU:HG3	1:M:209:GLU:N	2.31	0.45
1:O:195:TYR:H	1:O:272:ASN:ND2	2.15	0.45
1:A:25:ARG:HH21	1:A:42:GLU:HG2	1.83	0.45
1:C:158:GLY:H	1:C:243:THR:HG22	1.82	0.45
1:C:192:ARG:CD	1:C:220:ASN:O	2.64	0.45
1:E:34:GLU:OE1	1:E:34:GLU:HA	2.17	0.45
1:K:223:LEU:HD12	1:K:265:CYS:SG	2.57	0.45
1:M:150:LEU:HB2	1:M:153:CYS:SG	2.57	0.45
1:K:230:GLU:HA	1:K:231:PRO:HA	1.77	0.44
1:O:181:ILE:H	1:O:181:ILE:HG13	1.64	0.44
1:O:246:MET:CE	1:O:252:LEU:HG	2.46	0.44
1:E:23:LEU:HB3	1:E:70:VAL:HG22	1.99	0.44
1:I:251:HIS:CD2	1:I:252:LEU:HD13	2.52	0.44
1:M:178:GLU:HB3	9:M:823:HOH:O	2.17	0.44

Atom-1	Atom-2	Interatomic	Clash
		distance (\AA)	overlap (Å)
1:M:261:ILE:HG22	9:M:849:HOH:O	2.15	0.44
1:O:160:HIS:CE1	1:O:216:ARG:H	2.35	0.44
2:B:504:ALC:HE12	1:C:14:VAL:HG21	1.98	0.44
1:C:140:ASP:OD2	1:E:73:LEU:HD23	2.18	0.44
1:I:98:CYS:SG	1:I:145:ARG:HG3	2.57	0.44
1:A:29:VAL:CG1	1:A:40:LEU:HB2	2.47	0.44
1:C:7:LYS:HB2	1:C:9:ASN:ND2	2.32	0.44
1:I:239:ARG:HD3	1:I:272:ASN:CB	2.42	0.44
1:E:115:CYS:HB3	1:E:120:GLU:HG3	1.99	0.44
1:I:83:ARG:O	1:I:84:ALA:CB	2.65	0.44
1:I:198:LYS:HG2	1:I:236:TYR:CE1	2.53	0.44
1:O:158:GLY:H	1:O:243:THR:CG2	2.31	0.44
1:O:207:SER:C	1:O:209:GLU:N	2.70	0.44
1:O:225:ALA:HA	1:0:262:ASP:0	2.17	0.44
1:O:243:THR:CG2	1:O:245:SER:HB2	2.46	0.44
1:A:128:HIS:ND1	1:A:141:ASP:OD1	2.51	0.44
1:M:109:ARG:HB3	1:M:110:HIS:H	1.44	0.44
1:M:168:LEU:HD23	1:M:168:LEU:C	2.37	0.44
1:I:161:ASN:HD22	1:I:164:THR:H	1.64	0.44
1:K:9:ASN:HD21	1:K:11:ASP:CB	2.30	0.44
1:K:243:THR:CG2	1:K:245:SER:OG	2.66	0.44
1:E:5:GLN:O	1:E:12:CYS:HA	2.18	0.43
1:I:203:HIS:CD2	1:I:204:GLY:H	2.36	0.43
1:C:273:HIS:CB	1:C:274:PRO:CD	2.70	0.43
1:G:109:ARG:HH11	1:G:180:PRO:HA	1.83	0.43
1:A:5:GLN:O	1:A:12:CYS:HA	2.19	0.43
1:E:28:ILE:HG12	1:E:41:VAL:HG22	1.99	0.43
1:G:145:ARG:HD3	1:G:177:ASN:O	2.18	0.43
1:I:122:CYS:O	1:I:170:CYS:HA	2.19	0.43
1:G:221:GLN:NE2	1:G:244:ALA:HB2	2.34	0.43
1:K:109:ARG:O	1:K:110:HIS:CB	2.65	0.43
1:A:28:ILE:O	1:A:66:LEU:HA	2.17	0.43
1:A:101:SER:N	2:B:513:LYS:O	2.51	0.43
1:C:13:ARG:NH2	1:C:15:GLU:HA	2.34	0.43
1:O:167:PHE:HE2	1:O:169:LYS:HG3	1.83	0.43
2:B:508:TYR:CD2	2:B:512:SER:CB	3.01	0.43
1:K:55:LEU:O	1:K:66:LEU:N	2.42	0.43
1:M:223:LEU:HA	1:M:264:SER:O	2.19	0.43
1:O:158:GLY:CA	1:O:246:MET:HE3	2.49	0.43
1:A:75:LEU:O	1:A:77:ASN:N	2.51	0.43
1:C:185:GLU:CD	1:C:185:GLU:H	2.22	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:0:1:LEU:HD23	1:0:74:ASP:OD1	2.19	0.43
2:D:505:PHE:O	2:D:506:DSN:C	2.66	0.43
1:I:126:VAL:HA	1:I:142:ARG:O	2.18	0.43
1:K:32:TRP:CZ2	1:K:37:GLU:HG2	2.54	0.43
1:M:158:GLY:O	1:M:246:MET:HG3	2.19	0.43
1:C:158:GLY:H	1:C:243:THR:CG2	2.32	0.43
2:D:501:LYS:NZ	9:D:350:HOH:O	0.58	0.43
1:E:228:THR:OG1	1:E:259:ASN:HB2	2.19	0.43
1:G:28:ILE:HG12	1:G:41:VAL:HG22	2.01	0.43
1:C:167:PHE:HE2	1:C:169:LYS:HB2	1.84	0.42
1:K:230:GLU:HG3	1:M:17:CYS:O	2.19	0.42
1:A:53:ARG:CZ	1:A:251:HIS:HB3	2.49	0.42
1:I:195:TYR:HA	1:I:211:PHE:O	2.19	0.42
1:K:54:THR:HB	1:K:149:TYR:HB3	2.01	0.42
1:A:187:LEU:O	1:A:216:ARG:HD3	2.19	0.42
1:A:200:GLN:N	1:A:203:HIS:O	2.52	0.42
1:C:222:CYS:HB2	1:C:271:CYS:SG	2.59	0.42
1:C:7:LYS:HB2	1:C:9:ASN:HD21	1.84	0.42
1:C:199:GLY:HA2	1:C:236:TYR:CE2	2.54	0.42
1:C:255:ALA:HB2	2:D:510:TRP:CE2	2.54	0.42
1:G:9:ASN:N	1:G:9:ASN:HD22	2.17	0.42
1:M:268:LYS:HE3	1:M:269:SER:H	1.84	0.42
1:E:251:HIS:CE1	1:E:252:LEU:HD13	2.55	0.42
1:K:150:LEU:HD23	1:K:251:HIS:CE1	2.55	0.42
5:W:1:NAG:H62	5:W:2:NAG:N2	2.35	0.42
1:C:272:ASN:HD22	1:C:272:ASN:N	2.13	0.42
1:I:123:LEU:CD2	1:I:170:CYS:HB3	2.45	0.42
1:K:251:HIS:CD2	9:K:823:HOH:O	2.70	0.42
1:A:127:THR:HG23	1:A:166:HIS:CE1	2.55	0.42
1:G:252:LEU:HD12	1:G:252:LEU:HA	1.90	0.42
1:0:222:CYS:O	1:O:265:CYS:HA	2.20	0.42
1:E:121:GLN:NE2	1:E:153:CYS:HB3	2.35	0.41
1:I:67:THR:HG21	1:I:84:ALA:HB1	2.01	0.41
1:A:94:GLU:HB3	1:A:174:THR:HG23	2.01	0.41
2:B:505:PHE:O	2:B:506:DSN:C	2.68	0.41
1:I:161:ASN:ND2	1:I:163:ASP:H	2.18	0.41
1:K:5:GLN:O	1:K:12:CYS:HA	2.19	0.41
1:K:128:HIS:CD2	1:K:141:ASP:OD1	2.73	0.41
1:O:252:LEU:HD12	1:O:252:LEU:HA	1.90	0.41
1:A:249:HIS:HB2	1:A:252:LEU:CD2	2.50	0.41
1:G:139:LYS:HD3	9:G:899:HOH:O	2.20	0.41

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:K:207:SER:O	1:K:208:GLU:HB3	2.20	0.41	
1:E:126:VAL:HG13	1:E:167:PHE:HB3	2.03	0.41	
1:E:172:ASN:OD1	4:U:1:NAG:O5	2.39	0.41	
1:G:145:ARG:HB3	1:G:177:ASN:ND2	2.36	0.41	
1:M:116:ARG:HD3	9:M:863:HOH:O	2.21	0.41	
1:G:60:GLY:C	1:G:62:LYS:H	2.22	0.41	
1:I:198:LYS:HG2	1:I:236:TYR:HE1	1.85	0.41	
1:M:258:MET:HG3	1:M:261:ILE:HD12	2.03	0.41	
1:O:185:GLU:HG2	1:O:186:ASN:N	2.36	0.41	
1:O:230:GLU:HA	1:O:231:PRO:C	2.41	0.41	
1:O:34:GLU:HB3	1:O:35:GLY:H	1.68	0.41	
1:O:75:LEU:C	1:0:77:ASN:N	2.73	0.41	
1:E:100:SER:O	1:E:101:SER:C	2.59	0.41	
1:K:123:LEU:CD2	1:K:170:CYS:HB3	2.50	0.41	
1:K:199:GLY:HA2	1:K:236:TYR:CE2	2.55	0.41	
1:M:128:HIS:HD2	1:M:141:ASP:OD1	2.03	0.41	
1:M:204:GLY:O	1:M:209:GLU:HB3	2.21	0.41	
4:Y:1:NAG:H82	4:Y:1:NAG:H2	1.91	0.41	
1:A:142:ARG:NH2	1:A:144:LEU:HD22	2.35	0.41	
1:I:247:CYS:SG	1:I:265:CYS:N	2.94	0.41	
1:I:249:HIS:HB2	1:I:252:LEU:HD22	2.03	0.41	
1:M:53:ARG:NH2	8:M:811:SO4:O3	2.54	0.41	
1:O:160:HIS:HE1	1:O:215:CYS:HA	1.85	0.41	
1:0:197:CYS:CB	1:O:210:THR:HG22	2.51	0.41	
2:P:513:LYS:NZ	9:P:260:HOH:O	2.53	0.41	
1:A:47:HIS:CD2	1:A:47:HIS:H	2.39	0.41	
1:C:200:GLN:CD	1:C:200:GLN:H	2.24	0.41	
2:D:501:LYS:HB2	1:E:13:ARG:HH21	1.86	0.41	
1:E:60:GLY:O	1:M:61:LEU:CA	2.68	0.41	
1:E:171:CYS:SG	1:E:172:ASN:N	2.90	0.41	
1:I:208:GLU:OE1	1:I:209:GLU:HB2	2.21	0.41	
1:K:250:ALA:N	8:K:810:SO4:O1	2.54	0.41	
1:A:5:GLN:OE1	1:A:13:ARG:HD2	2.21	0.40	
1:I:43:LYS:O	1:I:44:SER:HB3	2.20	0.40	
1:M:268:LYS:O	1:M:271:CYS:SG	2.79	0.40	
1:I:100:SER:O	1:I:101:SER:C	2.59	0.40	
1:I:239:ARG:CD	1:I:272:ASN:HB3	2.44	0.40	
1:I:243:THR:O	1:I:246:MET:HB2	2.21	0.40	
1:E:53:ARG:HH11	1:E:251:HIS:HB3	1.86	0.40	
1:E:142:ARG:NH2	1:E:144:LEU:HG	2.35	0.40	
1:G:182:LEU:HD13	1:G:182:LEU:HA	1.87	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:G:206:SER:O	1:G:207:SER:C	2.59	0.40
1:I:182:LEU:HD21	1:I:187:LEU:HD21	2.03	0.40
1:G:182:LEU:CD1	1:G:187:LEU:HD21	2.52	0.40
1:I:29:VAL:HB	1:I:66:LEU:CD1	2.50	0.40
1:K:32:TRP:CH2	1:K:37:GLU:HG2	2.56	0.40
1:K:95:CYS:O	1:K:113:LEU:N	2.51	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	262/313~(84%)	231 (88%)	16 (6%)	15~(6%)	1	2
1	С	253/313~(81%)	226 (89%)	16 (6%)	11 (4%)	2	4
1	Е	256/313~(82%)	229 (90%)	22 (9%)	5 (2%)	6	16
1	G	252/313~(80%)	233~(92%)	16 (6%)	3~(1%)	11	28
1	Ι	258/313~(82%)	228 (88%)	23~(9%)	7 (3%)	4	10
1	K	251/313~(80%)	227 (90%)	20 (8%)	4 (2%)	8	21
1	М	257/313~(82%)	230 (90%)	15 (6%)	12 (5%)	2	4
1	Ο	252/313~(80%)	223 (88%)	20 (8%)	9 (4%)	3	6
2	В	8/13~(62%)	7 (88%)	1 (12%)	0	100	100
2	D	8/13~(62%)	7 (88%)	1 (12%)	0	100	100
2	F	8/13~(62%)	7 (88%)	1 (12%)	0	100	100
2	Н	8/13~(62%)	7 (88%)	1 (12%)	0	100	100
2	J	8/13~(62%)	7 (88%)	0	1 (12%)	0	0
2	L	8/13~(62%)	7 (88%)	0	1 (12%)	0	0
2	N	8/13~(62%)	7 (88%)	1 (12%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	Р	8/13~(62%)	8 (100%)	0	0	100	100
All	All	2105/2608~(81%)	1884 (90%)	153 (7%)	68~(3%)	3	8

