

Full wwPDB X-ray Structure Validation Report (i)

Dec 24, 2024 – 06:17 PM JST

PDB I	[D	:	8Z2S
Tit	tle	:	Crystal structure of trehalose synthase mutant R148A from Deinococcus ra-
			diodurans
Autho	ors	:	Ye, L.C.; Chen, S.C.
Deposited of	on	:	2024-04-13
Resolutio	on	:	2.32 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.21
EDS	:	3.0
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.32 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R_{free}	164625	7250(2.34-2.30)		
Clashscore	180529	8063 (2.34-2.30)		
Ramachandran outliers	177936	7993 (2.34-2.30)		
Sidechain outliers	177891	7993 (2.34-2.30)		
RSRZ outliers	164620	7250(2.34-2.30)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	571	79%	16%	•	·
1	В	571	81%	14%	•	•
1	С	571	80%	14%	·	•
1	D	571	78%	16%	·	·
1	Е	571	79%	15%	·	•
1	F	571	84%	10%	·	•

Mol	Chain	Length	Quality of chain	
1	G	571	81%	14% • •
1	Н	571	77%	18% ••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	TRS	С	603	-	Х	-	-

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 36596 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	1 1	519	Total	С	Ν	0	\mathbf{S}	0	0	0
1	A	040	4398	2815	748	819	16	0	0	0
1	р	548	Total	С	Ν	0	S	0	0	0
1	D	040	4398	2815	748	819	16	0	0	0
1	С	548	Total	С	Ν	0	S	0	0	0
1	U	548	4398	2815	748	819	16	0	0	0
1	а	D 548	Total	С	Ν	0	S	0	0	0
1	D		4398	2815	748	819	16		0	0
1	F	E 548	Total	С	Ν	0	S	0	0	0
1	Ľ		4398	2815	748	819	16		0	
1	Б	519	Total	С	Ν	0	S	0	0	0
1	Г	040	4398	2815	748	819	16	0	0	0
1	C	519	Total	С	Ν	0	S	0	0	0
1	I G	040	4398	2815	748	819	16	0	0	0
1	п	519	Total	С	Ν	0	S	0	0	0
	I H	548	4398	2815	748	819	16	0	0	

• Molecule 1 is a protein called maltose alpha-D-glucosyltransferase.

There are 192 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-1	MET	-	initiating methionine	UNP I3NX86
А	0	VAL	-	expression tag	UNP I3NX86
А	1	PRO	-	expression tag	UNP I3NX86
А	97	TRP	ARG	engineered mutation	UNP I3NX86
А	148	ALA	ARG	engineered mutation	UNP I3NX86
А	313	ILE	THR	engineered mutation	UNP I3NX86
А	380	VAL	ILE	engineered mutation	UNP I3NX86
А	553	SER	-	expression tag	UNP I3NX86
А	554	ARG	-	expression tag	UNP I3NX86
А	555	VAL	-	expression tag	UNP I3NX86
А	556	ASP	-	expression tag	UNP I3NX86
А	557	LYS	-	expression tag	UNP I3NX86
A	558	LEU	-	expression tag	UNP I3NX86

Continued from previous page...
Chain | Residue | Modelled | Actual |

Chain	Residue	Modelled	Actual	Comment	Reference
А	559	ALA	-	expression tag	UNP I3NX86
А	560	ALA	-	expression tag	UNP I3NX86
А	561	ALA	-	expression tag	UNP I3NX86
А	562	LEU	-	expression tag	UNP I3NX86
А	563	GLU	-	expression tag	UNP I3NX86
А	564	HIS	-	expression tag	UNP I3NX86
А	565	HIS	-	expression tag	UNP I3NX86
А	566	HIS	-	expression tag	UNP I3NX86
А	567	HIS	-	expression tag	UNP I3NX86
А	568	HIS	-	expression tag	UNP I3NX86
А	569	HIS	-	expression tag	UNP I3NX86
В	-1	MET	-	initiating methionine	UNP I3NX86
В	0	VAL	-	expression tag	UNP I3NX86
В	1	PRO	-	expression tag	UNP I3NX86
В	97	TRP	ARG	engineered mutation	UNP I3NX86
В	148	ALA	ARG	engineered mutation	UNP I3NX86
В	313	ILE	THR	engineered mutation	UNP I3NX86
В	380	VAL	ILE	engineered mutation	UNP I3NX86
В	553	SER	-	expression tag	UNP I3NX86
В	554	ARG	-	expression tag	UNP I3NX86
В	555	VAL	-	expression tag	UNP I3NX86
В	556	ASP	-	expression tag	UNP I3NX86
В	557	LYS	-	expression tag	UNP I3NX86
В	558	LEU	-	expression tag	UNP I3NX86
В	559	ALA	-	expression tag	UNP I3NX86
В	560	ALA	-	expression tag	UNP I3NX86
В	561	ALA	-	expression tag	UNP I3NX86
В	562	LEU	-	expression tag	UNP I3NX86
В	563	GLU	-	expression tag	UNP I3NX86
В	564	HIS	-	expression tag	UNP I3NX86
В	565	HIS	-	expression tag	UNP I3NX86
В	566	HIS	-	expression tag	UNP I3NX86
В	567	HIS	-	expression tag	UNP I3NX86
В	568	HIS	-	expression tag	UNP I3NX86
В	569	HIS	-	expression tag	UNP I3NX86
С	-1	MET	-	initiating methionine	UNP I3NX86
С	0	VAL	-	expression tag	UNP I3NX86
С	1	PRO	-	expression tag	UNP I3NX86
С	97	TRP	ARG	engineered mutation	UNP I3NX86
С	148	ALA	ARG	engineered mutation	UNP I3NX86
С	313	ILE	THR	engineered mutation	UNP I3NX86
С	380	VAL	ILE	engineered mutation	UNP I3NX86

Chain	Residue	Modelled	Actual	Comment	Reference
С	553	SER	-	expression tag	UNP I3NX86
С	554	ARG	-	expression tag	UNP I3NX86
С	555	VAL	-	expression tag	UNP I3NX86
С	556	ASP	-	expression tag	UNP I3NX86
С	557	LYS	-	expression tag	UNP I3NX86
С	558	LEU	-	expression tag	UNP I3NX86
С	559	ALA	-	expression tag	UNP I3NX86
С	560	ALA	-	expression tag	UNP I3NX86
С	561	ALA	-	expression tag	UNP I3NX86
С	562	LEU	-	expression tag	UNP I3NX86
С	563	GLU	-	expression tag	UNP I3NX86
С	564	HIS	-	expression tag	UNP I3NX86
C	565	HIS	-	expression tag	UNP I3NX86
С	566	HIS	-	expression tag	UNP I3NX86
С	567	HIS	-	expression tag	UNP I3NX86
С	568	HIS	-	expression tag	UNP I3NX86
С	569	HIS	-	expression tag	UNP I3NX86
D	-1	MET	-	initiating methionine	UNP I3NX86
D	0	VAL	-	expression tag	UNP I3NX86
D	1	PRO	-	expression tag	UNP I3NX86
D	97	TRP	ARG	engineered mutation	UNP I3NX86
D	148	ALA	ARG	engineered mutation	UNP I3NX86
D	313	ILE	THR	engineered mutation	UNP I3NX86
D	380	VAL	ILE	engineered mutation	UNP I3NX86
D	553	SER	-	expression tag	UNP I3NX86
D	554	ARG	-	expression tag	UNP I3NX86
D	555	VAL	-	expression tag	UNP I3NX86
D	556	ASP	-	expression tag	UNP I3NX86
D	557	LYS	-	expression tag	UNP I3NX86
D	558	LEU	-	expression tag	UNP I3NX86
D	559	ALA	-	expression tag	UNP I3NX86
D	560	ALA	-	expression tag	UNP I3NX86
D	561	ALA	-	expression tag	UNP I3NX86
D	562	LEU	-	expression tag	UNP I3NX86
D	563	GLU	-	expression tag	UNP I3NX86
D	564	HIS	-	expression tag	UNP I3NX86
D	565	HIS	-	expression tag	UNP I3NX86
D	566	HIS	-	expression tag	UNP I3NX86
D	567	HIS	-	expression tag	UNP I3NX86
D	568	HIS	-	expression tag	UNP I3NX86
D	569	HIS	-	expression tag	UNP I3NX86
E	-1	MET	-	initiating methionine	UNP I3NX86

Chain	Residue	Modelled	Actual	Comment	Reference
Е	0	VAL	-	expression tag	UNP I3NX86
Е	1	PRO	-	expression tag	UNP I3NX86
Е	97	TRP	ARG	engineered mutation	UNP I3NX86
Е	148	ALA	ARG	engineered mutation	UNP I3NX86
Е	313	ILE	THR	engineered mutation	UNP I3NX86
Е	380	VAL	ILE	engineered mutation	UNP I3NX86
Е	553	SER	-	expression tag	UNP I3NX86
Е	554	ARG	-	expression tag	UNP I3NX86
Е	555	VAL	-	expression tag	UNP I3NX86
Е	556	ASP	-	expression tag	UNP I3NX86
Е	557	LYS	-	expression tag	UNP I3NX86
Е	558	LEU	-	expression tag	UNP I3NX86
Е	559	ALA	-	expression tag	UNP I3NX86
Ε	560	ALA	-	expression tag	UNP I3NX86
E	561	ALA	-	expression tag	UNP I3NX86
E	562	LEU	-	expression tag	UNP I3NX86
Ε	563	GLU	-	expression tag	UNP I3NX86
Е	564	HIS	-	expression tag	UNP I3NX86
E	565	HIS	-	expression tag	UNP I3NX86
E	566	HIS	-	expression tag	UNP I3NX86
E	567	HIS	-	expression tag	UNP I3NX86
E	568	HIS	-	expression tag	UNP I3NX86
E	569	HIS	-	expression tag	UNP I3NX86
F	-1	MET	-	initiating methionine	UNP I3NX86
F	0	VAL	-	expression tag	UNP I3NX86
F	1	PRO	-	expression tag	UNP I3NX86
F	97	TRP	ARG	engineered mutation	UNP I3NX86
F	148	ALA	ARG	engineered mutation	UNP I3NX86
F	313	ILE	THR	engineered mutation	UNP I3NX86
F	380	VAL	ILE	engineered mutation	UNP I3NX86
F	553	SER	-	expression tag	UNP I3NX86
F	554	ARG	-	expression tag	UNP I3NX86
F	555	VAL	-	expression tag	UNP I3NX86
F	556	ASP	-	expression tag	UNP I3NX86
F	557	LYS	-	expression tag	UNP I3NX86
F	558	LEU	-	expression tag	UNP I3NX86
F	559	ALA	-	expression tag	UNP I3NX86
F	560	ALA	-	expression tag	UNP I3NX86
F	561	ALA	-	expression tag	UNP I3NX86
F	562	LEU	-	expression tag	UNP I3NX86
F	563	GLU	-	expression tag	UNP I3NX86
F	564	HIS	-	expression tag	UNP I3NX86

