PDB ID : 3ZBY
Title : Ligand-free structure of CYP142 from Mycobacterium smegmatis
Authors : Garcia-Fernandez, E.; Frank, D.J.; Galan, B.; Kells, P.M.; Podust, L.M.; Garcia, J.L.; Ortiz de Montellano, P.R.
Deposited on : 2012-11-13
Resolution : 1.93 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.3 (157068), CSD as539be (2018)
- Xtriage (Phenix) : 1.13
- EDS : trunk30967
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- Refmac : 5.8.0158
- CCP4 : 7.0 (Gargrove)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 1.93 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R$_{free}$</td>
<td>111664</td>
<td>3622 (1.96-1.92)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>3795 (1.96-1.92)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>3757 (1.96-1.92)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>3757 (1.96-1.92)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>3554 (1.96-1.92)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for \geq3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions \leq5%

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>407</td>
<td></td>
</tr>
</tbody>
</table>
The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BCD</td>
<td>A</td>
<td>1403</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>B</td>
<td>1403</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>C</td>
<td>1403</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>D</td>
<td>1403</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>E</td>
<td>1403</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>F</td>
<td>1403</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>A</td>
<td>1404</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>B</td>
<td>1408</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1406</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1406</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1406</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>F</td>
<td>1406</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 6 unique types of molecules in this entry. The entry contains 22588 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called P450 HEME-THIOLATE PROTEIN.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>402</td>
<td>Total 3171 C 1990 N 561 O 595 S 25</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>404</td>
<td>Total 3181 C 1994 N 559 O 604 S 24</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>402</td>
<td>Total 3180 C 1995 N 561 O 600 S 24</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>402</td>
<td>Total 3205 C 2005 N 569 O 606 S 25</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>402</td>
<td>Total 3199 C 1999 N 574 O 602 S 24</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>402</td>
<td>Total 3186 C 1996 N 563 O 603 S 24</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 36 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>402</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>A</td>
<td>403</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>A</td>
<td>404</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>A</td>
<td>405</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>A</td>
<td>406</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>A</td>
<td>407</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>B</td>
<td>402</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>B</td>
<td>403</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>B</td>
<td>404</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>B</td>
<td>405</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>B</td>
<td>406</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>B</td>
<td>407</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>C</td>
<td>402</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>C</td>
<td>403</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>C</td>
<td>404</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>C</td>
<td>405</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>C</td>
<td>406</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>407</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>D</td>
<td>402</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>D</td>
<td>403</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>D</td>
<td>404</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>D</td>
<td>405</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>D</td>
<td>406</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>D</td>
<td>407</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>E</td>
<td>402</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>E</td>
<td>403</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>E</td>
<td>404</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>E</td>
<td>405</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>E</td>
<td>406</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>E</td>
<td>407</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>F</td>
<td>402</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>F</td>
<td>403</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>F</td>
<td>404</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>F</td>
<td>405</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>F</td>
<td>406</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
<tr>
<td>F</td>
<td>407</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A0R4Q6</td>
</tr>
</tbody>
</table>

- Molecule 2 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: C₃₄H₃₂FeN₄O₄).
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43 34 1 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43 34 1 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43 34 1 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43 34 1 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total C Fe N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43 34 1 4 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is BETA-CYCLODEXTRIN (three-letter code: BCD) (formula: \(\text{C}_{42}\text{H}_{70}\text{O}_{35} \)).

![BCD Diagram]

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77 42 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77 42 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77 42 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77 42 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77 42 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77 42 35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Molecule 4 is SULFATE ION (three-letter code: SO4) (formula: O$_4$S).

![Diagram of SO4]

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 5 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: C\textsubscript{2}H\textsubscript{6}O\textsubscript{2}).

- Molecule 6 is water.