All (68) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	138	PRO
1	А	231	PRO
1	А	276	LEU
1	С	208	GLU
1	С	273	HIS
1	Е	111	GLN
1	Е	259	ASN
1	Ι	33	GLU
1	Ι	101	SER
1	М	101	SER
1	0	203	HIS
1	0	206	SER
1	0	208	GLU
1	0	232	LYS
1	А	61	LEU
1	А	177	ASN
1	С	109	ARG
1	С	207	SER
1	G	275	ASP
1	Ι	84	ALA
1	Ι	208	GLU
1	K	275	ASP
1	М	91	ARG
1	М	207	SER
1	М	276	LEU
1	Ο	109	ARG
1	A	234	GLN
1	А	235	SER
1	А	278	VAL
1	Е	61	LEU
1	К	206	SER
1	М	60	GLY
1	М	105	CYS
1	М	106	GLU
1	М	208	GLU
1	М	274	PRO

Mol	Chain	Res	Type
1	А	90	SER
1	А	107	ARG
1	А	273	HIS
1	С	61	LEU
1	С	231	PRO
1	G	207	SER
1	Ι	60	GLY
1	Ι	117	SER
1	K	231	PRO
1	М	109	ARG
1	0	204	GLY
1	А	75	LEU
1	С	34	GLU
1	С	60	GLY
1	С	79	GLY
1	С	101	SER
1	С	107	ARG
1	Ι	35	GLY
1	0	106	GLU
1	А	76	CYS
1	А	233	ASN
1	Е	260	HIS
2	J	502	SER
2	L	502	SER
1	М	111	GLN
1	М	206	SER
1	0	60	GLY
1	0	274	PRO
1	Е	60	GLY
1	G	108	GLY
1	K	60	GLY
1	А	60	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

1YWH

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	234/273~(86%)	208~(89%)	26 (11%)	5	12
1	С	229/273~(84%)	192 (84%)	37~(16%)	2	5
1	Ε	232/273~(85%)	200~(86%)	32 (14%)	3	7
1	G	229/273~(84%)	188~(82%)	41 (18%)	1	4
1	Ι	230/273~(84%)	183 (80%)	47 (20%)	1	3
1	Κ	228/273~(84%)	194 (85%)	34~(15%)	2	6
1	М	234/273~(86%)	196 (84%)	38 (16%)	2	5
1	Ο	228/273~(84%)	198~(87%)	30 (13%)	3	8
2	В	10/10~(100%)	8 (80%)	2(20%)	1	3
2	D	10/10~(100%)	10 (100%)	0	100	100
2	F	10/10~(100%)	10 (100%)	0	100	100
2	Η	10/10~(100%)	8 (80%)	2(20%)	1	3
2	J	10/10~(100%)	9~(90%)	1 (10%)	6	16
2	L	10/10~(100%)	8 (80%)	2(20%)	1	3
2	Ν	10/10~(100%)	10 (100%)	0	100	100
2	Р	10/10~(100%)	10 (100%)	0	100	100
All	All	1924/2264 (85%)	1632 (85%)	292 (15%)	2	6

All (292) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	1	LEU
1	А	9	ASN
1	А	25	ARG
1	А	26	THR
1	А	31	LEU
1	А	33	GLU
1	А	40	LEU
1	А	54	THR
1	А	55	LEU
1	А	77	ASN
1	А	78	GLN
1	А	125	VAL
1	А	126	VAL
1	А	140	ASP
1	А	141	ASP
1	А	164	THR

Mol	Chain	Res	Type
1	А	176	CYS
1	А	177	ASN
1	А	185	GLU
1	А	203	HIS
1	А	226	THR
1	А	234	GLN
1	А	252	LEU
1	А	260	HIS
1	А	266	CYS
1	А	267	THR
2	В	502	SER
2	В	512	SER
1	С	1	LEU
1	С	8	THR
1	C	9	ASN
1	С	13	ARG
1	С	19	LEU
1	С	25	ARG
1	С	31	LEU
1	С	38	LEU
1	С	40	LEU
1	С	53	ARG
1	С	55	LEU
1	С	58	ARG
1	С	59	THR
1	С	65	SER
1	С	66	LEU
1	С	70	VAL
1	С	73	LEU
1	С	77	ASN
1	C	105	CYS
1	C	109	ARG
1	С	125	VAL
1	C	126	VAL
1	C	140	ASP
1	C	141	ASP
1	C	185	GLU
1	C	192	ARG
1	C	200	GLN
1	С	202	THR
1	C	207	SER
1	С	209	GLU

Mol	Chain	Res	Type
1	С	219	MET
1	С	232	LYS
1	С	238	VAL
1	С	252	LEU
1	С	263	VAL
1	С	268	LYS
1	С	272	ASN
1	Е	1	LEU
1	Е	9	ASN
1	Е	19	LEU
1	Е	21	GLN
1	Е	22	ASP
1	Е	25	ARG
1	Е	31	LEU
1	Е	38	LEU
1	Е	40	LEU
1	Е	53	ARG
1	Е	54	THR
1	Е	55	LEU
1	Е	58	ARG
1	Е	59	THR
1	Е	93	LEU
1	Е	106	GLU
1	Е	111	GLN
1	Е	112	SER
1	Е	125	VAL
1	Е	126	VAL
1	Е	163	ASP
1	Е	164	THR
1	Е	171	CYS
1	Е	182	LEU
1	Е	183	GLU
1	Е	184	LEU
1	Е	209	GLU
1	Ε	229	HIS
1	Е	233	ASN
1	Е	238	VAL
1	Е	252	LEU
1	Е	276	LEU
1	G	1	LEU
1	G	2	ARG
1	G	8	THR

Mol	Chain	Res	Type
1	G	9	ASN
1	G	19	LEU
1	G	25	ARG
1	G	29	VAL
1	G	31	LEU
1	G	38	LEU
1	G	40	LEU
1	G	53	ARG
1	G	55	LEU
1	G	59	THR
1	G	65	SER
1	G	67	THR
1	G	77	ASN
1	G	93	LEU
1	G	107	ARG
1	G	116	ARG
1	G	125	VAL
1	G	126	VAL
1	G	130	ILE
1	G	131	GLN
1	G	140	ASP
1	G	164	THR
1	G	169	LYS
1	G	170	CYS
1	G	182	LEU
1	G	193	GLN
1	G	200	GLN
1	G	202	THR
1	G	203	HIS
1	G	205	CYS
1	G	210	THR
1	G	212	LEU
1	G	226	THR
1	G	234	GLN
1	G	238	VAL
1	G	252	LEU
1	G	272	ASN
1	G	276	LEU
2	Н	502	SER
2	Н	512	SER
1	Ι	1	LEU
1	Ι	8	THR

Mol	Chain	Res	Type
1	Ι	19	LEU
1	Ι	21	GLN
1	Ι	29	VAL
1	Ι	34	GLU
1	Ι	38	LEU
1	Ι	49	GLU
1	Ι	53	ARG
1	Ι	54	THR
1	Ι	55	LEU
1	Ι	58	ARG
1	Ι	59	THR
1	Ι	69	VAL
1	Ι	70	VAL
1	Ι	73	LEU
1	Ι	77	ASN
1	Ι	107	ARG
1	Ι	111	GLN
1	Ι	114	GLN
1	Ι	116	ARG
1	Ι	117	SER
1	Ι	123	LEU
1	Ι	125	VAL
1	Ι	126	VAL
1	Ι	131	GLN
1	Ι	144	LEU
1	Ι	150	LEU
1	Ι	161	ASN
1	Ι	175	LYS
1	Ι	182	LEU
1	Ι	190	ASN
1	Ι	193	GLN
1	I	202	THR
1	Ι	203	HIS
1	I	206	SER
1	Ι	207	SER
1	I	210	THR
1	Ι	216	ARG
1	Ι	224	VAL
1	I	243	THR
1	Ι	252	LEU
1	Ι	257	SER
1	Ι	261	ILE

Mol	Chain	Res	Type
1	Ι	263	VAL
1	Ι	267	THR
1	Ι	268	LYS
2	J	513	LYS
1	К	1	LEU
1	K	8	THR
1	K	9	ASN
1	К	19	LEU
1	K	25	ARG
1	K	31	LEU
1	K	36	GLU
1	Κ	40	LEU
1	К	54	THR
1	К	55	LEU
1	K	58	ARG
1	K	63	ILE
1	K	66	LEU
1	Κ	70	VAL
1	Κ	106	GLU
1	K	113	LEU
1	Κ	116	ARG
1	K	123	LEU
1	Κ	125	VAL
1	K	126	VAL
1	K	163	ASP
1	Κ	169	LYS
1	Κ	176	CYS
1	Κ	182	LEU
1	K	187	LEU
1	K	189	GLN
1	K	193	GLN
1	K	206	SER
1	K	212	LEU
1	K	235	SER
1	K	239	ARG
1	K	243	THR
1	K	258	MET
1	K	268	LYS
2	L	502	SER
2	L	503	ASP
1	М	9	ASN
1	М	13	ARG

Mol	Chain	Res	Type
1	М	25	ARG
1	М	29	VAL
1	М	37	GLU
1	М	38	LEU
1	М	40	LEU
1	М	53	ARG
1	М	55	LEU
1	М	59	THR
1	М	69	VAL
1	М	70	VAL
1	М	91	ARG
1	М	102	ASP
1	М	103	MET
1	М	114	GLN
1	М	123	LEU
1	М	125	VAL
1	М	126	VAL
1	М	150	LEU
1	М	169	LYS
1	М	170	CYS
1	М	184	LEU
1	М	185	GLU
1	М	187	LEU
1	М	192	ARG
1	М	193	GLN
1	М	198	LYS
1	М	201	SER
1	М	213	ILE
1	М	232	LYS
1	М	234	GLN
1	М	235	SER
1	М	252	LEU
1	М	261	ILE
1	М	263	VAL
1	М	268	LYS
1	М	272	ASN
1	0	1	LEU
1	0	13	ARG
1	0	15	GLU
1	0	31	LEU
1	0	36	GLU
1	0	40	LEU

Mol	Chain	Res	Type
1	Ο	56	SER
1	0	63	ILE
1	0	67	THR
1	0	70	VAL
1	0	77	ASN
1	0	102	ASP
1	0	104	SER
1	0	114	GLN
1	0	116	ARG
1	0	125	VAL
1	0	126	VAL
1	0	176	CYS
1	0	182	LEU
1	0	185	GLU
1	0	187	LEU
1	0	192	ARG
1	0	206	SER
1	0	208	GLU
1	0	216	ARG
1	0	230	GLU
1	0	234	GLN
1	0	252	LEU
1	0	261	ILE
1	0	271	CYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (79) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	21	GLN
1	А	47	HIS
1	А	78	GLN
1	А	111	GLN
1	А	143	HIS
1	А	157	ASN
1	А	160	HIS
1	А	203	HIS
1	А	272	ASN
1	С	9	ASN
1	С	78	GLN
1	С	111	GLN
1	С	121	GLN
1	С	157	ASN