Chain	Residue	Modelled	Actual	Comment	Reference
F	565	HIS	-	expression tag	UNP I3NX86
F	566	HIS	-	expression tag	UNP I3NX86
F	567	HIS	-	expression tag	UNP I3NX86
F	568	HIS	-	expression tag	UNP I3NX86
F	569	HIS	-	expression tag	UNP I3NX86
G	-1	MET	-	initiating methionine	UNP I3NX86
G	0	VAL	-	expression tag	UNP I3NX86
G	1	PRO	-	expression tag	UNP I3NX86
G	97	TRP	ARG	engineered mutation	UNP I3NX86
G	148	ALA	ARG	engineered mutation	UNP I3NX86
G	313	ILE	THR	engineered mutation	UNP I3NX86
G	380	VAL	ILE	engineered mutation	UNP I3NX86
G	553	SER	-	expression tag	UNP I3NX86
G	554	ARG	-	expression tag	UNP I3NX86
G	555	VAL	-	expression tag	UNP I3NX86
G	556	ASP	-	expression tag	UNP I3NX86
G	557	LYS	-	expression tag	UNP I3NX86
G	558	LEU	-	expression tag	UNP I3NX86
G	559	ALA	-	expression tag	UNP I3NX86
G	560	ALA	-	expression tag	UNP I3NX86
G	561	ALA	-	expression tag	UNP I3NX86
G	562	LEU	-	expression tag	UNP I3NX86
G	563	GLU	-	expression tag	UNP I3NX86
G	564	HIS	-	expression tag	UNP I3NX86
G	565	HIS	-	expression tag	UNP I3NX86
G	566	HIS	-	expression tag	UNP I3NX86
G	567	HIS	-	expression tag	UNP I3NX86
G	568	HIS	-	expression tag	UNP I3NX86
G	569	HIS	-	expression tag	UNP I3NX86
Н	-1	MET	-	initiating methionine	UNP I3NX86
Н	0	VAL	-	expression tag	UNP I3NX86
H	1	PRO	-	expression tag	UNP I3NX86
Н	97	TRP	ARG	engineered mutation	UNP I3NX86
Н	148	ALA	ARG	engineered mutation	UNP I3NX86
Н	313	ILE	THR	engineered mutation	UNP I3NX86
Н	380	VAL	ILE	engineered mutation	UNP I3NX86
Н	553	SER	-	expression tag	UNP I3NX86
Н	554	ARG	-	expression tag	UNP I3NX86
Н	555	VAL	-	expression tag	UNP I3NX86
Н	556	ASP	-	expression tag	UNP I3NX86
Н	557	LYS	-	expression tag	UNP I3NX86
Н	558	LEU	-	expression tag	UNP I3NX86

Continued from previous page...

Defenses	
Reference	

Chain	Residue	Modelled	Actual	Comment	Reference
Н	559	ALA	-	expression tag	UNP I3NX86
Н	560	ALA	-	expression tag	UNP I3NX86
Н	561	ALA	-	expression tag	UNP I3NX86
Н	562	LEU	-	expression tag	UNP I3NX86
Н	563	GLU	-	expression tag	UNP I3NX86
Н	564	HIS	-	expression tag	UNP I3NX86
Н	565	HIS	-	expression tag	UNP I3NX86
Н	566	HIS	-	expression tag	UNP I3NX86
Н	567	HIS	-	expression tag	UNP I3NX86
Н	568	HIS	-	expression tag	UNP I3NX86
Н	569	HIS	-	expression tag	UNP I3NX86

• Molecule 2 is CALCIUM ION (three-letter code: CA) (formula: Ca) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Ca 1 1	0	0
2	В	1	Total Ca 1 1	0	0
2	С	1	Total Ca 1 1	0	0
2	D	1	Total Ca 1 1	0	0
2	Е	1	Total Ca 1 1	0	0
2	F	1	Total Ca 1 1	0	0
2	G	1	Total Ca 1 1	0	0
2	Н	1	Total Ca 1 1	0	0

• Molecule 3 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Mg 1 1	0	0
3	В	1	Total Mg 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	С	1	Total Mg 1 1	0	0
3	D	1	Total Mg 1 1	0	0
3	Ε	1	Total Mg 1 1	0	0
3	F	1	Total Mg 1 1	0	0
3	G	1	Total Mg 1 1	0	0
3	Н	1	Total Mg 1 1	0	0

• Molecule 4 is 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL (three-letter code: TRS) (formula: C₄H₁₂NO₃) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total C N O 8 4 1 3	0	0
4	В	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 8 & 4 & 1 & 3 \end{array}$	0	0
4	С	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 8 & 4 & 1 & 3 \end{array}$	0	0
4	D	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 8 & 4 & 1 & 3 \end{array}$	0	0
4	Е	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 8 & 4 & 1 & 3 \end{array}$	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	F	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{N} & \text{O} \\ 8 & 4 & 1 & 3 \end{array}$	0	0
4	G	1	Total C N O 8 4 1 3	0	0
4	Н	1	Total C N O 8 4 1 3	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	190	Total O 190 190	0	0
5	В	172	Total O 172 172	0	0
5	С	186	Total O 186 186	0	0
5	D	103	Total O 103 103	0	0
5	Е	197	Total O 197 197	0	0
5	F	194	Total O 194 194	0	0
5	G	150	Total O 150 150	0	0
5	Н	140	Total O 140 140	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: maltose alpha-D-glucosyltransferase

A355 D183 A355 1191 P356 1191 P356 1191 P356 1191 P356 1214 P380 1215 P380 1215 P380 1215 P380 1215 P380 1215 P404 1215 P41 1215 P461 1216 P446 1216 P446 1226 P446 1236 P446 1246 P446 1246 P446</td

LYS LEU ALA ALA ALA LEU HIS HIS HIS HIS HIS

• Molecule 1: maltose alpha-D-glucosyltransferase

• Molecule 1: maltose alpha-D-glucosyltransferase

 \bullet Molecule 1: maltose alpha-D-glucosyltransferase

• Molecule 1: maltose alpha-D-glucosyltransferase

Cł	ıa	in	1	:H	-														77	%																18	%			·	•	í			
MET VAL	PRO	THR	GLN	ALA HTS	P6	ц Ц К		T21	1		V48		L51	V68		Y71		174 175		G79	T80	L81 D82	1	K85	I 88		H92	V98		T104	T107		7711	S127	P128	D133	-	<mark>S138</mark>	17 U	#0TT	E163	0164 1165	6166 G166	K167	-
H171 R172	F173	F174	A175	P178	D179	V187	7011	L191	E4 07	LTA	L201	G202	L203	R207		V211	P212	E710	G219	T220		E223	K233		V239	R241	B746	0571	L249	A250 E251		P256	V260		0/23 0/23	H272	M273		R282	D291	T292	S293	57.94	E297	
L302 P303	-	G309		101 4	H318	Made	07011	Y335		A342	R343	M344	K345 T346		N360	D361	R362	L 266	L367	-	V380	1304	4	N408	T411	S412	G413	1428		Y433 G434		H464	G470		1475 EA76	T477	G478	N479	P480	F485		0488 V160	1489 D490	G491	E492
T493	I496		A512	6104	R517	TEO 1	1 201	L528	P529	000	L549		N552	ARG	VAL	ASP	LYS	LEU	ALA	ALA	LEU	GLU	SIH	SIH	STH	HIS																			

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	96.12Å 197.47Å 134.25Å	Deperitor
a, b, c, α , β , γ	90.00° 91.19° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	19.88 - 2.32	Depositor
Resolution (A)	19.88 - 2.32	EDS
% Data completeness	88.1 (19.88-2.32)	Depositor
(in resolution range)	83.1 (19.88-2.32)	EDS
R _{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	4.63 (at 2.33Å)	Xtriage
Refinement program	PHENIX 1.20.1_4487	Depositor
P. P.	0.176 , 0.239	Depositor
n, n_{free}	0.176 , 0.239	DCC
R_{free} test set	9550 reflections (5.03%)	wwPDB-VP
Wilson B-factor $(Å^2)$	30.5	Xtriage
Anisotropy	0.076	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34, 12.8	EDS
L-test for $twinning^2$	$< L >=0.47, < L^2>=0.29$	Xtriage
Estimated twinning fraction	0.207 for h,-k,-l	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	36596	wwPDB-VP
Average B, all atoms $(Å^2)$	32.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.77% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: TRS, CA, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bo	ond angles
WIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.48	0/4531	0.69	1/6175~(0.0%)
1	В	0.49	0/4531	0.69	0/6175
1	С	0.48	0/4531	0.67	1/6175~(0.0%)
1	D	0.46	0/4531	0.68	3/6175~(0.0%)
1	Е	0.49	0/4531	0.69	0/6175
1	F	0.47	0/4531	0.69	1/6175~(0.0%)
1	G	0.49	0/4531	0.66	1/6175~(0.0%)
1	H	0.49	1/4531~(0.0%)	0.68	1/6175~(0.0%)
All	All	0.48	1/36248~(0.0%)	0.68	8/49400 (0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	В	0	1
1	D	0	1
1	Н	0	1
All	All	0	3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	Н	128	PRO	CG-CD	-10.06	1.17	1.50