![Diagram of EDO molecule]
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>448</td>
<td>Total 448</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>439</td>
<td>Total 439</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>457</td>
<td>Total 457</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>431</td>
<td>Total 431</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>445</td>
<td>Total 445</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>417</td>
<td>Total 417</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: P450 HEME-THIOLATE PROTEIN

 Chain A:

 Chain B:

 Chain C:
Molecule 1: P450 HEME-THIOLATE PROTEIN

Chain D:

Chain E:

Chain F:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>C 1 2 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>94.05Å 162.85Å 266.44Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>90.00° 90.00° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>266.44 – 1.93 69.49 – 1.93</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>94.3 (266.44-1.93) 94.3 (69.49-1.93)</td>
<td>EDS</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.08</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rsym</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>< I/σ(I) > 1</td>
<td>1.16 (at 1.92Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>REFMAC 5.5.0109</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, Rfree</td>
<td>0.190 , 0.230 0.189 , 0.228</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rfree test set</td>
<td>14356 reflections (5.06%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>22.0</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.095</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent ksol(e/Å³), Bsol(Å²)</td>
<td>0.34 , 33.4</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning</td>
<td><</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.460 for -1/2h+1/2k,3/2h+1/2k,-l</td>
<td>Xtriage</td>
</tr>
<tr>
<td></td>
<td>0.467 for -1/2h-1/2k,-3/2h+1/2k,-l</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.467 for 1/2h+1/2k,3/2h-1/2k,-l</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.467 for 1/2h-1/2k,-3/2h-1/2k,-l</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.467 for -h,-k,l</td>
<td></td>
</tr>
<tr>
<td>Fo,Fc correlation</td>
<td>0.95</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>22588</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>25.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.10% of the height of the origin peak. No significant pseudotranslation is detected.

1 Intensities estimated from amplitudes.
2 Theoretical values of < |L| >, < L² > for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: BCD, HEM, SO4, EDO

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 5\) is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1.17</td>
<td>4/3237 (0.1%)</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1.18</td>
<td>7/3251 (0.2%)</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1.20</td>
<td>7/3255 (0.2%)</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1.17</td>
<td>5/3274 (0.2%)</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1.20</td>
<td>6/3265 (0.2%)</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1.17</td>
<td>6/3258 (0.2%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1.18</td>
<td>35/19540 (0.2%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

All (35) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>236</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>9.28</td>
<td>1.35</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>315</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>8.82</td>
<td>1.35</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>272</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>6.71</td>
<td>1.33</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>151</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>-6.52</td>
<td>1.18</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>309</td>
<td>GLU</td>
<td>CB-CG</td>
<td>6.49</td>
<td>1.64</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>315</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>6.41</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>158</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-6.10</td>
<td>1.39</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>280</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>6.08</td>
<td>1.65</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>309</td>
<td>GLU</td>
<td>CB-CG</td>
<td>6.02</td>
<td>1.63</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>236</td>
<td>GLU</td>
<td>CB-CG</td>
<td>-6.00</td>
<td>1.40</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>315</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>5.93</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>293</td>
<td>PHE</td>
<td>CD2-CE2</td>
<td>5.88</td>
<td>1.51</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>317</td>
<td>VAL</td>
<td>CB-CG2</td>
<td>5.86</td>
<td>1.65</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>315</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>5.85</td>
<td>1.32</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>27</td>
<td>TYR</td>
<td>CD1-CE1</td>
<td>5.79</td>
<td>1.48</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>226</td>
<td>GLU</td>
<td>CG-CD</td>
<td>5.75</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>284</td>
<td>CYS</td>
<td>CB-SG</td>
<td>-5.65</td>
<td>1.72</td>
<td>1.81</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>318</td>
<td>PHE</td>
<td>CE1-CZ</td>
<td>5.64</td>
<td>1.48</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>164</td>
<td>CYS</td>
<td>CB-SG</td>
<td>5.64</td>
<td>1.91</td>
<td>1.82</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>349</td>
<td>ALA</td>
<td>CA-CB</td>
<td>5.63</td>
<td>1.64</td>
<td>1.52</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>378</td>
<td>ARG</td>
<td>CG-CD</td>
<td>-5.62</td>
<td>1.37</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>27</td>
<td>TYR</td>
<td>CD1-CE1</td>
<td>5.56</td>
<td>1.47</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>158</td>
<td>TRP</td>
<td>CB-CG</td>
<td>-5.49</td>
<td>1.40</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>382</td>
<td>PHE</td>
<td>CE2-CZ</td>
<td>5.49</td>
<td>1.47</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>359</td>
<td>ARG</td>
<td>CZ-NH1</td>
<td>5.33</td>
<td>1.40</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>77</td>
<td>TYR</td>
<td>CD2-CE2</td>
<td>5.32</td>
<td>1.47</td>
<td>1.39</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>40</td>
<td>ARG</td>
<td>CG-CD</td>
<td>5.32</td>
<td>1.65</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>242</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>-9.77</td>
<td>94.39</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>111</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>9.31</td>
<td>124.96</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>363</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>9.21</td>
<td>124.90</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>161</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>-8.82</td>
<td>110.36</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>287</td>
<td>ASP</td>
<td>CA-CB-CG</td>
<td>-8.38</td>
<td>96.04</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>111</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.19</td>
<td>116.21</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.05</td>
<td>116.27</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>101</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.93</td>
<td>116.34</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>111</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.92</td>
<td>124.26</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.87</td>
<td>116.36</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.72</td>
<td>116.44</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.68</td>
<td>116.46</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>156</td>
<td>LEU</td>
<td>CB-CA-C</td>
<td>7.38</td>
<td>124.22</td>
<td>110.20</td>
</tr>
</tbody>
</table>