1 C 186 ASN 1 C 193 GLN 1 C 200 GLN 1 C 260 HIS 1 C 272 ASN 1 E 121 GLN 1 E 128 HIS 1 E 128 HIS 1 E 233 ASN 1 E 249 HIS 1 E 251 HIS 1 E 259 ASN 1 G 9 ASN 1 G 77 ASN 1 G 78 GLN 1 G 131 GLN 1 G 131 GLN 1 G 131 GLN 1 G 272 ASN 1 G 272 ASN 1 I 146	Mol	Chain	Res	Type
1 C 193 GLN 1 C 200 GLN 1 C 260 HIS 1 C 272 ASN 1 E 121 GLN 1 E 121 GLN 1 E 128 HIS 1 E 233 ASN 1 E 249 HIS 1 E 251 HIS 1 E 259 ASN 1 G 9 ASN 1 G 77 ASN 1 G 78 GLN 1 G 131 GLN 1 G 157 ASN 1 G 157 ASN 1 G 272 ASN 1 G 272 ASN 1 G 272 ASN 1 I 114	1	С	186	ASN
1 C 200 GLN 1 C 260 HIS 1 C 272 ASN 1 E 121 GLN 1 E 128 HIS 1 E 128 HIS 1 E 233 ASN 1 E 249 HIS 1 E 259 ASN 1 E 259 ASN 1 G 9 ASN 1 G 77 ASN 1 G 77 ASN 1 G 131 GLN 1 G 200 GLN 1 G 272 ASN 1 I 140	1	С	193	GLN
1 C 260 HIS 1 C 272 ASN 1 E 121 GLN 1 E 128 HIS 1 E 123 ASN 1 E 233 ASN 1 E 233 ASN 1 E 249 HIS 1 E 251 HIS 1 E 259 ASN 1 G 9 ASN 1 G 77 ASN 1 G 77 ASN 1 G 131 GLN 1 G 131 GLN 1 G 131 GLN 1 G 160 HIS 1 G 200 GLN 1 G 200 GLN 1 I 14 GLN 1 I 157	1	С	200	GLN
1 C 272 ASN 1 E 121 GLN 1 E 128 HIS 1 E 157 ASN 1 E 233 ASN 1 E 233 ASN 1 E 249 HIS 1 E 259 ASN 1 G 9 ASN 1 G 9 ASN 1 G 77 ASN 1 G 77 ASN 1 G 77 ASN 1 G 77 ASN 1 G 121 GLN 1 G 131 GLN 1 G 120 GLN 1 G 200 GLN 1 G 200 GLN 1 I 177 ASN 1	1	С	260	HIS
1 E 121 GLN 1 E 128 HIS 1 E 157 ASN 1 E 233 ASN 1 E 249 HIS 1 E 251 HIS 1 E 259 ASN 1 G 9 ASN 1 G 21 GLN 1 G 77 ASN 1 G 78 GLN 1 G 131 GLN 1 G 120 GLN 1 G 251 HIS 1 G 272 ASN 1 I 14 GLN 1 I 157	1	С	272	ASN
1 E 128 HIS 1 E 157 ASN 1 E 233 ASN 1 E 249 HIS 1 E 259 ASN 1 E 259 ASN 1 G 9 ASN 1 G 21 GLN 1 G 77 ASN 1 G 77 ASN 1 G 111 GLN 1 G 121 GLN 1 G 131 GLN 1 G 131 GLN 1 G 160 HIS 1 G 200 GLN 1 G 272 ASN 1 I 14 GLN 1 I 157 ASN 1 I 161 ASN 1 I 121	1	Е	121	GLN
1 E 157 ASN 1 E 233 ASN 1 E 249 HIS 1 E 251 HIS 1 E 259 ASN 1 G 9 ASN 1 G 21 GLN 1 G 77 ASN 1 G 77 ASN 1 G 77 ASN 1 G 121 GLN 1 G 131 GLN 1 G 131 GLN 1 G 131 GLN 1 G 157 ASN 1 G 160 HIS 1 G 251 HIS 1 G 272 ASN 1 I 14 GLN 1 I 157 ASN 1 I 157 ASN 1 I 161 ASN 1 I<	1	Е	128	HIS
1 E 233 ASN 1 E 249 HIS 1 E 251 HIS 1 E 259 ASN 1 G 9 ASN 1 G 21 GLN 1 G 77 ASN 1 G 77 ASN 1 G 111 GLN 1 G 121 GLN 1 G 131 GLN 1 G 131 GLN 1 G 131 GLN 1 G 157 ASN 1 G 160 HIS 1 G 200 GLN 1 G 272 ASN 1 I 14 GLN 1 I 157 ASN 1 I 114 GLN 1 I 121 GLN 1 I 157 ASN 1 I	1	Е	157	ASN
1 E 249 HIS 1 E 251 HIS 1 E 259 ASN 1 G 9 ASN 1 G 21 GLN 1 G 77 ASN 1 G 77 ASN 1 G 78 GLN 1 G 121 GLN 1 G 121 GLN 1 G 131 GLN 1 G 131 GLN 1 G 131 GLN 1 G 131 GLN 1 G 200 GLN 1 G 272 ASN 1 I 177 ASN 1 I 121 GLN 1 I 121 GLN 1 I 193 GLN 1 I 203	1	Е	233	ASN
1 E 251 HIS 1 G 9 ASN 1 G 9 ASN 1 G 21 GLN 1 G 77 ASN 1 G 77 ASN 1 G 77 ASN 1 G 111 GLN 1 G 121 GLN 1 G 121 GLN 1 G 131 GLN 1 G 157 ASN 1 G 160 HIS 1 G 200 GLN 1 G 272 ASN 1 I 177 ASN 1 I 114 GLN 1 I 114 GLN 1 I 114 GLN 1 I 114 GLN 1 I 1193 GLN 1 I 259 ASN	1	Е	249	HIS
1 E 259 ASN 1 G 9 ASN 1 G 21 GLN 1 G 77 ASN 1 G 78 GLN 1 G 111 GLN 1 G 121 GLN 1 G 121 GLN 1 G 131 GLN 1 G 157 ASN 1 G 157 ASN 1 G 157 ASN 1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 14 GLN 1 I 121 GLN 1 I 157 ASN 1 I 121 GLN 1 I 133 GLN 1 I 203	1	Е	251	HIS
1 G 9 ASN 1 G 21 GLN 1 G 77 ASN 1 G 78 GLN 1 G 111 GLN 1 G 121 GLN 1 G 121 GLN 1 G 131 GLN 1 G 157 ASN 1 G 157 ASN 1 G 160 HIS 1 G 200 GLN 1 G 272 ASN 1 I 77 ASN 1 I 144 GLN 1 I 177 ASN 1 I 121 GLN 1 I 121 GLN 1 I 157 ASN 1 I 190 ASN 1 I 193 GLN 1 I 273 HIS 1 K	1	Е	259	ASN
1 G 21 GLN 1 G 77 ASN 1 G 78 GLN 1 G 111 GLN 1 G 121 GLN 1 G 131 GLN 1 G 131 GLN 1 G 157 ASN 1 G 157 ASN 1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 177 ASN 1 I 14 GLN 1 I 177 ASN 1 I 121 GLN 1 I 121 GLN 1 I 157 ASN 1 I 157 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 <td< td=""><td>1</td><td>G</td><td>9</td><td>ASN</td></td<>	1	G	9	ASN
1 G 77 ASN 1 G 78 GLN 1 G 111 GLN 1 G 121 GLN 1 G 131 GLN 1 G 157 ASN 1 G 157 ASN 1 G 160 HIS 1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 77 ASN 1 I 144 GLN 1 I 121 GLN 1 I 121 GLN 1 I 157 ASN 1 I 121 GLN 1 I 157 ASN 1 I 190 ASN 1 I 193 GLN 1 I 259	1	G	21	GLN
1 G 78 GLN 1 G 111 GLN 1 G 121 GLN 1 G 131 GLN 1 G 157 ASN 1 G 160 HIS 1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 77 ASN 1 I 114 GLN 1 I 121 GLN 1 I 114 GLN 1 I 121 GLN 1 I 121 GLN 1 I 157 ASN 1 I 190 ASN 1 I 193 GLN 1 I 193 GLN 1 I 259 ASN 1 I 273 HIS 1 K 21 GLN 1 <t< td=""><td>1</td><td>G</td><td>77</td><td>ASN</td></t<>	1	G	77	ASN
1 G 111 GLN 1 G 121 GLN 1 G 131 GLN 1 G 157 ASN 1 G 160 HIS 1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 77 ASN 1 I 144 GLN 1 I 144 GLN 1 I 144 GLN 1 I 147 ASN 1 I 121 GLN 1 I 157 ASN 1 I 157 ASN 1 I 157 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 K 21 <td>1</td> <td>G</td> <td>78</td> <td>GLN</td>	1	G	78	GLN
1 G 121 GLN 1 G 131 GLN 1 G 157 ASN 1 G 160 HIS 1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 77 ASN 1 I 114 GLN 1 I 77 ASN 1 I 114 GLN 1 I 121 GLN 1 I 121 GLN 1 I 157 ASN 1 I 157 ASN 1 I 161 ASN 1 I 190 ASN 1 I 193 GLN 1 I 259 ASN 1 I 273 HIS 1 K 21 GLN 1 K 21 GLN 1 <td< td=""><td>1</td><td>G</td><td>111</td><td>GLN</td></td<>	1	G	111	GLN
1 G 131 GLN 1 G 157 ASN 1 G 160 HIS 1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 77 ASN 1 I 174 GLN 1 I 177 ASN 1 I 174 GLN 1 I 121 GLN 1 I 121 GLN 1 I 157 ASN 1 I 161 ASN 1 I 161 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 273 HIS 1 I 273 HIS 1 K 21 GLN 1 K 21 GLN 1 <td< td=""><td>1</td><td>G</td><td>121</td><td>GLN</td></td<>	1	G	121	GLN
1 G 157 ASN 1 G 160 HIS 1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 77 ASN 1 I 77 ASN 1 I 114 GLN 1 I 121 GLN 1 I 157 ASN 1 I 161 ASN 1 I 161 ASN 1 I 161 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 259 ASN 1 K 21 GLN 1 K 21 GLN 1 K 14 GLN 1 K 128 HIS 1 K	1	G	131	GLN
1 G 160 HIS 1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 77 ASN 1 I 77 ASN 1 I 14 GLN 1 I 121 GLN 1 I 157 ASN 1 I 161 ASN 1 I 161 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 14 GLN 1 K 121 GLN 1 K 128 HIS 1 K 128 HIS 1 K </td <td>1</td> <td>G</td> <td>157</td> <td>ASN</td>	1	G	157	ASN
1 G 200 GLN 1 G 251 HIS 1 G 272 ASN 1 I 77 ASN 1 I 144 GLN 1 I 144 GLN 1 I 114 GLN 1 I 121 GLN 1 I 157 ASN 1 I 157 ASN 1 I 161 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 259 ASN 1 K 9 ASN 1 K 21 GLN 1 K 21 GLN 1 K 124 GLN 1 K 128 HIS 1 K 128 HIS 1 K	1	G	160	HIS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	G	200	GLN
1 G 272 ASN 1 I 77 ASN 1 I 114 GLN 1 I 121 GLN 1 I 157 ASN 1 I 157 ASN 1 I 157 ASN 1 I 161 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 259 ASN 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 14 GLN 1 K 121 GLN 1 K 128 HIS 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	G	251	HIS
1 I 77 ASN 1 I 114 GLN 1 I 121 GLN 1 I 157 ASN 1 I 157 ASN 1 I 161 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 273 HIS 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 47 HIS 1 K 14 GLN 1 K 121 GLN 1 K 128 HIS 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	G	272	ASN
1 I 114 GLN 1 I 121 GLN 1 I 157 ASN 1 I 161 ASN 1 I 190 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 273 HIS 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 47 HIS 1 K 14 GLN 1 K 121 GLN 1 K 128 HIS 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	Ι	77	ASN
1 I 121 GLN 1 I 157 ASN 1 I 161 ASN 1 I 190 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 273 HIS 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 21 GLN 1 K 14 GLN 1 K 121 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	Ι	114	GLN
1 I 157 ASN 1 I 161 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 273 HIS 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 14 GLN 1 K 14 GLN 1 K 114 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	Ι	121	GLN
1 I 161 ASN 1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 273 HIS 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 14 GLN 1 K 121 GLN 1 K 121 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	Ι	157	ASN
1 I 190 ASN 1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 273 HIS 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 47 HIS 1 K 14 GLN 1 K 121 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	Ι	161	ASN
1 I 193 GLN 1 I 203 HIS 1 I 259 ASN 1 I 273 HIS 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 47 HIS 1 K 14 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	Ι	190	ASN
1 I 203 HIS 1 I 259 ASN 1 I 273 HIS 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 47 HIS 1 K 14 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	Ι	193	GLN
1 I 259 ASN 1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 47 HIS 1 K 14 GLN 1 K 121 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	I	203	HIS
1 I 273 HIS 1 K 9 ASN 1 K 21 GLN 1 K 47 HIS 1 K 14 GLN 1 K 121 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	Ι	259	ASN
1 K 9 ASN 1 K 21 GLN 1 K 47 HIS 1 K 114 GLN 1 K 121 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	I	273	HIS
1 K 21 GLN 1 K 47 HIS 1 K 114 GLN 1 K 121 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	K	9	ASN
1 K 47 HIS 1 K 114 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	K	21	GLN
1 K 114 GLN 1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	K	47	HIS
1 K 121 GLN 1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	K	114	GLN
1 K 128 HIS 1 K 157 ASN 1 K 160 HIS	1	K	121	GLN
1 K 157 ASN 1 K 160 HIS	1	K	128	HIS
$1 \qquad \mathrm{K} \qquad 160 \qquad \mathrm{HIS}$	1	K	157	ASN
	1	K	160	HIS

	v	±	1 0
\mathbf{Mol}	Chain	Res	Type
1	Κ	186	ASN
1	K	190	ASN
1	К	193	GLN
1	К	221	GLN
1	Κ	251	HIS
1	М	9	ASN
1	М	21	GLN
1	М	80	ASN
1	М	121	GLN
1	М	128	HIS
1	М	131	GLN
1	М	157	ASN
1	М	259	ASN
1	М	272	ASN
1	0	21	GLN
1	0	77	ASN
1	0	121	GLN
1	0	157	ASN
1	0	160	HIS
1	0	189	GLN
1	0	190	ASN
1	0	203	HIS
1	0	272	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