All (8) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	F	17	LEU	CA-CB-CG	8.64	135.18	115.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Н	128	PRO	CA-N-CD	-7.29	101.29	111.50
1	А	17	LEU	CA-CB-CG	6.83	131.01	115.30
1	D	17	LEU	CA-CB-CG	6.29	129.75	115.30
1	G	24	ASP	CB-CG-OD1	6.25	123.93	118.30
1	D	471	ASP	CB-CG-OD1	5.97	123.68	118.30
1	С	446	ASP	CB-CG-OD1	5.81	123.53	118.30
1	D	17	LEU	CB-CG-CD2	5.21	119.86	111.00

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	В	475	ILE	Peptide
1	D	475	ILE	Peptide
1	Н	475	ILE	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4398	0	4193	61	0
1	В	4398	0	4193	51	0
1	С	4398	0	4193	52	0
1	D	4398	0	4193	51	0
1	Е	4398	0	4193	55	0
1	F	4398	0	4193	40	0
1	G	4398	0	4193	41	0
1	Н	4398	0	4193	61	0
2	А	1	0	0	0	0
2	В	1	0	0	0	0
2	С	1	0	0	0	0
2	D	1	0	0	0	0
2	Е	1	0	0	0	0
2	F	1	0	0	0	0
2	G	1	0	0	0	0
2	Н	1	0	0	0	0
3	A	1	0	0	0	0

8Z2S

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	В	1	0	0	0	0
3	С	1	0	0	0	0
3	D	1	0	0	0	0
3	Е	1	0	0	0	0
3	F	1	0	0	0	0
3	G	1	0	0	0	0
3	Н	1	0	0	0	0
4	А	8	0	12	0	0
4	В	8	0	12	1	0
4	С	8	0	12	2	0
4	D	8	0	12	1	0
4	Е	8	0	12	1	0
4	F	8	0	12	0	0
4	G	8	0	12	0	0
4	Н	8	0	12	2	0
5	А	190	0	0	8	0
5	В	172	0	0	4	0
5	С	186	0	0	4	0
5	D	103	0	0	0	0
5	Е	197	0	0	11	0
5	F	194	0	0	3	0
5	G	150	0	0	2	0
5	Н	140	0	0	3	0
All	All	36596	0	33640	399	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (399) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:E:497:VAL:O	5:E:701:HOH:O	1.85	0.94
1:B:260:VAL:HG21	1:B:303:PRO:HD2	1.48	0.94
1:B:521:THR:HG22	1:B:526:SER:H	1.38	0.86
1:E:14:PHE:HB2	1:E:380:VAL:HG12	1.59	0.85
1:G:215:ILE:HB	1:G:228:THR:HG22	1.61	0.83
1:E:167:LYS:NZ	5:E:702:HOH:O	2.05	0.81
1:E:547:TYR:N	5:E:701:HOH:O	2.07	0.78
1:C:104:THR:HG22	1:C:191:LEU:HD12	1.66	0.77
1:B:499:ASN:HB2	1:B:541:MET:HE3	1.66	0.77
1:E:256:PRO:HB3	1:E:302:LEU:HD23	1.67	0.77

	to do pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:16:GLU:OE2	1:A:318:HIS:ND1	2.20	0.74
1:F:521:THR:HG22	1:F:526:SER:H	1.52	0.74
1:C:214:LEU:HB2	1:C:228:THR:HB	1.70	0.74
1:C:260:VAL:HG21	1:C:303:PRO:HD2	1.69	0.73
1:A:261:GLU:OE1	5:A:701:HOH:O	2.06	0.72
1:B:517:ARG:HD3	1:B:553:SER:HA	1.71	0.71
1:B:104:THR:HG22	1:B:191:LEU:HD12	1.73	0.71
1:D:260:VAL:HG21	1:D:303:PRO:HD2	1.73	0.70
1:E:488:GLN:OE1	5:E:703:HOH:O	2.09	0.70
1:G:104:THR:HG22	1:G:191:LEU:HD23	1.74	0.70
1:G:260:VAL:HG21	1:G:303:PRO:HD2	1.75	0.69
1:H:488:GLN:HG2	1:H:493:THR:HG23	1.72	0.69
1:B:215:ILE:H	1:B:228:THR:HG22	1.59	0.68
1:F:43:LEU:HD13	1:F:51:LEU:HD11	1.75	0.68
1:E:215:ILE:HB	1:E:228:THR:HG22	1.74	0.68
1:A:215:ILE:H	1:A:228:THR:HG22	1.58	0.67
1:D:63:ASP:OD2	4:D:603:TRS:O3	2.12	0.67
1:B:459:GLU:OE2	5:B:701:HOH:O	2.13	0.67
1:E:130:GLU:CD	1:E:130:GLU:H	1.99	0.66
1:H:256:PRO:HB3	1:H:302:LEU:HD23	1.77	0.66
1:C:215:ILE:HB	1:C:228:THR:HG22	1.77	0.66
1:C:343:ARG:NH2	5:C:703:HOH:O	2.23	0.66
1:F:521:THR:HG22	1:F:526:SER:N	2.11	0.66
1:H:74:ILE:HD11	1:H:79:GLY:O	1.96	0.65
1:F:215:ILE:HB	1:F:228:THR:HG22	1.77	0.65
1:A:391:ASP:OD1	5:A:702:HOH:O	2.14	0.65
1:H:74:ILE:HD11	1:H:79:GLY:C	2.18	0.65
1:B:521:THR:HG22	1:B:526:SER:N	2.12	0.65
1:E:228:THR:HG21	5:E:735:HOH:O	1.97	0.64
1:D:215:ILE:HB	1:D:228:THR:HG22	1.81	0.62
1:E:233:LYS:NZ	5:E:705:HOH:O	2.32	0.62
1:H:182:TYR:OH	1:H:191:LEU:HD22	2.00	0.62
1:A:464:HIS:HD2	1:A:492:GLU:OE2	1.82	0.62
1:B:200:ASP:OD1	1:B:243:TYR:OH	2.17	0.62
1:G:52:TRP:CZ2	1:G:207:ARG:HD3	2.34	0.62
1:B:256:PRO:HB3	1:B:302:LEU:HD23	1.81	0.61
1:D:521:THR:HG22	1:D:526:SER:H	1.65	0.61
1:B:52:TRP:CZ2	1:B:207:ARG:HD3	2.36	0.61
1:H:496:ILE:HG13	1:H:496:ILE:O	2.01	0.60
1:A:215:ILE:HB	1:A:228:THR:HG22	1.84	0.60
1:D:214:LEU:HB2	1:D:228:THR:HB	1.82	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:52:TRP:CZ2	1:D:207:ARG:HD3	2.36	0.59
1:H:260:VAL:HG21	1:H:303:PRO:HD2	1.84	0.59
1:A:52:TRP:CZ2	1:A:207:ARG:HD3	2.36	0.59
1:A:521:THR:HG22	1:A:526:SER:H	1.67	0.59
1:D:466:ALA:HB3	1:D:494:LEU:HD22	1.83	0.59
1:E:445:GLN:NE2	5:E:706:HOH:O	2.36	0.59
1:E:233:LYS:HD3	1:E:268:GLU:HB3	1.83	0.58
1:B:541:MET:HG2	1:B:547:TYR:CE2	2.39	0.58
1:C:366:GLU:O	1:C:370:THR:HG23	2.03	0.58
1:D:109:SER:O	1:D:115:GLN:NE2	2.35	0.58
1:F:52:TRP:CZ2	1:F:207:ARG:HD3	2.38	0.58
1:C:288:LYS:HG2	1:C:337:ALA:HB1	1.85	0.58
1:F:521:THR:CG2	1:F:526:SER:H	2.16	0.58
1:A:256:PRO:HB3	1:A:302:LEU:HD23	1.84	0.58
1:H:470:GLY:HA2	1:H:489:TYR:HB2	1.85	0.58
1:E:52:TRP:CZ2	1:E:207:ARG:HD3	2.38	0.58
1:F:228:THR:HG21	5:F:745:HOH:O	2.03	0.58
1:B:313:ILE:HG22	1:B:372:LEU:HD12	1.85	0.57
1:C:52:TRP:CZ2	1:C:207:ARG:HD3	2.40	0.57
1:H:88:LEU:HD22	1:H:92:HIS:CE1	2.39	0.57
1:E:485:PHE:CZ	1:E:496:ILE:HG12	2.39	0.57
1:C:376:PRO:HD3	1:C:472:LEU:HD12	1.86	0.57
1:E:518:ALA:HB2	1:E:530:VAL:HG22	1.86	0.57
1:G:466:ALA:HB3	1:G:494:LEU:HD22	1.86	0.57
1:D:24:ASP:HB3	1:D:416:SER:HB2	1.86	0.56
1:H:165:ALA:HB1	1:H:167:LYS:HD2	1.87	0.56
1:D:207:ARG:HG3	1:D:249:LEU:HD22	1.88	0.56
1:D:362:ARG:NE	1:D:366:GLU:OE2	2.36	0.56
1:D:376:PRO:HD3	1:D:472:LEU:HD13	1.86	0.56
1:A:318:HIS:HD1	1:A:318:HIS:H	1.54	0.56
1:G:374:ALA:HB1	1:G:496:ILE:HD13	1.86	0.56
1:H:138:SER:O	1:H:167:LYS:HB3	2.06	0.56
1:C:464:HIS:HD2	1:C:492:GLU:OE2	1.89	0.56
1:E:89:ARG:HG2	5:E:790:HOH:O	2.06	0.56
1:F:464:HIS:CE1	1:F:522:LEU:HG	2.41	0.56
1:H:163:GLU:HG3	1:H:164:GLN:N	2.21	0.56
1:D:68:VAL:HG23	1:D:70:ASP:H	1.71	0.56
1:E:214:LEU:HB2	1:E:228:THR:HB	1.88	0.56
1:B:466:ALA:HB3	1:B:494:LEU:HD22	1.88	0.55
1:B:503:ASN:HD22	1:H:521:THR:HG21	1.70	0.55
1:F:140:GLU:HB2	1:F:142:LYS:HD2	1.88	0.55