All (86) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>378</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>10.78</td>
<td>125.69</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>363</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.43</td>
<td>115.09</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>242</td>
<td>LEU</td>
<td>NE-CZ-NH2</td>
<td>-9.77</td>
<td>94.39</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>111</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>9.31</td>
<td>124.96</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>363</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>9.21</td>
<td>124.90</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>161</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>-8.82</td>
<td>110.36</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>287</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-8.38</td>
<td>96.04</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>111</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.19</td>
<td>116.21</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.05</td>
<td>116.27</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>101</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.93</td>
<td>116.34</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>111</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.92</td>
<td>124.26</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.87</td>
<td>116.36</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.72</td>
<td>116.44</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.68</td>
<td>116.46</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>156</td>
<td>LEU</td>
<td>CB-CA-C</td>
<td>7.38</td>
<td>124.22</td>
<td>110.20</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>378</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.31</td>
<td>116.65</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.25</td>
<td>116.68</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>359</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.20</td>
<td>116.70</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>101</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.94</td>
<td>116.83</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>156</td>
<td>LEU</td>
<td>CB-CA-C</td>
<td>6.88</td>
<td>123.27</td>
<td>110.20</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>179</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>6.88</td>
<td>111.20</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>24</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-6.87</td>
<td>116.87</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>90</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.80</td>
<td>116.90</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>28</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.69</td>
<td>123.65</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>179</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>6.64</td>
<td>110.82</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>111</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.50</td>
<td>117.05</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>101</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.45</td>
<td>117.08</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>179</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>6.44</td>
<td>110.50</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>112</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-6.39</td>
<td>100.14</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>389</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>6.37</td>
<td>110.39</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>40</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.25</td>
<td>123.43</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>111</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.22</td>
<td>123.41</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>287</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>6.17</td>
<td>121.49</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>362</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.15</td>
<td>123.37</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>161</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.09</td>
<td>123.78</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>54</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.03</td>
<td>123.72</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>156</td>
<td>LEU</td>
<td>CB-CA-C</td>
<td>5.96</td>
<td>121.52</td>
<td>110.20</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>362</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.95</td>
<td>123.27</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>107</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.87</td>
<td>123.58</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>156</td>
<td>LEU</td>
<td>CB-CA-C</td>
<td>5.86</td>
<td>121.33</td>
<td>110.20</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>179</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>5.85</td>
<td>109.56</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>54</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.85</td>
<td>123.56</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>362</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.78</td>
<td>117.41</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>39</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.74</td>
<td>123.47</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>101</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.73</td>
<td>117.44</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>156</td>
<td>LEU</td>
<td>CB-CA-C</td>
<td>5.71</td>
<td>121.06</td>
<td>110.20</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>99[A]</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.65</td>
<td>117.47</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>99[B]</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.65</td>
<td>117.47</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>254[A]</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.65</td>
<td>123.38</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>254[B]</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.65</td>
<td>123.38</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>105</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>-5.63</td>
<td>98.76</td>
<td>111.70</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>111</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.62</td>
<td>117.49</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>305</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>-5.60</td>
<td>91.25</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>251</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.59</td>