24 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	al Turna Chain		Chain Bog		B	Bond lengths			Bond angles		
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
Mal	Tuno	Chain	Dog	Tink	B	ond leng	gths	B	ond ang	les	
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
2	ALC	Н	504	2	9,11,12	0.60	0	$11,\!13,\!15$	1.84	3 (27%)	
2	ALC	Ν	504	2	9,11,12	0.52	0	$11,\!13,\!15$	1.89	4 (36%)	
2	ALC	Р	504	2	9,11,12	0.59	0	$11,\!13,\!15$	0.97	0	
2	ALC	F	504	2	9,11,12	0.50	0	$11,\!13,\!15$	1.44	2 (18%)	
2	ALC	D	504	2	9,11,12	0.59	0	$11,\!13,\!15$	1.52	2 (18%)	
2	ALC	В	504	2	9,11,12	0.48	0	$11,\!13,\!15$	1.69	3 (27%)	
2	ALC	L	504	2	9,11,12	0.62	0	11,13,15	1.14	1 (9%)	
2	ALC	J	504	2	9,11,12	0.53	0	11,13,15	1.99	4 (36%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	ALC	Н	504	2	-	0/5/14/16	0/1/1/1
2	ALC	N	504	2	-	0/5/14/16	0/1/1/1
2	ALC	Р	504	2	-	0/5/14/16	0/1/1/1
2	ALC	F	504	2	-	2/5/14/16	0/1/1/1
2	ALC	D	504	2	-	0/5/14/16	0/1/1/1
2	ALC	В	504	2	-	3/5/14/16	0/1/1/1
2	ALC	L	504	2	-	0/5/14/16	0/1/1/1
2	ALC	J	504	2	-	0/5/14/16	0/1/1/1

There are no bond length outliers.

All (19) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Н	504	ALC	CB-CG-CD1	-4.25	101.82	111.71
2	J	504	ALC	CD1-CG-CD2	3.46	117.76	109.29
2	J	504	ALC	CB-CG-CD1	-3.36	103.90	111.71
2	В	504	ALC	CG-CB-CA	3.32	118.98	114.52
2	Ν	504	ALC	CB-CG-CD1	-3.23	104.18	111.71
2	Ν	504	ALC	CD1-CG-CD2	3.15	116.99	109.29
2	L	504	ALC	CB-CA-N	-2.84	104.27	110.48
2	В	504	ALC	CB-CG-CD2	-2.83	105.13	111.71
2	D	504	ALC	CB-CG-CD1	-2.78	105.24	111.71

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	N	504	ALC	CE2-CD2-CG	2.65	117.66	112.08
2	F	504	ALC	CB-CA-N	-2.65	104.70	110.48
2	J	504	ALC	CE1-CD1-CG	2.46	117.26	112.08
2	В	504	ALC	CB-CA-N	-2.45	105.12	110.48
2	Ν	504	ALC	CE1-CD1-CG	2.40	117.13	112.08
2	F	504	ALC	CB-CA-C	2.39	114.67	110.99
2	D	504	ALC	CE2-CD2-CG	2.37	117.07	112.08
2	Н	504	ALC	CB-CA-N	-2.19	105.69	110.48
2	Н	504	ALC	CB-CG-CD2	-2.16	106.69	111.71
2	J	504	ALC	CZ-CE2-CD2	-2.07	107.16	111.42

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	F	504	ALC	O-C-CA-CB
2	F	504	ALC	C-CA-CB-CG
2	В	504	ALC	CA-CB-CG-CD1
2	В	504	ALC	CA-CB-CG-CD2
2	В	504	ALC	N-CA-CB-CG

There are no ring outliers.

3 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	Р	504	ALC	1	0
2	В	504	ALC	2	0
2	L	504	ALC	1	0

5.5 Carbohydrates (i)

52 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Dec	T inl.	Bo	ond leng	ths	Bond angles		
NIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	NAG	Q	1	3,1	14,14,15	0.56	0	$17,\!19,\!21$	1.36	3 (17%)
3	NAG	Q	2	3	14,14,15	0.64	0	$17,\!19,\!21$	1.76	3 (17%)
3	FUC	Q	3	3	10,10,11	0.65	0	14,14,16	1.08	1 (7%)
4	NAG	R	1	4,1	14,14,15	0.54	0	17,19,21	1.60	2 (11%)
4	FUC	R	2	4	10,10,11	0.58	0	14,14,16	0.73	0
3	NAG	S	1	3,1	14,14,15	0.53	0	$17,\!19,\!21$	2.43	4 (23%)
3	NAG	S	2	3	14,14,15	0.70	1 (7%)	$17,\!19,\!21$	1.49	3 (17%)
3	FUC	S	3	3	10,10,11	0.62	0	14,14,16	0.92	0
3	NAG	Т	1	3,1	14,14,15	0.57	0	$17,\!19,\!21$	1.72	4 (23%)
3	NAG	Т	2	3	14,14,15	0.58	0	$17,\!19,\!21$	1.39	1 (5%)
3	FUC	Т	3	3	10,10,11	0.71	0	14,14,16	1.35	2 (14%)
4	NAG	U	1	4,1	14,14,15	0.57	0	17,19,21	1.84	4 (23%)
4	FUC	U	2	4	10,10,11	0.86	0	14,14,16	1.84	3 (21%)
4	NAG	V	1	4,1	14,14,15	0.55	0	17,19,21	1.66	3 (17%)
4	FUC	V	2	4	10,10,11	0.57	0	14,14,16	1.06	1 (7%)
5	NAG	W	1	5,1	14,14,15	0.67	0	17,19,21	1.06	2 (11%)
5	NAG	W	2	5	14,14,15	0.60	0	17,19,21	1.27	2 (11%)
4	NAG	Х	1	4,1	14,14,15	0.58	0	17,19,21	1.50	2 (11%)
4	FUC	Х	2	4	10,10,11	0.67	0	14,14,16	1.30	1 (7%)
4	NAG	Y	1	4,1	14,14,15	0.42	0	17,19,21	1.62	2 (11%)
4	FUC	Y	2	4	10,10,11	0.75	0	14,14,16	1.59	2 (14%)
6	NAG	Z	1	6,1	14,14,15	0.45	0	17,19,21	1.09	1 (5%)
6	NAG	Z	2	6	14,14,15	0.60	0	17,19,21	1.07	0
6	BMA	Z	3	6	11,11,12	0.48	0	$15,\!15,\!17$	2.91	5 (33%)
6	MAN	Z	4	6	11,11,12	0.62	0	$15,\!15,\!17$	1.90	3 (20%)
6	MAN	Z	5	6	11,11,12	0.71	0	$15,\!15,\!17$	1.10	1 (6%)
4	NAG	a	1	4,1	14,14,15	0.48	0	17,19,21	1.69	2 (11%)
4	FUC	a	2	4	10,10,11	0.59	0	14,14,16	1.08	0
3	NAG	b	1	3,1	14,14,15	0.62	0	17,19,21	1.57	3 (17%)
3	NAG	b	2	3	14,14,15	0.64	0	17,19,21	2.53	4 (23%)
3	FUC	b	3	3	10,10,11	0.61	0	14,14,16	0.87	0
6	NAG	С	1	6,1	14,14,15	0.66	0	17,19,21	1.61	5 (29%)
6	NAG	с	2	6	14,14,15	0.68	0	17,19,21	1.17	2 (11%)
6	BMA	с	3	6	11,11,12	0.90	1 (9%)	$15,\!15,\!17$	1.70	3 (20%)
6	MAN	с	4	6	11,11,12	0.73	0	$15,\!15,\!17$	1.83	4 (26%)
6	MAN	с	5	6	11,11,12	0.68	0	15,15,17	1.24	3 (20%)

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	$_{\rm ths}$	Bond angles		
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	d	1	4,1	14,14,15	0.42	0	17,19,21	1.90	5 (29%)
4	FUC	d	2	4	10,10,11	0.67	0	14,14,16	0.95	1 (7%)
6	NAG	е	1	6,1	14,14,15	0.60	0	17,19,21	1.64	1 (5%)
6	NAG	е	2	6	14,14,15	0.59	0	17,19,21	1.15	1 (5%)
6	BMA	е	3	6	11,11,12	0.56	0	15,15,17	1.81	3 (20%)
6	MAN	е	4	6	11,11,12	0.76	0	15,15,17	2.52	6 (40%)
6	MAN	е	5	6	11,11,12	0.63	0	15,15,17	1.30	1 (6%)
5	NAG	f	1	5,1	14,14,15	0.68	0	17,19,21	1.31	1 (5%)
5	NAG	f	2	5	14,14,15	0.54	0	17,19,21	1.71	3 (17%)
4	NAG	g	1	4,1	14,14,15	0.52	0	17,19,21	1.32	2 (11%)
4	FUC	g	2	4	10,10,11	0.68	0	14,14,16	1.33	2 (14%)
6	NAG	h	1	6,1	14,14,15	0.68	0	17,19,21	1.79	4 (23%)
6	NAG	h	2	6	14,14,15	0.53	0	17,19,21	0.82	0
6	BMA	h	3	6	11,11,12	0.92	1 (9%)	$15,\!15,\!17$	1.49	2(13%)
6	MAN	h	4	6	11,11,12	0.75	0	$15,\!15,\!17$	1.49	2 (13%)
6	MAN	h	5	6	11,11,12	0.62	0	15,15,17	1.73	2 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
3	NAG	Q	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	Q	2	3	-	5/6/23/26	0/1/1/1
3	FUC	Q	3	3	2/2/4/5	-	0/1/1/1
4	NAG	R	1	4,1	-	4/6/23/26	0/1/1/1
4	FUC	R	2	4	2/2/4/5	-	0/1/1/1
3	NAG	S	1	3,1	1/1/5/7	4/6/23/26	0/1/1/1
3	NAG	S	2	3	-	3/6/23/26	0/1/1/1
3	FUC	S	3	3	2/2/4/5	-	0/1/1/1
3	NAG	Т	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	Т	2	3	-	4/6/23/26	0/1/1/1
3	FUC	Т	3	3	2/2/4/5	-	0/1/1/1
4	NAG	U	1	4,1	-	4/6/23/26	0/1/1/1
4	FUC	U	2	4	2/2/4/5	-	0/1/1/1