	, and pagetti	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:209:ASP:OD1	4:C:603:TRS:H22	2.06	0.55	
1:B:223:GLU:OE2	5:B:702:HOH:O	2.18	0.55	
1:E:260:VAL:HG21	1:E:303:PRO:HD2	1.88	0.55	
1:E:485:PHE:CE1	1:E:496:ILE:HG12	2.42	0.55	
1:A:260:VAL:HG21	1:A:303:PRO:HD2	1.88	0.55	
1:F:314:PHE:HB3	1:F:380:VAL:HG13	1.87	0.55	
1:H:133:ASP:OD2	5:H:701:HOH:O	2.18	0.55	
1:F:260:VAL:HG21	1:F:303:PRO:HD2	1.89	0.54	
1:G:182:TYR:OH	1:G:191:LEU:HD22	2.07	0.54	
1:D:470:GLY:HA2	1:D:489:TYR:HB2	1.90	0.54	
1:H:104:THR:HG22	1:H:191:LEU:HD23	1.90	0.54	
1:A:246:ARG:HD3	1:A:246:ARG:N	2.22	0.54	
1:B:475:ILE:HD11	1:B:509:LEU:HG	1.89	0.54	
1:E:269:PRO:HB3	1:E:308:PHE:CZ	2.43	0.53	
1:F:541:MET:HG2	1:F:547:TYR:CE2	2.43	0.53	
1:B:14:PHE:HB2	1:B:380:VAL:HB	1.89	0.53	
1:B:376:PRO:HD3	1:B:472:LEU:HD13	1.89	0.53	
1:C:74:ILE:HD11	1:C:79:GLY:C	2.29	0.53	
1:B:191:LEU:HB3	1:B:235:PHE:HZ	1.74	0.53	
1:D:276:ASN:OD1	1:D:279:VAL:HG23	2.09	0.53	
1:B:21:THR:HG22	5:B:789:HOH:O	2.09	0.53	
1:F:470:GLY:HA2	1:F:489:TYR:HB2	1.89	0.53	
1:H:282:ARG:NH2	1:H:325:MET:O	2.42	0.52	
1:E:499:ASN:O	1:E:544:TYR:HA	2.10	0.52	
1:A:301:ARG:O	1:A:303:PRO:HD3	2.09	0.52	
1:G:16:GLU:OE1	1:G:318:HIS:ND1	2.41	0.52	
1:H:82:ASP:OD1	5:H:702:HOH:O	2.19	0.52	
1:A:215:ILE:H	1:A:228:THR:CG2	2.22	0.52	
1:C:475:ILE:HD11	1:C:509:LEU:HG	1.91	0.52	
1:G:24:ASP:OD2	1:G:416:SER:OG	2.28	0.52	
1:B:366:GLU:O	1:B:370:THR:HG23	2.09	0.52	
1:C:488:GLN:NE2	5:C:701:HOH:O	2.20	0.52	
1:C:496:ILE:O	1:C:496:ILE:HG13	2.10	0.52	
1:C:182:TYR:OH	1:C:191:LEU:HG	2.10	0.51	
1:B:215:ILE:H	1:B:228:THR:CG2	2.22	0.51	
1:D:207:ARG:HD2	1:D:275:PHE:HE2	1.74	0.51	
1:H:293:SER:O	1:H:297:GLU:HG3	2.10	0.51	
1:A:14:PHE:HB2	1:A:380:VAL:HB	1.92	0.51	
1:A:122:THR:HG22	1:A:128:PRO:HA	1.92	0.51	
1:A:485:PHE:CZ	1:A:496:ILE:HG12	2.45	0.51	
1:A:225:LEU:HB2	1:A:228:THR:HG23	1.92	0.51	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:320:GLU:HG3	1:E:349:GLY:HA3	1.92	0.51
1:F:191:LEU:HB3	1:F:235:PHE:HZ	1.76	0.51
5:A:851:HOH:O	1:B:411:THR:HG22	2.10	0.50
1:D:43:LEU:O	1:D:48:VAL:HG22	2.12	0.50
1:C:499:ASN:HB2	1:C:541:MET:CE	2.41	0.50
1:H:107:THR:O	1:H:178:PRO:HD2	2.12	0.50
1:H:163:GLU:HG3	1:H:164:GLN:H	1.75	0.50
1:A:313:ILE:HD11	1:A:376:PRO:O	2.12	0.50
1:A:506:ALA:HB2	1:G:528:LEU:HD22	1.93	0.50
1:C:52:TRP:CE2	1:C:207:ARG:HD3	2.47	0.50
1:G:470:GLY:HA2	1:G:489:TYR:HB2	1.94	0.50
1:A:52:TRP:CE2	1:A:207:ARG:HD3	2.47	0.50
1:E:74:ILE:HD11	1:E:79:GLY:O	2.12	0.50
1:E:280:MET:HB3	1:E:281:PRO:HD3	1.94	0.50
1:H:74:ILE:HD12	1:H:75:HIS:O	2.12	0.50
1:A:228:THR:HG21	5:A:778:HOH:O	2.12	0.49
1:E:269:PRO:HB3	1:E:308:PHE:CE2	2.46	0.49
1:B:66:TYR:CG	4:B:603:TRS:H22	2.48	0.49
1:D:16:GLU:OE2	1:D:318:HIS:ND1	2.41	0.49
1:E:476:GLU:HG3	5:E:881:HOH:O	2.12	0.49
1:H:335:TYR:CE1	1:H:345:LYS:HG2	2.47	0.49
1:D:130:GLU:H	1:D:130:GLU:CD	2.16	0.49
1:H:173:PHE:CZ	4:H:603:TRS:H32	2.48	0.49
1:D:459:GLU:OE1	1:F:343:ARG:NH2	2.46	0.49
1:E:21:THR:HG22	5:E:784:HOH:O	2.12	0.49
1:A:192:HIS:HE1	5:A:801:HOH:O	1.95	0.49
1:C:223:GLU:H	1:C:225:LEU:HD13	1.78	0.49
1:D:81:LEU:CD1	1:D:85:LYS:HE3	2.43	0.49
1:D:288:LYS:HG2	1:D:337:ALA:HB1	1.94	0.49
1:G:43:LEU:HD13	1:G:51:LEU:HD11	1.95	0.49
1:B:522:LEU:HD22	1:B:548:TRP:HB3	1.95	0.49
1:F:74:ILE:CD1	1:F:78:LEU:HB2	2.43	0.48
1:C:130:GLU:OE1	1:C:130:GLU:N	2.41	0.48
1:D:225:LEU:HB2	1:D:228:THR:HG23	1.95	0.48
4:C:603:TRS:H21	5:C:781:HOH:O	2.12	0.48
1:H:485:PHE:CE1	1:H:496:ILE:HG12	2.48	0.48
1:A:276:ASN:CG	1:A:279:VAL:HG22	2.34	0.48
1:G:314:PHE:HB3	1:G:380:VAL:HG13	1.95	0.48
1:D:225:LEU:HB2	1:D:228:THR:CG2	2.43	0.48
1:B:521:THR:CG2	1:B:526:SER:H	2.18	0.48
1:D:366:GLU:O	1:D:370:THR:HG23	2.13	0.48

	to as pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:18:SER:HB2	1:G:54:LEU:HD22	1.95	0.48
1:G:67:ASP:O	1:G:108:SER:HB2	2.14	0.48
1:A:393:LEU:HD23	1:A:393:LEU:HA	1.51	0.47
1:C:184:ASN:ND2	5:C:710:HOH:O	2.45	0.47
1:E:370:THR:HG21	1:E:546:TYR:CD2	2.49	0.47
1:H:233:LYS:HG3	1:H:270:GLU:CG	2.44	0.47
1:B:207:ARG:NH2	1:B:209:ASP:OD1	2.47	0.47
1:G:74:ILE:HD11	1:G:79:GLY:O	2.14	0.47
1:E:475:ILE:HD11	1:E:509:LEU:HB3	1.95	0.47
1:A:224:ASN:HB3	5:A:788:HOH:O	2.15	0.47
1:H:464:HIS:HD2	1:H:492:GLU:OE2	1.97	0.47
1:A:255:TRP:O	1:A:259:VAL:HG23	2.15	0.47
1:G:233:LYS:HG3	1:G:270:GLU:HG3	1.96	0.47
1:H:362:ARG:NE	1:H:366:GLU:OE1	2.45	0.47
1:A:44:LYS:HE2	1:A:94:ARG:O	2.15	0.47
1:A:146:ASP:N	1:A:146:ASP:OD1	2.48	0.47
1:A:314:PHE:HB3	1:A:380:VAL:HG13	1.97	0.47
1:D:247:LEU:O	1:D:248:LEU:HD23	2.15	0.47
1:D:343:ARG:NH1	1:D:351:ARG:HH22	2.13	0.47
1:E:196:ARG:NH1	5:E:707:HOH:O	2.37	0.47
1:F:496:ILE:O	1:F:496:ILE:HG13	2.14	0.47
1:C:462:ARG:NH2	1:E:394:GLY:HA3	2.30	0.47
1:C:130:GLU:CD	1:C:130:GLU:H	2.11	0.47
1:A:104:THR:HA	1:A:191:LEU:CD2	2.45	0.47
1:A:241:ARG:NH1	1:A:242:GLU:OE2	2.48	0.47
1:G:139:ASP:OD1	1:G:167:LYS:HE2	2.15	0.47
1:A:499:ASN:O	1:A:544:TYR:HA	2.15	0.46
1:E:292:THR:HG21	1:E:483:LEU:HB2	1.96	0.46
1:H:197:PHE:O	1:H:201:LEU:HD13	2.15	0.46
1:D:107:THR:O	1:D:178:PRO:HD2	2.16	0.46
1:E:182:TYR:OH	1:E:191:LEU:CD2	2.63	0.46
1:H:512:ALA:HB3	1:H:513:PRO:HD3	1.97	0.46
1:A:315:LEU:HG	1:A:372:LEU:HD13	1.96	0.46
1:D:289:ARG:HG3	1:D:333:PHE:CZ	2.50	0.46
1:C:276:ASN:OD1	1:C:279:VAL:HG23	2.16	0.46
1:F:140:GLU:CB	1:F:142:LYS:HD2	2.45	0.46
1:F:446:ASP:O	1:F:452:LYS:HD2	2.15	0.46
1:B:215:ILE:HB	1:B:228:THR:HG22	1.98	0.46
1:B:138:SER:HB3	1:B:159:TRP:CZ3	2.51	0.46
1:C:88:LEU:HD22	1:C:92:HIS:CE1	2.51	0.46
1:C:404:PRO:HB3	1:C:415:PHE:CG	2.51	0.46