1	Υ	W	Η
-	-	•••	

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	V	1	4,1	-	2/6/23/26	0/1/1/1
4	FUC	V	2	4	2/2/4/5	-	0/1/1/1
5	NAG	W	1	5,1	-	3/6/23/26	0/1/1/1
5	NAG	W	2	5	-	3/6/23/26	0/1/1/1
4	NAG	Х	1	4,1	1/1/5/7	4/6/23/26	0/1/1/1
4	FUC	Х	2	4	2/2/4/5	-	0/1/1/1
4	NAG	Y	1	4,1	-	4/6/23/26	0/1/1/1
4	FUC	Y	2	4	2/2/4/5	-	0/1/1/1
6	NAG	Z	1	6,1	1/1/5/7	4/6/23/26	0/1/1/1
6	NAG	Z	2	6	-	4/6/23/26	0/1/1/1
6	BMA	Z	3	6	-	2/2/19/22	0/1/1/1
6	MAN	Z	4	6	-	2/2/19/22	0/1/1/1
6	MAN	Z	5	6	-	2/2/19/22	1/1/1/1
4	NAG	a	1	4,1	-	5/6/23/26	0/1/1/1
4	FUC	a	2	4	2/2/4/5	-	0/1/1/1
3	NAG	b	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	b	2	3	-	4/6/23/26	0/1/1/1
3	FUC	b	3	3	2/2/4/5	-	0/1/1/1
6	NAG	с	1	6,1	1/1/5/7	4/6/23/26	0/1/1/1
6	NAG	с	2	6	-	4/6/23/26	0/1/1/1
6	BMA	с	3	6	-	0/2/19/22	0/1/1/1
6	MAN	с	4	6	-	2/2/19/22	0/1/1/1
6	MAN	С	5	6	-	0/2/19/22	0/1/1/1
4	NAG	d	1	4,1	-	4/6/23/26	0/1/1/1
4	FUC	d	2	4	2/2/4/5	-	0/1/1/1
6	NAG	e	1	6,1	1/1/5/7	4/6/23/26	0/1/1/1
6	NAG	e	2	6	-	0/6/23/26	0/1/1/1
6	BMA	e	3	6	-	0/2/19/22	0/1/1/1
6	MAN	e	4	6	-	2/2/19/22	1/1/1/1
6	MAN	e	5	6	-	1/2/19/22	0/1/1/1
5	NAG	f	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	f	2	5	-	3/6/23/26	0/1/1/1
4	NAG	g	1	4,1	-	2/6/23/26	0/1/1/1
4	FUC	g	2	4	2/2/4/5	-	0/1/1/1
6	NAG	h	1	6,1	1/1/5/7	4/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	h	2	6	-	2/6/23/26	0/1/1/1
6	BMA	h	3	6	-	2/2/19/22	0/1/1/1
6	MAN	h	4	6	-	1/2/19/22	0/1/1/1
6	MAN	h	5	6	-	2/2/19/22	1/1/1/1

Continued from previous page...

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
6	h	3	BMA	O5-C1	-2.30	1.39	1.43
6	с	3	BMA	O5-C1	-2.14	1.40	1.43
3	S	2	NAG	C1-C2	2.01	1.55	1.52

All (117) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
6	Ζ	3	BMA	C1-O5-C5	8.96	124.20	112.19
3	b	2	NAG	C1-O5-C5	8.60	123.71	112.19
3	S	1	NAG	C1-O5-C5	7.70	122.51	112.19
6	е	4	MAN	C1-C2-C3	-6.47	100.22	109.64
6	е	1	NAG	C1-O5-C5	5.78	119.94	112.19
3	Q	2	NAG	C1-O5-C5	5.73	119.86	112.19
4	a	1	NAG	C1-O5-C5	5.63	119.74	112.19
6	Ζ	4	MAN	C1-C2-C3	-5.55	101.56	109.64
3	Т	2	NAG	C1-O5-C5	5.08	119.00	112.19
5	f	2	NAG	C1-O5-C5	5.08	119.00	112.19
6	с	4	MAN	C1-C2-C3	-4.96	102.42	109.64
3	S	1	NAG	C4-C3-C2	4.76	117.99	111.02
4	R	1	NAG	C1-O5-C5	4.63	118.39	112.19
4	U	1	NAG	C1-O5-C5	4.55	118.28	112.19
4	Х	1	NAG	C1-O5-C5	4.37	118.04	112.19
6	с	3	BMA	C1-C2-C3	4.28	115.87	109.64
4	U	2	FUC	O5-C5-C4	4.14	117.00	109.55
6	е	4	MAN	O2-C2-C1	4.13	118.67	109.22
4	Y	2	FUC	C1-C2-C3	4.12	115.64	109.64
6	h	5	MAN	C1-O5-C5	4.07	117.65	112.19
4	d	1	NAG	C1-O5-C5	4.03	117.59	112.19
6	h	5	MAN	O5-C5-C6	3.98	115.41	107.66
4	U	2	FUC	C3-C4-C5	3.97	115.85	109.81
6	е	3	BMA	C1-C2-C3	3.94	115.39	109.64
6	е	4	MAN	C1-O5-C5	-3.85	107.02	112.19
4	Y	1	NAG	C1-O5-C5	3.85	117.34	112.19

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	V	1	NAG	C1-O5-C5	3.82	117.31	112.19
6	h	4	MAN	C1-C2-C3	-3.79	104.12	109.64
4	Y	1	NAG	C4-C3-C2	-3.74	105.54	111.02
3	b	1	NAG	O4-C4-C5	3.72	118.48	109.32
6	h	3	BMA	C1-C2-C3	3.70	115.04	109.64
6	е	3	BMA	C1-O5-C5	3.70	117.14	112.19
3	S	2	NAG	C4-C3-C2	3.69	116.43	111.02
5	W	2	NAG	C2-N2-C7	3.52	127.61	122.90
4	V	1	NAG	O5-C5-C6	3.50	114.48	107.66
4	U	1	NAG	C3-C4-C5	3.50	116.57	110.23
6	h	1	NAG	C1-O5-C5	3.45	116.81	112.19
3	Т	1	NAG	C4-C3-C2	3.44	116.06	111.02
3	Т	3	FUC	C1-C2-C3	3.42	114.62	109.64
6	е	2	NAG	C1-O5-C5	3.39	116.72	112.19
6	Ζ	1	NAG	C1-O5-C5	3.37	116.70	112.19
6	h	1	NAG	C4-C3-C2	3.36	115.94	111.02
6	h	1	NAG	C2-N2-C7	-3.35	118.41	122.90
3	Т	1	NAG	O5-C1-C2	-3.35	106.10	111.29
6	с	1	NAG	C1-O5-C5	3.34	116.67	112.19
5	f	1	NAG	C1-O5-C5	3.33	116.65	112.19
6	е	5	MAN	C1-O5-C5	3.30	116.61	112.19
4	d	1	NAG	C2-N2-C7	-3.25	118.55	122.90
6	Ζ	3	BMA	O3-C3-C2	-3.21	103.51	110.05
6	с	3	BMA	O3-C3-C2	-3.19	103.54	110.05
6	Ζ	3	BMA	C3-C4-C5	3.19	116.02	110.23
4	d	1	NAG	C4-C3-C2	-3.14	106.41	111.02
4	g	2	FUC	C3-C4-C5	3.14	114.58	109.81
6	Ζ	4	MAN	O2-C2-C1	3.13	116.40	109.22
3	S	2	NAG	C1-O5-C5	3.12	116.37	112.19
5	W	2	NAG	C1-O5-C5	3.09	116.32	112.19
6	е	3	BMA	O3-C3-C2	-3.00	103.94	110.05
6	Ζ	3	BMA	C1-C2-C3	2.95	113.93	109.64
6	h	4	MAN	C3-C4-C5	2.95	115.57	110.23
3	b	2	NAG	C3-C4-C5	2.92	115.53	110.23
6	Ζ	3	BMA	O5-C5-C4	2.87	117.81	110.83
5	f	2	NAG	C4-C3-C2	2.85	115.20	111.02
4	U	1	NAG	O5-C5-C6	2.85	113.21	107.66
3	Q	2	NAG	05-C1-C2	2.80	115.63	111.29
6	с	1	NAG	O5-C5-C6	2.80	113.11	107.66
4	Y	2	FUC	C2-C3-C4	2.78	115.75	110.86
4	d	1	NAG	C1-C2-N2	2.74	114.75	110.43
3	S	2	NAG	O5-C1-C2	2.70	115.47	111.29

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
3	b	1	NAG	C1-O5-C5	2.70	115.80	112.19
3	b	2	NAG	O5-C5-C4	2.69	117.38	110.83
3	Q	3	FUC	C3-C4-C5	2.67	113.87	109.81
4	Х	2	FUC	C1-C2-C3	-2.66	105.77	109.64
3	Т	1	NAG	C1-O5-C5	2.64	115.72	112.19
4	d	1	NAG	O5-C1-C2	-2.56	107.33	111.29
6	с	2	NAG	O5-C5-C6	2.55	112.62	107.66
4	g	1	NAG	O5-C1-C2	-2.53	107.37	111.29
3	S	1	NAG	O5-C1-C2	2.52	115.19	111.29
4	V	1	NAG	C6-C5-C4	-2.52	106.84	113.02
3	Q	1	NAG	C4-C3-C2	2.51	114.69	111.02
6	с	3	BMA	C3-C4-C5	2.48	114.73	110.23
4	d	2	FUC	C1-O5-C5	2.47	118.78	112.97
4	U	1	NAG	C4-C3-C2	2.45	114.61	111.02
6	с	4	MAN	C3-C4-C5	2.41	114.60	110.23
5	f	2	NAG	C3-C4-C5	2.39	114.57	110.23
6	е	4	MAN	O5-C5-C6	2.39	112.32	107.66
4	g	1	NAG	C2-N2-C7	-2.38	119.72	122.90
6	е	4	MAN	C2-C3-C4	-2.34	106.74	110.86
6	с	5	MAN	O3-C3-C4	-2.32	104.91	110.38
6	с	4	MAN	O5-C5-C6	2.28	112.11	107.66
3	Т	3	FUC	C2-C3-C4	2.28	114.86	110.86
6	h	1	NAG	C1-C2-N2	2.27	114.01	110.43
3	Q	1	NAG	C1-O5-C5	2.26	115.22	112.19
4	R	1	NAG	C2-N2-C7	-2.25	119.88	122.90
6	с	5	MAN	O6-C6-C5	-2.25	103.67	111.33
4	Х	1	NAG	O5-C5-C6	2.25	112.03	107.66
5	W	1	NAG	C1-O5-C5	2.23	115.18	112.19
6	с	5	MAN	O5-C5-C6	2.20	111.95	107.66
4	V	2	FUC	C1-C2-C3	-2.20	106.44	109.64
6	с	1	NAG	C1-C2-N2	2.20	113.89	110.43
6	с	1	NAG	O7-C7-C8	-2.18	118.17	122.05
6	Ζ	4	MAN	C3-C4-C5	2.18	114.18	110.23
6	с	2	NAG	O4-C4-C3	-2.17	105.26	110.38
3	Т	1	NAG	C8-C7-N2	2.16	119.71	116.12
6	Ζ	5	MAN	02-C2-C1	2.14	114.13	109.22
3	Q	2	NAG	C4-C3-C2	2.13	114.14	111.02
6	с	1	NAG	C8-C7-N2	2.12	119.63	116.12
6	с	4	MAN	O2-C2-C1	2.12	114.07	109.22
3	Q	1	NAG	C8-C7-N2	2.12	119.63	116.12
4	a	1	NAG	C2-N2-C7	2.11	125.73	122.90
4	g	2	FUC	O5-C5-C6	2.08	111.92	107.40

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	W	1	NAG	O7-C7-C8	-2.06	118.38	122.05
3	S	1	NAG	O5-C5-C4	2.05	115.82	110.83
4	U	2	FUC	C2-C3-C4	2.03	114.44	110.86
3	b	1	NAG	O4-C4-C3	2.03	115.16	110.38
6	е	4	MAN	O5-C5-C4	-2.02	105.91	110.83
3	b	2	NAG	O7-C7-C8	-2.01	118.47	122.05
6	h	3	BMA	O3-C3-C4	-2.00	105.65	110.38

All (30) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
3	Q	3	FUC	C5
3	Q	3	FUC	C1
3	S	1	NAG	C1
3	S	3	FUC	C5
3	S	3	FUC	C1
3	Т	3	FUC	C5
3	Т	3	FUC	C1
3	b	3	FUC	C5
3	b	3	FUC	C1
4	R	2	FUC	C5
4	R	2	FUC	C1
4	U	2	FUC	C5
4	U	2	FUC	C1
4	V	2	FUC	C5
4	V	2	FUC	C1
4	Х	1	NAG	C1
4	Х	2	FUC	C5
4	Х	2	FUC	C1
4	Y	2	FUC	C5
4	Y	2	FUC	C1
4	а	2	FUC	C5
4	а	2	FUC	C1
4	d	2	FUC	C5
4	d	2	FUC	C1
4	g	2	FUC	C5
4	g	2	FUC	C1
6	Ζ	1	NAG	C1
6	с	1	NAG	C1
6	е	1	NAG	C1
6	h	1	NAG	C1

Mol	Chain	Res	Type	Atoms
3	Q	1	NAG	C8-C7-N2-C2
3	Q	1	NAG	O7-C7-N2-C2
3	Q	2	NAG	C8-C7-N2-C2
3	Q	2	NAG	O7-C7-N2-C2
3	S	1	NAG	C8-C7-N2-C2
3	S	1	NAG	O7-C7-N2-C2
3	S	2	NAG	C8-C7-N2-C2
3	S	2	NAG	O7-C7-N2-C2
3	Т	1	NAG	C8-C7-N2-C2
3	Т	1	NAG	O7-C7-N2-C2
3	Т	2	NAG	C8-C7-N2-C2
3	Т	2	NAG	O7-C7-N2-C2
3	b	1	NAG	C8-C7-N2-C2
3	b	1	NAG	O7-C7-N2-C2
3	b	2	NAG	C8-C7-N2-C2
3	b	2	NAG	O7-C7-N2-C2
4	R	1	NAG	C8-C7-N2-C2
4	R	1	NAG	O7-C7-N2-C2
4	U	1	NAG	C8-C7-N2-C2
4	U	1	NAG	O7-C7-N2-C2
4	Х	1	NAG	C8-C7-N2-C2
4	Х	1	NAG	O7-C7-N2-C2
4	Y	1	NAG	C8-C7-N2-C2
4	Y	1	NAG	O7-C7-N2-C2
4	а	1	NAG	C3-C2-N2-C7
4	a	1	NAG	C8-C7-N2-C2
4	a	1	NAG	O7-C7-N2-C2
4	g	1	NAG	C8-C7-N2-C2
4	g	1	NAG	O7-C7-N2-C2
5	W	1	NAG	C8-C7-N2-C2
5	W	1	NAG	07-C7-N2-C2
5	W	2	NAG	C3-C2-N2-C7
5	W	2	NAG	C8-C7-N2-C2
5	W	2	NAG	07-C7-N2-C2
5	f	1	NAG	C8-C7-N2-C2
5	f	1	NAG	07-C7-N2-C2
6	с	1	NAG	C8-C7-N2-C2
6	е	1	NAG	C8-C7-N2-C2
6	е	1	NAG	07-C7-N2-C2
6	h	1	NAG	C8-C7-N2-C2
6	h	1	NAG	07-C7-N2-C2
4	a	1	NAG	C4-C5-C6-O6

All (114) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	с	1	NAG	O7-C7-N2-C2
4	R	1	NAG	O5-C5-C6-O6
6	с	2	NAG	O5-C5-C6-O6
6	е	1	NAG	C4-C5-C6-O6
6	с	1	NAG	O5-C5-C6-O6
6	е	4	MAN	O5-C5-C6-O6
3	b	1	NAG	O5-C5-C6-O6
4	Y	1	NAG	O5-C5-C6-O6
6	Z	3	BMA	O5-C5-C6-O6
4	V	1	NAG	O5-C5-C6-O6
4	d	1	NAG	O5-C5-C6-O6
4	R	1	NAG	C4-C5-C6-O6
6	с	2	NAG	C4-C5-C6-O6
6	Z	4	MAN	O5-C5-C6-O6
6	Ζ	4	MAN	C4-C5-C6-O6
6	е	4	MAN	C4-C5-C6-O6
6	с	4	MAN	O5-C5-C6-O6
5	f	2	NAG	C8-C7-N2-C2
6	Ζ	1	NAG	C8-C7-N2-C2
4	a	1	NAG	O5-C5-C6-O6
3	S	1	NAG	C4-C5-C6-O6
6	h	1	NAG	O5-C5-C6-O6
6	Ζ	5	MAN	O5-C5-C6-O6
6	е	1	NAG	O5-C5-C6-O6
3	b	1	NAG	C4-C5-C6-O6
3	S	1	NAG	O5-C5-C6-O6
3	Т	1	NAG	C4-C5-C6-O6
4	d	1	NAG	C4-C5-C6-O6
3	Т	1	NAG	O5-C5-C6-O6
4	V	1	NAG	C4-C5-C6-O6
4	d	1	NAG	C8-C7-N2-C2
5	f	2	NAG	O7-C7-N2-C2
6	Z	1	NAG	07-C7-N2-C2
4	Y	1	NAG	C4-C5-C6-O6
6	с	1	NAG	C4-C5-C6-O6
6	h	1	NAG	C4-C5-C6-O6
4	Х	1	NAG	C4-C5-C6-O6
6	Z	5	MAN	C4-C5-C6-O6
3	Q	1	NAG	C4-C5-C6-O6
4	d	1	NAG	O7-C7-N2-C2
6	Z	2	NAG	$C8-C7-N\overline{2-C2}$
6	Ζ	2	NAG	07-C7-N2-C2

Mol	Chain	Res	Type	Atoms
6	с	2	NAG	C8-C7-N2-C2
6	с	2	NAG	O7-C7-N2-C2
6	Ζ	1	NAG	O5-C5-C6-O6
3	Q	2	NAG	O5-C5-C6-O6
3	b	2	NAG	O5-C5-C6-O6
6	h	5	MAN	C4-C5-C6-O6
6	h	2	NAG	O5-C5-C6-O6
6	h	3	BMA	C4-C5-C6-O6
6	h	3	BMA	O5-C5-C6-O6
3	Q	1	NAG	O5-C5-C6-O6
4	Х	1	NAG	O5-C5-C6-O6
6	h	5	MAN	O5-C5-C6-O6
4	U	1	NAG	O5-C5-C6-O6
6	Ζ	3	BMA	C4-C5-C6-O6
3	Т	2	NAG	C4-C5-C6-O6
3	S	2	NAG	O5-C5-C6-O6
3	b	2	NAG	C4-C5-C6-O6
5	f	2	NAG	O5-C5-C6-O6
6	h	4	MAN	O5-C5-C6-O6
6	с	4	MAN	C4-C5-C6-O6
6	е	5	MAN	C4-C5-C6-O6
6	Ζ	2	NAG	C4-C5-C6-O6
3	Т	2	NAG	O5-C5-C6-O6
6	Ζ	1	NAG	C4-C5-C6-O6
6	Ζ	2	NAG	O5-C5-C6-O6
6	h	2	NAG	C4-C5-C6-O6
3	Q	2	NAG	C4-C5-C6-O6
4	U	1	NAG	C1-C2-N2-C7
5	W	1	NAG	C4-C5-C6-O6
3	Q	2	NAG	C3-C2-N2-C7

Continued from previous page...

All (3) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	h	5	MAN	C1-C2-C3-C4-C5-O5
6	е	4	MAN	C1-C2-C3-C4-C5-O5
6	Ζ	5	MAN	C1-C2-C3-C4-C5-O5

4 monomers are involved in 4 short contacts:

IVIOI	Chain	Res	Type	Clashes	Symm-Clashes
4	Y	1	NAG	1	0

Continued from previous page...

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	W	2	NAG	1	0
4	U	1	NAG	1	0
5	W	1	NAG	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

32 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Cha		n Res	Link	Bo	ond leng	ths	Bond angles		
IVIOI	vioi Type Cham	Counts			RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
8	SO4	Е	815	-	4,4,4	0.28	0	$6,\!6,\!6$	0.61	0
8	SO4	С	814	-	4,4,4	0.27	0	6,6,6	0.37	0
7	NAG	К	322	1	14,14,15	0.85	0	17,19,21	1.35	2 (11%)
8	SO4	Ι	821	-	4,4,4	0.26	0	6,6,6	0.14	0
8	SO4	Е	820	-	4,4,4	0.31	0	6,6,6	0.14	0
8	SO4	А	801	-	4,4,4	0.30	0	$6,\!6,\!6$	0.35	0

Mal	Tuno	Chain	Dog	Tink	Bo	ond leng	ths	B	ond ang	les
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
7	NAG	С	316	1	$14,\!14,\!15$	0.43	0	17,19,21	1.15	1 (5%)
8	SO4	G	816	-	4,4,4	0.25	0	6,6,6	0.58	0
8	SO4	K	803	-	4,4,4	0.27	0	6,6,6	0.17	0
7	NAG	Ο	321	1	14,14,15	0.72	0	17,19,21	0.89	1 (5%)
7	NAG	М	331	1	14,14,15	0.41	0	17,19,21	1.57	1 (5%)
7	NAG	K	331	1	14,14,15	0.54	0	17,19,21	1.63	3 (17%)
7	NAG	G	321	1	14,14,15	0.69	0	17,19,21	1.23	2 (11%)
8	SO4	G	802	-	4,4,4	0.26	0	6,6,6	0.32	0
8	SO4	С	806	-	4,4,4	0.24	0	6,6,6	0.29	0
7	NAG	Е	317	1	14,14,15	0.58	0	17,19,21	1.40	1 (5%)
8	SO4	С	818	-	4,4,4	0.21	0	6,6,6	0.22	0
8	SO4	Ι	804	-	4,4,4	0.26	0	6,6,6	0.27	0
7	NAG	Ι	321	1	14,14,15	0.72	1 (7%)	17,19,21	1.08	0
8	SO4	Ι	809	-	4,4,4	0.28	0	6,6,6	0.09	0
8	SO4	K	810	-	4,4,4	0.27	0	6,6,6	0.14	0
8	SO4	М	819	-	4,4,4	0.28	0	$6,\!6,\!6$	0.04	0
8	SO4	М	811	-	4,4,4	0.29	0	6,6,6	0.28	0
8	SO4	G	817	-	4,4,4	0.22	0	6,6,6	0.19	0
8	SO4	G	808	-	4,4,4	0.25	0	6,6,6	0.30	0
7	NAG	С	321	1	14,14,15	0.65	0	17,19,21	0.94	1 (5%)
7	NAG	А	321	1	$14,\!14,\!15$	0.69	0	17,19,21	2.16	5(29%)
8	SO4	А	813	-	4,4,4	0.21	0	$6,\!6,\!6$	0.46	0
7	NAG	A	317	1	$14,\!14,\!15$	0.48	0	17,19,21	1.69	2(11%)
8	SO4	A	805	-	4,4,4	0.23	0	6,6,6	0.11	0
8	SO4	Е	807	-	4,4,4	0.23	0	6,6,6	0.17	0
8	SO4	0	812	-	4,4,4	0.31	0	6,6,6	0.16	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	Ο	321	1	1/1/5/7	2/6/23/26	0/1/1/1
7	NAG	М	331	1	-	4/6/23/26	0/1/1/1
7	NAG	С	321	1	1/1/5/7	4/6/23/26	0/1/1/1
7	NAG	А	321	1	1/1/5/7	4/6/23/26	0/1/1/1
7	NAG	Ι	321	1	-	2/6/23/26	0/1/1/1
7	NAG	Κ	331	1	1/1/5/7	0/6/23/26	0/1/1/1
					Ca	ontinued on no	ext page

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	G	321	1	-	5/6/23/26	0/1/1/1
7	NAG	А	317	1	1/1/5/7	3/6/23/26	0/1/1/1
7	NAG	K	322	1	-	5/6/23/26	0/1/1/1
7	NAG	Е	317	1	-	4/6/23/26	0/1/1/1
7	NAG	С	316	1	1/1/5/7	4/6/23/26	0/1/1/1

Continued from previous page...

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
7	Ι	321	NAG	C1-C2	2.17	1.55	1.52

All (19) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
7	А	321	NAG	C1-O5-C5	6.60	121.03	112.19
7	М	331	NAG	C1-O5-C5	5.85	120.02	112.19
7	А	317	NAG	C1-O5-C5	5.32	119.32	112.19
7	Е	317	NAG	C1-O5-C5	3.82	117.30	112.19
7	Κ	331	NAG	C1-O5-C5	3.76	117.23	112.19
7	Κ	322	NAG	C2-N2-C7	3.42	127.48	122.90
7	Κ	331	NAG	C4-C3-C2	2.99	115.40	111.02
7	G	321	NAG	C3-C4-C5	2.99	115.66	110.23
7	Κ	322	NAG	C4-C3-C2	2.78	115.09	111.02
7	А	317	NAG	C3-C4-C5	2.73	115.19	110.23
7	Κ	331	NAG	C3-C4-C5	2.66	115.05	110.23
7	А	321	NAG	C1-C2-N2	2.63	114.57	110.43
7	С	316	NAG	C1-O5-C5	2.61	115.69	112.19
7	0	321	NAG	C4-C3-C2	2.47	114.63	111.02
7	А	321	NAG	C8-C7-N2	2.42	120.12	116.12
7	С	321	NAG	C2-N2-C7	2.38	126.09	122.90
7	G	321	NAG	C4-C3-C2	2.32	114.42	111.02
7	А	321	NAG	C4-C3-C2	-2.31	107.63	111.02
7	А	321	NAG	C2-N2-C7	2.06	125.66	122.90

All (6) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
7	А	317	NAG	C1
7	А	321	NAG	C1
7	С	316	NAG	C1
7	С	321	NAG	C1

Continued from previous page...