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:81:LEU:HD13	1:D:81:LEU:O	2.16	0.46
1:G:138:SER:OG	1:G:141:GLY:N	2.45	0.46
1:H:173:PHE:CE1	4:H:603:TRS:H32	2.50	0.46
1:C:233:LYS:HD3	1:C:268:GLU:HB3	1.98	0.45
1:C:460:LEU:HD13	1:E:343:ARG:HD3	1.97	0.45
1:E:50:CYS:HA	1:E:97:TRP:O	2.16	0.45
1:F:214:LEU:HB2	1:F:228:THR:HB	1.98	0.45
1:B:477:THR:HA	1:B:509:LEU:HD12	1.98	0.45
1:E:276:ASN:OD1	1:E:279:VAL:HG22	2.16	0.45
1:G:344:MET:HG2	1:G:393:LEU:HD21	1.98	0.45
1:H:360:ASN:HB2	1:H:433:TYR:OH	2.17	0.45
1:G:211:VAL:HG11	1:G:271:PHE:CZ	2.52	0.45
1:H:294:SER:HA	1:H:297:GLU:HG3	1.97	0.45
1:H:408:ASN:O	1:H:413:GLY:HA2	2.17	0.45
1:D:492:GLU:HG2	1:D:494:LEU:HD13	1.98	0.45
1:E:250:ALA:HB2	1:E:271:PHE:CG	2.52	0.45
1:F:485:PHE:CZ	1:F:496:ILE:HG12	2.52	0.45
1:G:232:LEU:HD13	1:G:271:PHE:HE2	1.82	0.45
1:B:182:TYR:OH	1:B:191:LEU:HG	2.17	0.45
1:B:488:GLN:HG3	1:B:493:THR:HG23	1.98	0.45
1:G:367:LEU:HD21	1:G:498:SER:HB3	1.98	0.45
1:H:291:ASP:OD1	1:H:480:PRO:HB2	2.17	0.45
1:D:485:PHE:CZ	1:D:496:ILE:HG12	2.52	0.44
1:A:7:GLU:HA	5:A:812:HOH:O	2.18	0.44
1:B:367:LEU:HD11	1:B:498:SER:HB3	1.99	0.44
1:G:88:LEU:HD22	1:G:92:HIS:CE1	2.52	0.44
1:A:404:PRO:HB3	1:A:415:PHE:CG	2.51	0.44
1:B:89:ARG:NH1	1:B:90:GLU:OE2	2.51	0.44
1:C:355:ALA:HB3	1:C:356:PRO:HD3	2.00	0.44
1:E:209:ASP:OD1	4:E:603:TRS:H32	2.17	0.44
1:F:466:ALA:HB3	1:F:494:LEU:HD22	1.99	0.44
1:H:314:PHE:HB3	1:H:380:VAL:HG13	1.99	0.44
1:A:147:THR:HG22	1:A:148:ALA:O	2.18	0.44
1:B:496:ILE:O	1:B:496:ILE:HG13	2.15	0.44
1:C:499:ASN:HB2	1:C:541:MET:HE3	1.99	0.44
1:D:250:ALA:HB2	1:D:271:PHE:CD2	2.52	0.44
1:C:475:ILE:O	1:C:475:ILE:HG13	2.15	0.44
1:A:214:LEU:HB2	1:A:228:THR:HB	1.99	0.44
1:B:74:ILE:CD1	1:B:81:LEU:HA	2.48	0.44
1:D:250:ALA:HB2	1:D:271:PHE:CG	2.52	0.44
1:D:260:VAL:CG2	1:D:303:PRO:HD2	2.45	0.44

	to ac pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:285:MET:SD	1:G:330:GLU:HG2	2.58	0.44
1:H:272:HIS:O	1:H:309:GLY:HA2	2.17	0.44
1:A:111:HIS:CE1	1:A:113:TRP:CD2	3.05	0.44
1:A:335:TYR:OH	1:A:348:VAL:HA	2.17	0.44
1:A:470:GLY:HA2	1:A:489:TYR:HB2	2.00	0.44
1:B:503:ASN:ND2	1:H:521:THR:HG21	2.33	0.44
1:D:462:ARG:NH2	1:F:394:GLY:HA3	2.33	0.44
1:F:408:ASN:O	1:F:413:GLY:HA2	2.17	0.44
1:H:218:GLU:O	1:H:220:THR:HG23	2.18	0.44
1:A:88:LEU:HD23	1:A:88:LEU:HA	1.87	0.43
1:C:158:ASN:HB2	1:C:170:TRP:CZ3	2.53	0.43
1:A:304:LYS:H	1:A:304:LYS:HG2	1.57	0.43
1:C:482:ILE:HG23	1:C:541:MET:HE2	2.01	0.43
1:G:233:LYS:HE3	1:G:270:GLU:OE2	2.18	0.43
1:H:16:GLU:OE2	1:H:318:HIS:ND1	2.48	0.43
1:H:517:ARG:NE	1:H:552:ASN:O	2.40	0.43
1:A:250:ALA:HB2	1:A:271:PHE:CG	2.54	0.43
1:B:247:LEU:HD12	1:B:272:HIS:HB2	2.00	0.43
1:F:74:ILE:HD12	1:F:78:LEU:HB2	2.00	0.43
1:G:191:LEU:HB3	1:G:235:PHE:HZ	1.84	0.43
1:A:182:TYR:OH	1:A:191:LEU:HD22	2.19	0.43
1:B:71:TYR:OH	1:B:107:THR:HG22	2.18	0.43
1:D:21:THR:HG21	1:D:383:TYR:OH	2.18	0.43
1:E:282:ARG:H	1:E:282:ARG:HG2	1.62	0.43
1:F:499:ASN:O	1:F:544:TYR:HA	2.19	0.43
1:H:68:VAL:HG11	1:H:71:TYR:CZ	2.54	0.43
1:A:462:ARG:NH2	1:H:394:GLY:HA3	2.33	0.43
1:C:138:SER:HB3	1:C:159:TRP:CH2	2.53	0.43
1:D:52:TRP:CD1	1:D:52:TRP:C	2.91	0.43
1:D:88:LEU:HD22	1:D:92:HIS:CE1	2.53	0.43
1:D:316:ARG:HD2	1:D:316:ARG:HA	1.87	0.43
1:F:123:LEU:HD13	1:F:129:ASN:HB2	2.01	0.43
1:B:207:ARG:HH21	1:B:209:ASP:HB2	1.84	0.43
1:D:74:ILE:CD1	1:D:78:LEU:HB2	2.48	0.43
1:A:149:ILE:HG21	1:A:155:GLU:O	2.18	0.43
1:D:506:ALA:HB2	1:E:528:LEU:HD22	2.01	0.43
1:E:149:ILE:HG21	1:E:155:GLU:O	2.19	0.43
1:E:333:PHE:HD1	1:F:333:PHE:HD2	1.65	0.43
1:B:232:LEU:HD13	1:B:271:PHE:HE2	1.84	0.43
1:B:236:ARG:NH1	1:B:270:GLU:O	2.38	0.43
1:D:102:LEU:HB2	1:D:206:PHE:CD1	2.53	0.43

	t i c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:211:VAL:HG11	1:E:271:PHE:CZ	2.54	0.43
1:G:446:ASP:O	1:G:452:LYS:HD2	2.19	0.43
1:A:288:LYS:HG2	1:A:337:ALA:HB1	2.01	0.43
1:F:310:GLN:HA	1:F:310:GLN:HE21	1.84	0.43
1:G:74:ILE:HD11	1:G:79:GLY:C	2.39	0.43
1:G:250:ALA:HB2	1:G:271:PHE:CG	2.54	0.43
1:H:171:HIS:CD2	1:H:175:ALA:HA	2.54	0.43
1:A:459:GLU:OE2	1:H:343:ARG:NH2	2.50	0.42
1:C:111:HIS:CE1	1:C:113:TRP:CD2	3.07	0.42
1:G:320:GLU:HG3	1:G:349:GLY:HA3	2.01	0.42
1:H:246:ARG:HA	1:H:246:ARG:HD3	1.82	0.42
1:A:52:TRP:CD1	1:A:52:TRP:C	2.92	0.42
1:C:257:GLU:CD	1:C:257:GLU:H	2.22	0.42
1:E:316:ARG:HD2	1:E:316:ARG:HA	1.91	0.42
1:F:88:LEU:HD12	1:F:88:LEU:HA	1.77	0.42
1:G:107:THR:O	1:G:177:GLN:HA	2.18	0.42
1:A:320:GLU:OE2	1:A:398:ARG:HD3	2.19	0.42
1:D:404:PRO:HB3	1:D:415:PHE:CG	2.54	0.42
1:H:428:ILE:HG22	1:H:434:GLY:HA2	2.01	0.42
1:C:14:PHE:O	1:C:380:VAL:HA	2.19	0.42
1:E:250:ALA:HB2	1:E:271:PHE:CD2	2.54	0.42
1:H:211:VAL:HG11	1:H:271:PHE:CZ	2.55	0.42
1:G:75:HIS:HB3	1:G:78:LEU:HD22	2.01	0.42
1:H:85:LYS:HD2	5:H:809:HOH:O	2.17	0.42
1:B:452:LYS:NZ	5:B:717:HOH:O	2.52	0.42
1:E:16:GLU:OE2	1:E:318:HIS:ND1	2.49	0.42
1:E:107:THR:O	1:E:177:GLN:HA	2.19	0.42
1:B:485:PHE:CZ	1:B:496:ILE:HG12	2.54	0.42
1:E:551:LEU:HA	1:E:551:LEU:HD23	1.71	0.42
1:F:233:LYS:HG2	1:F:270:GLU:HG3	2.02	0.42
1:H:212:PRO:O	1:H:223:GLU:HA	2.20	0.42
1:H:476:GLU:O	1:H:478:GLY:N	2.45	0.42
1:D:243:TYR:O	1:D:246:ARG:HG2	2.19	0.42
1:H:203:LEU:HD12	1:H:203:LEU:HA	1.84	0.42
1:A:521:THR:HG22	1:A:526:SER:N	2.34	0.42
1:D:314:PHE:HB3	1:D:380:VAL:HG13	2.02	0.42
1:E:366:GLU:O	1:E:370:THR:HG23	2.19	0.42
1:F:250:ALA:HB2	1:F:271:PHE:CD2	2.55	0.42
1:G:137:TRP:CZ3	1:G:169:TYR:HB3	2.54	0.42
1:C:546:TYR:OH	1:F:543:LYS:NZ	2.52	0.41
1:E:276:ASN:CG	$1:\overline{\text{E:}279:\text{VAL:}\text{HG}22}$	2.41	0.41