Mol	Chain	Res	Type	Atom
7	Κ	331	NAG	C1
7	0	321	NAG	C1

All (37) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	А	321	NAG	C8-C7-N2-C2
7	А	321	NAG	O7-C7-N2-C2
7	С	316	NAG	C8-C7-N2-C2
7	С	316	NAG	O7-C7-N2-C2
7	С	321	NAG	C8-C7-N2-C2
7	С	321	NAG	O7-C7-N2-C2
7	Е	317	NAG	C8-C7-N2-C2
7	Е	317	NAG	O7-C7-N2-C2
7	G	321	NAG	C3-C2-N2-C7
7	G	321	NAG	C8-C7-N2-C2
7	G	321	NAG	O7-C7-N2-C2
7	Ι	321	NAG	C8-C7-N2-C2
7	Ι	321	NAG	O7-C7-N2-C2
7	K	322	NAG	C3-C2-N2-C7
7	K	322	NAG	C8-C7-N2-C2
7	K	322	NAG	O7-C7-N2-C2
7	М	331	NAG	C8-C7-N2-C2
7	М	331	NAG	O7-C7-N2-C2
7	0	321	NAG	C8-C7-N2-C2
7	0	321	NAG	O7-C7-N2-C2
7	А	317	NAG	C8-C7-N2-C2
7	А	317	NAG	O7-C7-N2-C2
7	С	321	NAG	C4-C5-C6-O6
7	А	321	NAG	O5-C5-C6-O6
7	С	316	NAG	O5-C5-C6-O6
7	G	321	NAG	C4-C5-C6-O6
7	Κ	322	NAG	C4-C5-C6-O6
7	Е	317	NAG	O5-C5-C6-O6
7	С	321	NAG	O5-C5-C6-O6
7	М	331	NAG	O5-C5-C6-O6
7	А	321	NAG	C4-C5-C6-O6
7	G	321	NAG	O5-C5-C6-O6
7	Е	317	NAG	C4-C5-C6-O6
7	С	316	NAG	C4-C5-C6-O6
7	М	331	NAG	C4-C5-C6-O6
7	K	322	NAG	O5-C5-C6-O6

Continued from previous page...

Mol	Chain	Res	Type	Atoms
7	А	317	NAG	O5-C5-C6-O6

There are no ring outliers.

7 monomers are involved in 8 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
8	А	801	SO4	1	0
8	K	803	SO4	1	0
8	С	818	SO4	1	0
8	Ι	804	SO4	1	0
8	K	810	SO4	2	0
8	М	811	SO4	1	0
8	G	817	SO4	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSR	z >	2	$OWAB(Å^2)$	Q<0.9
1	А	268/313~(85%)	1.47	63 (23%)	2	3	45, 57, 69, 98	0
1	С	259/313~(82%)	1.29	51 (19%)	3	4	48, 58, 66, 76	0
1	Е	262/313~(83%)	1.26	51 (19%)	4	4	46, 56, 64, 72	0
1	G	258/313~(82%)	1.24	40 (15%)	6	6	46, 57, 66, 69	0
1	Ι	264/313~(84%)	1.31	50 (18%)	4	4	44, 58, 69, 89	0
1	K	257/313~(82%)	1.41	58 (22%)	3	3	45, 58, 67, 78	0
1	М	263/313~(84%)	1.35	48 (18%)	4	4	43, 57, 66, 83	0
1	Ο	258/313~(82%)	1.37	53 (20%)	3	3	47, 58, 68, 87	0
2	В	10/13~(76%)	1.77	2(20%)	3	4	53, 60, 69, 71	0
2	D	10/13~(76%)	1.48	3~(30%)	1	2	50, 57, 64, 66	0
2	F	10/13~(76%)	2.03	4 (40%)	1	1	51, 63, 71, 71	0
2	Н	10/13~(76%)	1.43	2(20%)	3	4	52, 56, 65, 69	0
2	J	10/13~(76%)	1.51	2(20%)	3	4	47, 54, 64, 70	0
2	L	10/13~(76%)	1.88	3~(30%)	1	2	50, 56, 72, 75	0
2	N	10/13~(76%)	1.83	3 (30%)	1	2	49, 55, 66, 71	0
2	Р	10/13~(76%)	1.75	4 (40%)	1	1	$5\overline{2}, 58, 72, 74$	0
All	All	2169/2608 (83%)	1.35	437 (20%)	3	4	43, 57, 67, 98	0

All (437) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Ι	274	PRO	7.4
1	Е	231	PRO	6.4
1	G	202	THR	6.3
1	А	278	VAL	6.3
1	G	208	GLU	6.0

Mol	Chain	Res	Type	RSRZ
2	F	512	SER	5.9
1	Κ	230	GLU	5.8
1	Κ	208	GLU	5.4
1	0	233	ASN	5.3
1	А	138	PRO	5.3
1	0	276	LEU	5.3
1	А	279	GLN	5.3
1	0	231	PRO	5.2
1	М	61	LEU	5.2
1	Ι	85	VAL	5.1
1	Ι	61	LEU	5.1
1	K	203	HIS	5.1
1	G	102	ASP	5.1
1	Ι	33	GLU	5.0
1	С	61	LEU	5.0
1	М	108	GLY	4.9
1	М	90	SER	4.8
1	А	90	SER	4.8
2	В	512	SER	4.8
1	С	80	ASN	4.7
1	0	208	GLU	4.7
1	Κ	231	PRO	4.7
1	K	207	SER	4.6
2	L	502	SER	4.6
2	J	513	LYS	4.6
1	А	231	PRO	4.6
1	Ι	275	ASP	4.6
1	М	102	ASP	4.4
1	Κ	229	HIS	4.4
2	Р	502	SER	4.4
1	G	132	GLU	4.4
1	А	131	GLN	4.4
1	K	102	ASP	4.4
1	А	81	SER	4.3
1	G	107	ARG	4.2
1	Ο	204	GLY	4.2
1	Ι	138	PRO	4.2
1	С	230	GLU	4.1
1	Ι	103	MET	4.1
1	М	109	ARG	4.1
1	0	202	THR	4.0
1	М	276	LEU	4.0

Mol	Chain	Res	Type	RSRZ
1	А	208	GLU	4.0
1	Е	106	GLU	4.0
2	Н	501	LYS	4.0
1	Ι	273	HIS	3.9
1	М	107	ARG	3.9
1	G	110	HIS	3.9
1	С	202	THR	3.9
1	А	199	GLY	3.9
1	К	202	THR	3.9
1	А	259	ASN	3.8
1	А	276	LEU	3.8
1	0	61	LEU	3.8
1	М	106	GLU	3.8
1	С	101	SER	3.8
1	K	233	ASN	3.8
1	Е	61	LEU	3.8
1	М	1	LEU	3.8
1	К	111	GLN	3.8
1	С	139	LYS	3.7
2	D	501	LYS	3.7
2	L	501	LYS	3.7
1	Ι	137	ARG	3.7
1	К	260	HIS	3.7
1	А	236	TYR	3.7
1	G	234	GLN	3.7
1	G	61	LEU	3.7
1	А	270	GLY	3.7
1	0	274	PRO	3.6
1	Е	131	GLN	3.6
1	С	102	ASP	3.6
1	М	232	LYS	3.6
1	А	260	HIS	3.6
1	С	193	GLN	3.5
1	А	229	HIS	3.5
1	Κ	276	LEU	3.5
1	A	61	LEU	3.5
1	Ι	209	GLU	3.5
1	Ι	81	SER	3.5
1	Ι	267	THR	3.5
1	Ι	84	ALA	3.5
1	G	229	HIS	3.5
1	A	79	GLY	3.5

Mol	Chain	Res	Type	RSRZ
1	С	207	SER	3.4
1	М	19	LEU	3.4
1	А	102	ASP	3.4
1	А	206	SER	3.4
2	L	512	SER	3.4
1	Ι	82	GLY	3.4
1	Ι	108	GLY	3.4
1	Ι	80	ASN	3.4
1	G	204	GLY	3.4
1	0	270	GLY	3.4
1	С	109	ARG	3.4
1	А	80	ASN	3.4
1	K	108	GLY	3.4
1	Κ	269	SER	3.3
1	A	202	THR	3.3
1	0	267	THR	3.3
1	G	140	ASP	3.3
1	С	227	GLY	3.3
1	М	91	ARG	3.3
1	С	138	PRO	3.3
1	Κ	266	CYS	3.3
1	А	234	GLN	3.3
1	Κ	61	LEU	3.3
1	С	77	ASN	3.3
1	Ε	208	GLU	3.2
1	0	265	CYS	3.2
1	Ι	110	HIS	3.2
1	М	111	GLN	3.2
1	E	102	ASP	3.2
1	Ι	102	ASP	3.2
1	А	103	MET	3.2
1	М	70	VAL	3.2
1	Ι	83	ARG	3.2
1	K	204	GLY	3.2
1	0	275	ASP	3.2
1	K	193	GLN	3.2
1	А	272	ASN	3.1
1	0	77	ASN	3.1
2	В	501	LYS	3.1
1	0	273	HIS	3.1
1	K	234	GLN	3.1
1	Ι	272	ASN	3.1

Mol	Chain	Res	Type	RSRZ
1	М	110	HIS	3.1
1	А	264	SER	3.1
1	Е	70	VAL	3.1
2	N	502	SER	3.1
1	0	102	ASP	3.1
1	0	106	GLU	3.1
1	Е	123	LEU	3.1
1	А	137	ARG	3.1
1	G	207	SER	3.1
2	F	511	SER	3.1
1	Е	108	GLY	3.1
1	K	232	LYS	3.1
1	0	229	HIS	3.0
1	С	108	GLY	3.0
1	С	274	PRO	3.0
1	0	92	TYR	3.0
1	А	273	HIS	3.0
1	Ι	107	ARG	3.0
2	Р	501	LYS	3.0
1	Е	230	GLU	3.0
1	Ι	172	ASN	3.0
1	G	101	SER	3.0
1	С	208	GLU	3.0
1	0	271	CYS	3.0
1	А	274	PRO	3.0
1	С	206	SER	3.0
1	G	106	GLU	2.9
1	K	265	CYS	2.9
1	0	130	ILE	2.9
1	0	230	GLU	2.9
1	С	103	MET	2.9
1	А	232	LYS	2.9
1	С	231	PRO	2.9
1	Е	34	GLU	2.9
1	Е	229	HIS	2.9
1	G	230	GLU	2.9
1	Ι	112	SER	2.9
1	K	268	LYS	2.9
1	А	266	CYS	2.9
1	М	47	HIS	2.9
1	М	103	MET	2.9
1	С	65	SER	2.9

Mol	Chain	Res	Type	RSRZ
1	Ι	233	ASN	2.9
1	K	259	ASN	2.9
1	Ι	19	LEU	2.9
1	Е	47	HIS	2.8
1	С	209	GLU	2.8
1	G	209	GLU	2.8
1	Κ	48	SER	2.8
1	Е	146	GLY	2.8
1	Ι	70	VAL	2.8
1	0	210	THR	2.8
1	С	211	PHE	2.8
1	Κ	110	HIS	2.8
1	G	247	CYS	2.8
1	0	195	TYR	2.8
1	Е	79	GLY	2.8
1	А	203	HIS	2.8
1	Е	90	SER	2.8
1	Κ	92	TYR	2.8
1	Κ	236	TYR	2.8
1	М	214	ASP	2.8
1	Κ	130	ILE	2.7
1	М	208	GLU	2.7
1	G	66	LEU	2.7
2	F	513	LYS	2.7
1	С	203	HIS	2.7
1	Ε	89	ARG	2.7
1	Ε	107	ARG	2.7
1	Ε	278	VAL	2.7
1	G	111	GLN	2.7
1	K	210	THR	2.7
1	М	101	SER	2.7
1	М	92	TYR	2.7
1	Ι	118	PRO	2.7
1	G	78	GLN	2.7
1	А	235	SER	2.7
1	K	112	SER	2.7
1	А	213	ILE	2.7
1	Ι	92	TYR	2.6
1	C	262	ASP	2.6
1	E	$23\overline{2}$	LYS	2.6
2	N	513	LYS	2.6
1	E	242	ALA	2.6