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:207:ARG:NH1	5:G:712:HOH:O	2.52	0.41
1:C:43:LEU:O	1:C:48:VAL:HG22	2.21	0.41
1:C:485:PHE:CE2	1:C:496:ILE:HG12	2.55	0.41
1:D:111:HIS:CE1	1:D:113:TRP:CD2	3.08	0.41
1:H:521:THR:HA	1:H:549:LEU:HD23	2.02	0.41
1:B:52:TRP:CE2	1:B:207:ARG:HD3	2.54	0.41
1:B:499:ASN:O	1:B:544:TYR:HA	2.20	0.41
1:H:43:LEU:O	1:H:48:VAL:HG22	2.21	0.41
1:H:249:LEU:HD13	1:H:273:MET:HB2	2.03	0.41
1:A:152:THR:HG22	5:A:886:HOH:O	2.21	0.41
1:A:316:ARG:HD2	1:A:316:ARG:HA	1.92	0.41
1:C:100:GLY:O	1:C:207:ARG:N	2.45	0.41
1:C:550:ARG:NH2	1:E:153:ASP:O	2.54	0.41
1:D:324:GLU:HG2	1:D:348:VAL:HB	2.03	0.41
1:E:82:ASP:O	1:E:86:VAL:HG13	2.20	0.41
1:E:367:LEU:HD21	1:E:498:SER:HB3	2.01	0.41
1:H:517:ARG:C	1:H:530:VAL:HG23	2.41	0.41
1:A:257:GLU:H	1:A:257:GLU:CD	2.24	0.41
1:C:261:GLU:H	1:C:261:GLU:HG2	1.63	0.41
1:F:236:ARG:NH1	1:F:270:GLU:O	2.44	0.41
1:G:412:SER:HB3	1:G:427:PRO:HG2	2.01	0.41
1:H:43:LEU:HD13	1:H:51:LEU:HD11	2.02	0.41
1:A:363:ARG:HD2	5:G:718:HOH:O	2.19	0.41
1:C:248:LEU:HA	1:C:248:LEU:HD23	1.66	0.41
1:C:250:ALA:HB2	1:C:271:PHE:CG	2.55	0.41
1:H:104:THR:HA	1:H:191:LEU:HD21	2.02	0.41
1:H:528:LEU:HB3	1:H:529:PRO:HD2	2.03	0.41
1:B:16:GLU:OE2	1:B:318:HIS:ND1	2.52	0.41
1:F:81:LEU:HD23	1:F:81:LEU:HA	1.84	0.41
1:A:471:ASP:OD2	1:A:488:GLN:HB3	2.21	0.41
1:B:408:ASN:O	1:B:413:GLY:HA2	2.21	0.41
1:D:355:ALA:HB3	1:D:356:PRO:HD3	2.02	0.41
1:E:99:ILE:HG21	1:E:247:LEU:HD23	2.02	0.41
1:G:467:PHE:HE1	1:G:496:ILE:HD11	1.86	0.41
1:H:88:LEU:HD23	1:H:88:LEU:HA	1.74	0.41
1:C:82:ASP:O	1:C:86:VAL:HG12	2.21	0.41
1:C:278:PRO:HB3	1:C:298:ILE:HD12	2.03	0.41
1:F:21:THR:HG22	5:F:765:HOH:O	2.21	0.41
1:F:211:VAL:HG11	1:F:271:PHE:CZ	2.56	0.41
1:A:67:ASP:HB2	1:A:108:SER:HB2	2.01	0.40
1:A:506:ALA:CB	1:G:529:PRO:HD3	2.52	0.40

A + 1	A 4 am 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:249:LEU:HD12	1:C:250:ALA:N	2.35	0.40
1:C:375:LEU:HB3	1:C:376:PRO:HD2	2.03	0.40
1:C:475:ILE:HD13	1:C:511:LEU:HD23	2.02	0.40
1:G:439:ASN:O	1:G:443:GLN:HG3	2.21	0.40
1:A:366:GLU:O	1:A:370:THR:HG23	2.21	0.40
1:A:369:ASN:O	1:A:372:LEU:HB3	2.21	0.40
1:D:275:PHE:HD1	1:D:312:CYS:HB3	1.86	0.40
1:E:136:VAL:HB	1:E:170:TRP:HB3	2.03	0.40
1:F:52:TRP:HB2	1:F:99:ILE:HD11	2.03	0.40
1:F:397:ASP:HB3	5:F:732:HOH:O	2.21	0.40
1:H:341:ASP:OD2	1:H:343:ARG:NH1	2.53	0.40
1:B:541:MET:HE3	1:B:541:MET:HB2	1.92	0.40
1:C:16:GLU:OE2	1:C:318:HIS:ND1	2.48	0.40
1:G:99:ILE:HG21	1:G:247:LEU:HD23	2.03	0.40
1:G:136:VAL:HB	1:G:170:TRP:HB3	2.02	0.40
1:H:250:ALA:HB2	1:H:271:PHE:CG	2.56	0.40
1:B:21:THR:HG21	1:B:383:TYR:OH	2.21	0.40
1:C:227:GLU:OE1	1:C:227:GLU:N	2.41	0.40
1:D:446:ASP:HA	1:D:447:PRO:HD3	1.97	0.40
1:F:298:ILE:HD12	1:F:298:ILE:HA	1.87	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
1	А	546/571~(96%)	526 (96%)	20~(4%)	0	100	100
1	В	546/571~(96%)	527~(96%)	19 (4%)	0	100	100
1	С	546/571~(96%)	524 (96%)	21 (4%)	1 (0%)	44	54
1	D	546/571~(96%)	525 (96%)	21 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Ε	546/571~(96%)	530~(97%)	16 (3%)	0	100	100
1	F	546/571~(96%)	527~(96%)	19 (4%)	0	100	100
1	G	546/571~(96%)	526~(96%)	19 (4%)	1 (0%)	44	54
1	Н	546/571~(96%)	529~(97%)	16 (3%)	1 (0%)	44	54
All	All	4368/4568~(96%)	4214 (96%)	151 (4%)	3~(0%)	48	60

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	G	525	ALA
1	Н	477	THR
1	С	348	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	464/483~(96%)	442 (95%)	22~(5%)	22 32
1	В	464/483~(96%)	440 (95%)	24~(5%)	19 28
1	С	464/483~(96%)	440 (95%)	24~(5%)	19 28
1	D	464/483~(96%)	432 (93%)	32~(7%)	13 17
1	Ε	464/483~(96%)	435~(94%)	29~(6%)	15 20
1	\mathbf{F}	464/483~(96%)	439~(95%)	25~(5%)	18 26
1	G	464/483~(96%)	443 (96%)	21 (4%)	23 34
1	Η	464/483~(96%)	442 (95%)	22 (5%)	22 32
All	All	3712/3864~(96%)	3513(95%)	199 (5%)	18 26

All (199) residues with a non-rotameric sidechain are listed below:

1 A 17	' LEU

1 A 32 ASP 1 A 98 VAL 1 A 101 ASP 1 A 101 ASP 1 A 11 A 101 1 A 116 ASP 1 A 146 ASP 1 A 146 ASP 1 A 126 GLU 1 A 216 GLU 1 A 246 ARG 1 A 246 ARG 1 A 304 LYS 1 A 320 GLU 1 A 343 ARG 1 A 343 ARG 1 A 472 LEU 1 A 477 THR 1 A 550 ARG 1 A 553 SER 1 B 133 ASP 1 B 138	Mol	Chain	Res	Type
1 A 82 ASP 1 A 98 VAL 1 A 101 ASP 1 A 138 SER 1 A 146 ASP 1 A 179 ASP 1 A 216 GLU 1 A 218 GLU 1 A 246 ARG 1 A 304 LYS 1 A 320 GLU 1 A 343 ARG 1 A 320 GLU 1 A 320 GLU 1 A 320 GLU 1 A 472 LEU 1 A 472 LEU 1 A 521 THR 1 A 553 SER 1 B 101 ASP 1 B 133 <th>1</th> <th>А</th> <th>32</th> <th>ASP</th>	1	А	32	ASP
1 A 98 VAL 1 A 101 ASP 1 A 138 SER 1 A 146 ASP 1 A 146 ASP 1 A 216 GLU 1 A 216 ARG 1 A 246 ARG 1 A 304 LYS 1 A 320 GLU 1 A 472 LEU 1 A 472 LEU 1 A 550 ARG 1 A 553 SER 1 B 133 ASP 1 B 133 <th>1</th> <th>А</th> <th>82</th> <th>ASP</th>	1	А	82	ASP
1 A 101 ASP 1 A 138 SER 1 A 146 ASP 1 A 179 ASP 1 A 216 GLU 1 A 218 GLU 1 A 226 ARG 1 A 282 ARG 1 A 304 LYS 1 A 304 LYS 1 A 304 LYS 1 A 304 LYS 1 A 343 ARG 1 A 343 VAL 1 A 477 THR 1 A 496 ILE 1 A 550 ARG 1 B 21 THR 1 B 54 LEU 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 <	1	А	98	VAL
1 A 138 SER 1 A 146 ASP 1 A 179 ASP 1 A 216 GLU 1 A 218 GLU 1 A 246 ARG 1 A 282 ARG 1 A 304 LYS 1 A 320 GLU 1 A 343 ARG 1 A 343 ARG 1 A 343 ARG 1 A 343 ARG 1 A 472 LEU 1 A 477 THR 1 A 550 ARG 1 A 550 ARG 1 B 21 THR 1 B 54 LEU 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 <	1	A	101	ASP
1 A 146 ASP 1 A 179 ASP 1 A 216 GLU 1 A 218 GLU 1 A 246 ARG 1 A 282 ARG 1 A 304 LYS 1 A 320 GLU 1 A 343 ARG 1 A 343 ARG 1 A 343 ARG 1 A 343 ARG 1 A 472 LEU 1 A 477 THR 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 B 138 SER 1 B 138 ASP 1	1	A	138	SER
1 A 179 ASP 1 A 216 GLU 1 A 218 GLU 1 A 246 ARG 1 A 282 ARG 1 A 304 LYS 1 A 304 LYS 1 A 320 GLU 1 A 343 ARG 1 A 343 ARG 1 A 472 LEU 1 A 477 THR 1 A 496 ILE 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 54 LEU 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 B 138 SER 1 B 146 ASP 1 <	1	А	146	ASP
1 A 216 GLU 1 A 218 GLU 1 A 246 ARG 1 A 304 LYS 1 A 304 LYS 1 A 320 GLU 1 A 320 GLU 1 A 343 ARG 1 A 343 ARG 1 A 343 ARG 1 A 472 LEU 1 A 472 LEU 1 A 476 ILE 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 54 LEU 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 B 146 ASP 1 B 146 ASP 1 <	1	А	179	ASP
1 A 218 GLU 1 A 246 ARG 1 A 282 ARG 1 A 304 LYS 1 A 304 LYS 1 A 320 GLU 1 A 343 ARG 1 A 343 ARG 1 A 343 ARG 1 A 343 ARG 1 A 472 LEU 1 A 477 THR 1 A 521 THR 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 54 LEU 1 B 133 ASP 1 B 133 ASP 1 B 133 ASP 1 B 146 ASP 1 B 126 GLU 1 <	1	А	216	GLU
1 A 246 ARG 1 A 282 ARG 1 A 304 LYS 1 A 320 GLU 1 A 343 ARG 1 A 472 LEU 1 A 477 THR 1 A 521 THR 1 A 553 SER 1 B 21 THR 1 B 54 LEU 1 B 98 VAL 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 B 146 ASP 1 B 225 LEU 1 <t< th=""><th>1</th><th>А</th><th>218</th><th>GLU</th></t<>	1	А	218	GLU
1 A 282 ARG 1 A 304 LYS 1 A 320 GLU 1 A 343 ARG 1 A 472 LEU 1 A 477 THR 1 A 521 THR 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 54 LEU 1 B 98 VAL 1 B 133 ASP 1 B 133 ASP 1 B 133 ASP 1 B 146 ASP 1 B 126 GLU 1 B 225 LEU 1 <t< th=""><th>1</th><th>А</th><th>246</th><th>ARG</th></t<>	1	А	246	ARG
1 A 304 LYS 1 A 320 GLU 1 A 343 ARG 1 A 380 VAL 1 A 472 LEU 1 A 477 THR 1 A 477 THR 1 A 426 ILE 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 21 THR 1 B 21 THR 1 B 133 ASP 1 B 101 ASP 1 B 133 ASP 1 B 133 ASP 1 B 133 ASP 1 B 146 ASP 1 B 126 GLU 1 B 225 LEU 1 B 289 ARG	1	А	282	ARG
1 A 320 GLU 1 A 343 ARG 1 A 380 VAL 1 A 472 LEU 1 A 477 THR 1 A 477 THR 1 A 496 ILE 1 A 521 THR 1 A 553 SER 1 B 21 THR 1 A 553 SER 1 B 11 HR 1 B 11 ASP 1 B 133 ASP 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 B 146 ASP 1 B 138 SER 1 B 225 LEU 1 B 289 ARG 1 B 289 ARG 1	1	A	304	LYS
1 A 343 ARG 1 A 380 VAL 1 A 472 LEU 1 A 477 THR 1 A 496 ILE 1 A 521 THR 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 A 553 SER 1 B 21 THR 1 B 1 ASP 1 B 133 ASP 1 B 138 SER 1 B 138 SER 1 B 146 ASP 1 B 225 LEU 1 B 246 ARG 1 B	1	А	320	GLU
1 A 380 VAL 1 A 472 LEU 1 A 477 THR 1 A 496 ILE 1 A 521 THR 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 21 THR 1 B 21 THR 1 B 101 ASP 1 B 101 ASP 1 B 133 ASP 1 B 138 SER 1 B 138 SER 1 B 146 ASP 1 B 138 SER 1 B 146 ASP 1 B 225 LEU 1 B 246 ARG 1 B 289	1	А	343	ARG
1 A 472 LEU 1 A 477 THR 1 A 496 ILE 1 A 521 THR 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 54 LEU 1 B 98 VAL 1 B 101 ASP 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 B 138 SER 1 B 146 ASP 1 B 146 ASP 1 B 146 ASP 1 B 126 GLU 1 B 225 LEU 1 B 289 ARG 1 B 298 ILE 1 B 362 ARG 1 <t< th=""><th>1</th><th>A</th><th>380</th><th>VAL</th></t<>	1	A	380	VAL
1 A 477 THR 1 A 496 ILE 1 A 521 THR 1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 14 LEU 1 B 133 ASP 1 B 138 SER 1 B 138 SER 1 B 146 ASP 1 B 126 GLU 1 B 225 LEU 1 B 282 ARG 1 B 298 ILE 1 B <th>1</th> <th>А</th> <th>472</th> <th>LEU</th>	1	А	472	LEU
1A496ILE1A521THR1A550ARG1A553SER1B21THR1B54LEU1B98VAL1B101ASP1B133ASP1B138SER1B146ASP1B192HIS1B216GLU1B225LEU1B282ARG1B289ARG1B298ILE1B343ARG1B362ARG1B472LEU1B475ILE1B494LEU1B496ILE	1	А	477	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	A	496	ILE
1 A 550 ARG 1 A 553 SER 1 B 21 THR 1 B 54 LEU 1 B 98 VAL 1 B 101 ASP 1 B 101 ASP 1 B 133 ASP 1 B 138 SER 1 B 138 SER 1 B 146 ASP 1 B 146 ASP 1 B 126 GLU 1 B 225 LEU 1 B 225 LEU 1 B 282 ARG 1 B 289 ARG 1 B 310 GLN 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 <td< th=""><th>1</th><th>А</th><th>521</th><th>THR</th></td<>	1	А	521	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	550	ARG
1 B 21 THR 1 B 54 LEU 1 B 98 VAL 1 B 101 ASP 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 B 146 ASP 1 B 146 ASP 1 B 146 ASP 1 B 126 GLU 1 B 225 LEU 1 B 246 ARG 1 B 289 ARG 1 B 289 ARG 1 B 298 ILE 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	А	553	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	21	THR
1 B 98 VAL 1 B 101 ASP 1 B 133 ASP 1 B 133 ASP 1 B 133 ASP 1 B 138 SER 1 B 146 ASP 1 B 192 HIS 1 B 216 GLU 1 B 225 LEU 1 B 246 ARG 1 B 282 ARG 1 B 289 ARG 1 B 298 ILE 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	54	LEU
1 B 101 ASP 1 B 133 ASP 1 B 138 SER 1 B 146 ASP 1 B 146 ASP 1 B 146 ASP 1 B 146 ASP 1 B 120 HIS 1 B 216 GLU 1 B 225 LEU 1 B 282 ARG 1 B 289 ARG 1 B 298 ILE 1 B 310 GLN 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	98	VAL
1 B 133 ASP 1 B 138 SER 1 B 146 ASP 1 B 192 HIS 1 B 216 GLU 1 B 225 LEU 1 B 282 ARG 1 B 289 ARG 1 B 298 ILE 1 B 343 ARG 1 B 362 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	101	ASP
1 B 138 SER 1 B 146 ASP 1 B 192 HIS 1 B 216 GLU 1 B 225 LEU 1 B 246 ARG 1 B 282 ARG 1 B 289 ARG 1 B 298 ILE 1 B 310 GLN 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	133	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	138	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	146	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	192	HIS
1 B 225 LEU 1 B 246 ARG 1 B 282 ARG 1 B 289 ARG 1 B 298 ILE 1 B 310 GLN 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	216	GLU
1 B 246 ARG 1 B 282 ARG 1 B 289 ARG 1 B 298 ILE 1 B 310 GLN 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	225	LEU
1 B 282 ARG 1 B 289 ARG 1 B 298 ILE 1 B 310 GLN 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	246	ARG
1 B 289 ARG 1 B 298 ILE 1 B 310 GLN 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	282	ARG
1 B 298 ILE 1 B 310 GLN 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	289	ARG
1 B 310 GLN 1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	298	ILE
1 B 343 ARG 1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	310	GLN
1 B 362 ARG 1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	343	ARG
1 B 472 LEU 1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	362	ARG
1 B 475 ILE 1 B 494 LEU 1 B 496 ILE	1	В	472	LEU
1 B 494 LEU 1 B 496 ILE	1	В	475	ILE
1 B 496 ILE	1	В	494	LEU
	1	В	496	ILE

Mol	Chain	Res	Type
1	В	521	THR
1	В	522	LEU
1	В	523	SER
1	С	11	SER
1	С	52	TRP
1	С	54	LEU
1	С	82	ASP
1	С	86	VAL
1	С	88	LEU
1	С	98	VAL
1	С	101	ASP
1	С	123	LEU
1	С	138	SER
1	С	179	ASP
1	С	192	HIS
1	С	216	GLU
1	С	218	GLU
1	С	228	THR
1	С	246	ARG
1	С	298	ILE
1	С	320	GLU
1	С	343	ARG
1	С	411	THR
1	С	475	ILE
1	С	476	GLU
1	С	490	ASP
1	С	496	ILE
1	D	17	LEU
1	D	20	ARG
1	D	21	THR
1	D	32	ASP
1	D	44	LYS
1	D	54	LEU
1	D	68	VAL
1	D	74	ILE
1	D	87	PHE
1	D	88	LEU
1	D	98	VAL
1	D	101	ASP
1	D	130	GLU
1	D	133	ASP
1	D	138	SER