Mol	Chain	Res	Type	RSRZ
1	Κ	242	ALA	2.6
1	С	226	THR	2.6
1	0	192	ARG	2.6
1	G	203	HIS	2.6
2	D	502	SER	2.6
1	0	49	GLU	2.6
2	J	501	LYS	2.6
1	0	263	VAL	2.6
1	Е	234	GLN	2.6
1	0	234	GLN	2.6
1	Κ	18	ALA	2.6
1	С	210	THR	2.6
1	Κ	103	MET	2.6
1	М	209	GLU	2.6
1	М	149	TYR	2.6
1	К	262	ASP	2.6
1	М	277	ASP	2.6
1	G	172	ASN	2.6
1	С	130	ILE	2.6
1	С	146	GLY	2.6
1	М	35	GLY	2.6
1	Ι	268	LYS	2.5
1	М	69	VAL	2.5
1	А	237	MET	2.5
1	М	81	SER	2.5
1	0	235	SER	2.5
2	Ν	512	SER	2.5
1	С	92	TYR	2.5
1	Е	48	SER	2.5
1	Κ	200	GLN	2.5
1	C	275	ASP	2.5
1	А	233	ASN	2.5
1	Е	203	HIS	2.5
1	Е	233	ASN	2.5
1	E	49	GLU	2.5
1	Ι	208	GLU	2.5
1	Е	252	LEU	2.5
1	G	276	LEU	2.5
1	0	107	ARG	2.5
1	С	78	GLN	2.5
1	Е	92	TYR	2.5
1	Е	248	GLN	2.5

Mol	Chain	Res	Type	RSRZ
1	М	193	GLN	2.5
1	А	46	THR	2.5
1	Κ	252	LEU	2.4
1	А	53	ARG	2.4
1	Κ	239	ARG	2.4
1	0	269	SER	2.4
1	С	229	HIS	2.4
1	Κ	171	CYS	2.4
1	0	232	LYS	2.4
1	0	268	LYS	2.4
1	С	270	GLY	2.4
1	Е	158	GLY	2.4
1	Ι	79	GLY	2.4
1	Ι	158	GLY	2.4
1	М	210	THR	2.4
1	А	107	ARG	2.4
1	М	89	ARG	2.4
1	0	65	SER	2.4
1	0	41	VAL	2.4
1	С	234	GLN	2.4
1	Ι	203	HIS	2.4
1	Ι	213	ILE	2.4
1	А	82	GLY	2.4
1	А	191	GLY	2.4
1	0	199	GLY	2.4
1	С	239	ARG	2.4
1	G	29	VAL	2.4
1	А	247	CYS	2.4
1	С	236	TYR	2.4
1	Κ	66	LEU	2.4
1	М	94	GLU	2.4
1	C	198	LYS	2.4
1	А	6	CYS	2.4
1	А	176	CYS	2.4
1	Ε	140	ASP	2.4
1	0	220	ASN	2.4
1	Ι	34	GLU	2.3
1	0	66	LEU	2.3
1	Е	30	ARG	2.3
2	Р	513	LYS	2.3
1	Е	125	VAL	2.3
1	G	211	PHE	2.3

Mol	Chain	Res	Type	RSRZ
1	G	240	GLY	2.3
1	K	270	GLY	2.3
1	С	140	ASP	2.3
1	Е	67	THR	2.3
1	G	205	CYS	2.3
1	Ι	75	LEU	2.3
1	G	49	GLU	2.3
1	0	203	HIS	2.3
1	М	96	ILE	2.3
1	0	213	ILE	2.3
1	Е	9	ASN	2.3
1	А	271	CYS	2.3
1	K	274	PRO	2.3
1	С	111	GLN	2.3
1	Е	65	SER	2.3
1	G	158	GLY	2.3
1	Ι	139	LYS	2.3
1	0	103	MET	2.3
1	А	177	ASN	2.3
1	А	277	ASP	2.3
1	G	109	ARG	2.3
1	K	22	ASP	2.3
1	М	27	THR	2.3
1	0	247	CYS	2.3
1	С	63	ILE	2.3
1	Е	66	LEU	2.3
1	С	91	ARG	2.2
1	Е	149	TYR	2.2
1	K	209	GLU	2.2
1	А	265	CYS	2.2
1	A	70	VAL	2.2
1	G	131	GLN	2.2
1	М	14	VAL	2.2
1	Е	129	TRP	2.2
1	G	139	LYS	2.2
1	Е	19	LEU	2.2
1	Е	91	ARG	2.2
1	Ι	207	SER	2.2
2	Р	512	SER	2.2
1	A	36	GLU	2.2
1	Ι	214	ASP	2.2
1	Е	130	ILE	2.2

Mol	Chain	Res	Type	RSRZ
1	Е	168	LEU	2.2
1	K	107	ARG	2.2
1	М	34	GLU	2.2
1	G	231	PRO	2.2
1	М	67	THR	2.2
1	С	233	ASN	2.2
1	G	77	ASN	2.2
1	М	236	TYR	2.2
1	М	273	HIS	2.2
1	0	211	PHE	2.2
1	K	237	MET	2.2
1	0	242	ALA	2.2
1	Е	23	LEU	2.2
1	Е	223	LEU	2.2
1	Е	20	GLY	2.2
1	0	79	GLY	2.2
1	Ι	68	GLU	2.2
1	А	226	THR	2.2
1	Ι	260	HIS	2.2
1	Е	157	ASN	2.2
1	А	125	VAL	2.2
1	K	205	CYS	2.2
1	М	271	CYS	2.2
1	С	225	ALA	2.2
1	К	19	LEU	2.2
1	Е	25	ARG	2.2
1	K	116	ARG	2.2
1	М	88	SER	2.1
1	С	273	HIS	2.1
1	М	8	THR	2.1
1	М	260	HIS	2.1
1	А	22	ASP	2.1
1	A	140	ASP	2.1
1	С	195	TYR	2.1
1	C	259	ASN	2.1
1	G	261	ILE	2.1
1	М	126	VAL	2.1
1	G	103	MET	2.1
1	М	38	LEU	2.1
1	Е	171	CYS	2.1
1	М	12	CYS	2.1
1	М	18	ALA	2.1

Mol	Chain	Res	Type	RSRZ
1	0	222	CYS	2.1
1	Ι	35	GLY	2.1
1	С	106	GLU	2.1
1	Ι	94	GLU	2.1
1	K	235	SER	2.1
1	0	272	ASN	2.1
1	А	111	GLN	2.1
1	Ι	109	ARG	2.1
1	K	199	GLY	2.1
1	Ι	106	GLU	2.1
1	K	206	SER	2.1
2	D	511	SER	2.1
1	А	211	PHE	2.1
1	K	109	ARG	2.1
1	С	204	GLY	2.1
1	K	158	GLY	2.1
1	0	209	GLU	2.1
1	0	218	PRO	2.1
1	Е	143	HIS	2.1
1	А	268	LYS	2.1
1	С	243	THR	2.1
1	0	237	MET	2.1
1	А	269	SER	2.1
1	Е	97	SER	2.1
1	Ι	125	VAL	2.1
1	K	41	VAL	2.1
1	А	66	LEU	2.1
1	G	19	LEU	2.1
1	K	223	LEU	2.1
1	М	52	ASN	2.1
1	Ι	149	TYR	2.1
1	С	58	ARG	2.1
1	М	22	ASP	2.1
1	G	35	GLY	2.1
1	G	119	GLU	2.0
1	А	47	HIS	2.0
1	K	228	THR	2.0
1	А	130	ILE	2.0
1	Ι	235	SER	2.0
1	K	201	SER	2.0
2	Н	502	SER	2.0
1	А	195	TYR	2.0

Mol	Chain	Res	Type	RSRZ
1	Ι	195	TYR	2.0
1	0	236	TYR	2.0
1	Ι	271	CYS	2.0
1	С	131	GLN	2.0
1	0	184	LEU	2.0
1	0	193	GLN	2.0
1	А	89	ARG	2.0
1	А	201	SER	2.0
1	G	206	SER	2.0
1	Κ	101	SER	2.0
1	0	48	SER	2.0
2	F	503	ASP	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
2	DLY	Р	507	9/10	0.84	0.17	$54,\!55,\!61,\!63$	0
2	DLY	В	507	9/10	0.88	0.15	53,54,58,58	0
2	ALC	J	504	11/12	0.92	0.18	$55,\!56,\!57,\!57$	0
2	ALC	Н	504	11/12	0.92	0.20	$54,\!56,\!61,\!61$	0
2	DLY	F	507	9/10	0.93	0.13	51,52,57,57	0
2	DSN	D	506	6/7	0.93	0.10	$51,\!52,\!52,\!52$	0
2	ALC	F	504	11/12	0.93	0.16	$54,\!54,\!56,\!58$	0
2	DSN	J	506	6/7	0.93	0.12	$52,\!52,\!52,\!54$	0
2	DLY	L	507	9/10	0.93	0.14	$51,\!52,\!59,\!61$	0
2	DSN	Р	506	6/7	0.93	0.10	56, 56, 56, 57	0
2	DSN	F	506	6/7	0.93	0.14	$49,\!50,\!50,\!50$	0
2	ALC	D	504	11/12	0.94	0.15	$53,\!54,\!55,\!56$	0
2	ALC	N	504	11/12	0.94	0.16	55, 56, 57, 58	0
2	DSN	Ν	506	6/7	0.94	0.13	$51,\!51,\!52,\!53$	0
2	DLY	Ν	507	9/10	0.94	0.17	$47,\!50,\!50,\!51$	0
2	DSN	В	506	6/7	0.94	0.10	52,54,54,54	0
2	DLY	D	507	9/10	0.94	0.16	51,52,53,53	0
2	ALC	В	504	11/12	0.95	0.15	56,57,58,60	0
2	DLY	J	507	9/10	0.95	0.15	49,50,50,51	0
2	ALC	L	504	11/12	0.96	0.14	60,61,63,63	0
2	DSN	L	506	6/7	0.96	0.09	53,54,54,55	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
2	ALC	Р	504	11/12	0.96	0.18	$59,\!60,\!61,\!63$	0
2	DLY	Н	507	9/10	0.96	0.13	$50,\!50,\!51,\!51$	0
2	DSN	Н	506	6/7	0.96	0.09	48,50,50,50	0

6.3 Carbohydrates (i)

SUGAR-RSR INFOmissingINFO

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
7	NAG	А	321	14/15	0.40	0.21	75,78,80,80	0
7	NAG	K	331	14/15	0.40	0.23	84,86,88,88	0
7	NAG	K	322	14/15	0.57	0.18	76,79,80,81	0
7	NAG	G	321	14/15	0.57	0.21	76,80,82,83	0
7	NAG	Ι	321	14/15	0.63	0.18	76,79,80,80	0
7	NAG	С	316	14/15	0.66	0.16	77,80,84,84	0
7	NAG	Е	317	14/15	0.66	0.15	72,75,80,80	0
7	NAG	А	317	14/15	0.67	0.18	78,82,85,85	0
7	NAG	С	321	14/15	0.71	0.16	78,82,83,84	0
7	NAG	0	321	14/15	0.71	0.17	78,82,82,83	0
7	NAG	М	331	14/15	0.74	0.15	72,75,76,76	0
8	SO4	А	805	5/5	0.85	0.18	132,132,133,133	0
8	SO4	С	806	5/5	0.86	0.16	79,80,81,81	0
8	SO4	Е	807	5/5	0.89	0.21	125,125,125,125	0
8	SO4	Е	820	5/5	0.89	0.22	86,87,87,87	0
8	SO4	С	814	5/5	0.90	0.15	$65,\!67,\!68,\!69$	0
8	SO4	К	810	5/5	0.90	0.13	84,85,86,86	0
8	SO4	0	812	5/5	0.90	0.17	79,79,80,80	0
8	SO4	А	801	5/5	0.91	0.10	70,70,72,72	0
8	SO4	С	818	5/5	0.92	0.15	75,75,76,77	0
8	SO4	Ι	821	5/5	0.92	0.22	71,72,72,73	0
8	SO4	G	816	5/5	0.93	0.11	61,62,63,63	0
8	SO4	М	819	5/5	0.93	0.20	79,79,80,80	0
8	SO4	А	813	5/5	0.93	0.10	64,66,66,67	0
8	SO4	G	802	5/5	0.94	0.09	$56,\!57,\!58,\!58$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
8	SO4	Ε	815	5/5	0.94	0.10	$56,\!57,\!58,\!58$	0
8	SO4	Κ	803	5/5	0.95	0.07	61,61,61,62	0
8	SO4	Ι	804	5/5	0.95	0.11	$58,\!58,\!59,\!60$	0
8	SO4	Ι	809	5/5	0.95	0.11	$64,\!65,\!65,\!65$	0
8	SO4	G	817	5/5	0.95	0.12	67,69,69,70	0
8	SO4	G	808	5/5	0.96	0.10	58,58,60,60	0
8	SO4	М	811	5/5	0.97	0.06	63,63,63,64	0

6.5 Other polymers (i)

There are no such residues in this entry.