Mol	Chain	Res	Type
1	D	139	ASP
1	D	146	ASP
1	D	179	ASP
1	D	216	GLU
1	D	228	THR
1	D	289	ARG
1	D	367	LEU
1	D	391	ASP
1	D	405	MET
1	D	411	THR
1	D	430	ASP
1	D	472	LEU
1	D	494	LEU
1	D	496	ILE
1	D	521	THR
1	D	522	LEU
1	D	523	SER
1	Ε	21	THR
1	Е	54	LEU
1	Е	74	ILE
1	Ε	86	VAL
1	Е	98	VAL
1	Е	122	THR
1	E	138	SER
1	Е	163	GLU
1	Е	179	ASP
1	Е	192	HIS
1	E	207	ARG
1	Е	216	GLU
1	Е	225	LEU
1	Е	228	THR
1	Е	246	ARG
1	E	249	LEU
1	E	279	VAL
1	E	282	ARG
1	E	312	CYS
1	E	411	THR
1	E	421	SER
1	E	475	ILE
1	E	476	GLU
1	E	496	ILE
1	E	520	VAL

Mol	Chain	Res	Type
1	Е	521	THR
1	Е	526	SER
1	Е	552	ASN
1	Е	553	SER
1	F	17	LEU
1	F	21	THR
1	F	68	VAL
1	F	74	ILE
1	F	86	VAL
1	F	98	VAL
1	F	101	ASP
1	F	123	LEU
1	F	154	THR
1	F	164	GLN
1	F	225	LEU
1	F	228	THR
1	F	241	ARG
1	F	246	ARG
1	F	249	LEU
1	F	310	GLN
1	F	328	ASP
1	F	343	ARG
1	F	367	LEU
1	F	380	VAL
1	F	494	LEU
1	F	496	ILE
1	F	520	VAL
1	F	522	LEU
1	F	526	SER
1	G	74	ILE
1	G	78	LEU
1	G	81	LEU
1	G	98	VAL
1	G	101	ASP
1	G	125	ASP
1	G	138	SER
1	G	147	THR
1	G	161	LEU
1	G	179	ASP
1	G	192	HIS
1	G	216	GLU
1	G	228	THR

Mol	Chain	Res	Type
1	G	230	GLU
1	G	279	VAL
1	G	288	LYS
1	G	380	VAL
1	G	391	ASP
1	G	494	LEU
1	G	521	THR
1	G	526	SER
1	Н	21	THR
1	Н	81	LEU
1	Н	88	LEU
1	Н	98	VAL
1	Н	122	THR
1	Н	127	SER
1	Н	154	THR
1	Н	167	LYS
1	Н	179	ASP
1	Н	207	ARG
1	Н	239	VAL
1	Н	241	ARG
1	Н	246	ARG
1	Н	251	GLU
1	Н	346	ILE
1	Н	362	ARG
1	Н	367	LEU
1	Н	411	THR
1	H	477	THR
1	Н	490	ASP
1	Н	496	ILE
1	Н	521	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (29) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	115	GLN
1	А	192	HIS
1	А	419	GLN
1	А	441	GLN
1	А	464	HIS
1	В	310	GLN
1	В	441	GLN
1	В	445	GLN

Mol	Chain	Res	Type
1	В	464	HIS
1	С	192	HIS
1	С	429	GLN
1	С	464	HIS
1	D	164	GLN
1	D	229	HIS
1	D	488	GLN
1	Е	164	GLN
1	Е	192	HIS
1	Е	419	GLN
1	Е	445	GLN
1	F	192	HIS
1	F	253	ASN
1	F	310	GLN
1	F	445	GLN
1	F	464	HIS
1	G	158	ASN
1	G	253	ASN
1	G	445	GLN
1	G	464	HIS
1	Н	464	HIS

Continued from previous page...

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 24 ligands modelled in this entry, 16 are monoatomic - leaving 8 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	E	Bond ang	gles
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	TRS	Н	603	-	7,7,7	0.23	0	9,9,9	0.74	0
4	TRS	В	603	-	7,7,7	0.41	0	9,9,9	1.59	2 (22%)
4	TRS	D	603	-	7,7,7	0.33	0	9,9,9	0.82	0
4	TRS	G	603	-	7,7,7	0.52	0	9,9,9	0.85	1 (11%)
4	TRS	F	603	-	7,7,7	0.49	0	9,9,9	1.19	1 (11%)
4	TRS	А	603	-	7,7,7	0.30	0	9,9,9	0.70	0
4	TRS	С	603	-	7,7,7	0.62	0	9,9,9	1.09	1 (11%)
4	TRS	Е	603	-	7,7,7	0.30	0	9,9,9	0.93	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	TRS	Н	603	-	-	0/9/9/9	-
4	TRS	В	603	-	-	6/9/9/9	-
4	TRS	D	603	-	-	3/9/9/9	-
4	TRS	G	603	-	-	3/9/9/9	-
4	TRS	F	603	-	-	6/9/9/9	-
4	TRS	А	603	-	-	3/9/9/9	-
4	TRS	С	603	-	-	9/9/9/9	-
4	TRS	Е	603	-	-	4/9/9/9	-

There are no bond length outliers.

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	F	603	TRS	O3-C3-C	-3.16	100.99	111.00
4	В	603	TRS	O3-C3-C	2.77	119.76	111.00
4	В	603	TRS	C3-C-C1	2.59	118.85	110.81
4	G	603	TRS	O3-C3-C	-2.03	104.56	111.00
4	С	603	TRS	C1-C-N	2.00	113.95	107.98

There are no chirality outliers.

All (34) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	В	603	TRS	C2-C-C1-O1
4	В	603	TRS	C3-C-C1-O1
4	В	603	TRS	N-C-C1-O1
4	В	603	TRS	C1-C-C3-O3
4	В	603	TRS	C2-C-C3-O3
4	В	603	TRS	N-C-C3-O3
4	С	603	TRS	N-C-C1-O1
4	С	603	TRS	C3-C-C2-O2
4	С	603	TRS	C1-C-C3-O3
4	С	603	TRS	C2-C-C3-O3
4	С	603	TRS	N-C-C3-O3
4	D	603	TRS	C2-C-C1-O1
4	D	603	TRS	C3-C-C1-O1
4	D	603	TRS	N-C-C1-O1
4	Е	603	TRS	C2-C-C1-O1
4	Е	603	TRS	C3-C-C1-O1
4	Е	603	TRS	N-C-C1-O1
4	F	603	TRS	C2-C-C1-O1
4	F	603	TRS	C3-C-C1-O1
4	F	603	TRS	N-C-C1-O1
4	С	603	TRS	C3-C-C1-O1
4	С	603	TRS	C1-C-C2-O2
4	F	603	TRS	N-C-C3-O3
4	G	603	TRS	N-C-C2-O2
4	А	603	TRS	C1-C-C3-O3
4	А	603	TRS	C2-C-C3-O3
4	С	603	TRS	C2-C-C1-O1
4	F	603	TRS	C1-C-C3-O3
4	F	603	TRS	C2-C-C3-O3
4	G	603	TRS	C3-C-C2-O2
4	А	603	TRS	C2-C-C1-O1
4	С	603	TRS	N-C-C2-O2
4	Е	603	TRS	C3-C-C2-O2
4	G	603	TRS	C1-C-C2-O2

There are no ring outliers.

5 monomers are involved in 7 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	Н	603	TRS	2	0
4	В	603	TRS	1	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	D	603	TRS	1	0
4	С	603	TRS	2	0
4	Е	603	TRS	1	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	7	$\#RSRZ{>}2$		$OWAB(Å^2)$	Q<0.9
1	А	548/571~(95%)	-1.74	0	100	100	17, 30, 44, 72	0
1	В	548/571~(95%)	-1.74	0	100	100	18, 29, 45, 80	0
1	С	548/571~(95%)	-1.74	0	100	100	17, 30, 47, 76	0
1	D	548/571~(95%)	-1.72	0	100	100	19, 32, 49, 68	0
1	Е	548/571~(95%)	-1.73	0	100	100	18, 30, 45, 58	0
1	F	548/571~(95%)	-1.75	0	100	100	17, 29, 46, 72	0
1	G	548/571~(95%)	-1.72	0	100	100	17, 32, 50, 78	0
1	Н	548/571~(95%)	-1.71	0	100	100	18, 34, 55, 92	0
All	All	4384/4568 (95%)	-1.73	0	100	100	17, 31, 48, 92	0

There are no RSRZ outliers to report.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	\mathbf{Res}	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q < 0.9
3	MG	С	602	1/1	0.98	0.03	30,30,30,30	0
4	TRS	В	603	8/8	0.98	0.04	28,33,37,39	0
4	TRS	G	603	8/8	0.98	0.04	34,38,46,51	0
2	CA	С	601	1/1	0.99	0.01	33,33,33,33	0
3	MG	D	602	1/1	0.99	0.02	32,32,32,32	0
3	MG	Е	602	1/1	0.99	0.04	34,34,34,34	0
3	MG	F	602	1/1	0.99	0.03	29,29,29,29	0
3	MG	G	602	1/1	0.99	0.03	31,31,31,31	0
3	MG	Н	602	1/1	0.99	0.02	$27,\!27,\!27,\!27$	0
4	TRS	А	603	8/8	0.99	0.02	26,31,34,36	0
2	CA	Н	601	1/1	0.99	0.02	39,39,39,39	0
4	TRS	С	603	8/8	0.99	0.03	35,36,41,43	0
4	TRS	D	603	8/8	0.99	0.03	35,38,40,41	0
4	TRS	Е	603	8/8	0.99	0.04	31,39,41,57	0
4	TRS	F	603	8/8	0.99	0.03	$29,\!36,\!43,\!47$	0
3	MG	В	602	1/1	0.99	0.01	24,24,24,24	0
4	TRS	Н	603	8/8	0.99	0.04	36,45,47,59	0
2	CA	D	601	1/1	1.00	0.01	$35,\!35,\!35,\!35$	0
2	CA	Е	601	1/1	1.00	0.01	29,29,29,29	0
2	CA	F	601	1/1	1.00	0.01	29,29,29,29	0
2	CA	G	601	1/1	1.00	0.01	32,32,32,32	0
2	CA	В	601	1/1	1.00	0.01	31,31,31,31	0
3	MG	A	602	1/1	1.00	0.01	23,23,23,23	0
2	CA	A	601	1/1	1.00	0.01	27,27,27,27	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