<td>123.09</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>89</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.56</td>
<td>117.52</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>89</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.54</td>
<td>123.07</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>20</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.50</td>
<td>123.25</td>
<td>118.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>179</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>5.49</td>
<td>108.98</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>101</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.47</td>
<td>117.56</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>24</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.46</td>
<td>117.57</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>378</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.42</td>
<td>117.59</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>156</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.40</td>
<td>127.73</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>101</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.39</td>
<td>117.60</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>89</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.36</td>
<td>122.98</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>53</td>
<td>LEU</td>
<td>CB-CG-CD1</td>
<td>-5.34</td>
<td>101.92</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>57</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.34</td>
<td>117.63</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>89</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.34</td>
<td>117.63</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>90</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.33</td>
<td>117.63</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>362</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.28</td>
<td>117.66</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>7</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-5.26</td>
<td>117.67</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>350</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.26</td>
<td>117.67</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>264</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.21</td>
<td>113.61</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>54</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.21</td>
<td>122.99</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>28</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.20</td>
<td>117.70</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>39</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.20</td>
<td>122.98</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>328</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-5.19</td>
<td>117.70</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>235</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.17</td>
<td>122.96</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>236</td>
<td>GLU</td>
<td>CG-CD-OE2</td>
<td>-5.16</td>
<td>107.97</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>217</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-5.14</td>
<td>117.73</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>CYS</td>
<td>C-N-CA</td>
<td>-5.11</td>
<td>111.57</td>
<td>122.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>CYS</td>
<td>C-N-CA</td>
<td>-5.11</td>
<td>111.57</td>
<td>122.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>65</td>
<td>THR</td>
<td>OG1-CB-CG2</td>
<td>5.09</td>
<td>121.72</td>
<td>110.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>305</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>-5.06</td>
<td>92.10</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>107</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.06</td>
<td>113.74</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>242</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>-5.03</td>
<td>103.72</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>166</td>
<td>LEU</td>
<td>CB-CG-CD2</td>
<td>5.02</td>
<td>119.53</td>
<td>111.00</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (1) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>165</td>
<td>GLY</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within
the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3171</td>
<td>0</td>
<td>3105</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>3181</td>
<td>0</td>
<td>3091</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3180</td>
<td>0</td>
<td>3116</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>3205</td>
<td>0</td>
<td>3134</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>3199</td>
<td>0</td>
<td>3132</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>3186</td>
<td>0</td>
<td>3126</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>43</td>
<td>0</td>
<td>30</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>77</td>
<td>0</td>
<td>70</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>77</td>
<td>0</td>
<td>70</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>77</td>
<td>0</td>
<td>70</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>77</td>
<td>0</td>
<td>70</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>77</td>
<td>0</td>
<td>67</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>77</td>
<td>0</td>
<td>68</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>448</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>439</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>457</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>431</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>445</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>417</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>22588</td>
<td>0</td>
<td>19329</td>
<td>442</td>
<td>1</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (442) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:1403:BCD:O36</td>
<td>3:C:1403:BCD:H27</td>
<td>1.43</td>
<td>1.15</td>
</tr>
<tr>
<td>3:C:1403:BCD:O51</td>
<td>3:C:1403:BCD:H672</td>
<td>1.48</td>
<td>1.10</td>
</tr>
<tr>
<td>1:F:99[A]:ARG:HA</td>
<td>1:F:99[A]:ARG:NE</td>
<td>1.64</td>
<td>1.08</td>
</tr>
<tr>
<td>1:C:7:ARG:HD2</td>
<td>4:C:1406:SO4:O3</td>
<td>1.55</td>
<td>1.07</td>
</tr>
<tr>
<td>3:B:1403:BCD:O32</td>
<td>3:B:1403:BCD:C23</td>
<td>2.02</td>
<td>1.06</td>
</tr>
<tr>
<td>3:C:1403:BCD:C67</td>
<td>3:C:1403:BCD:O51</td>
<td>2.06</td>
<td>1.03</td>
</tr>
<tr>
<td>1:D:7:ARG:HD2</td>
<td>4:D:1406:SO4:O3</td>
<td>1.59</td>
<td>1.00</td>
</tr>
<tr>
<td>3:B:1403:BCD:O37</td>
<td>3:B:1403:BCD:C21</td>
<td>2.09</td>
<td>1.00</td>
</tr>
<tr>
<td>1:D:99[B]:ARG:NH2</td>
<td>6:D:2170:HOH:O</td>
<td>1.92</td>
<td>1.00</td>
</tr>
<tr>
<td>1:D:40:ARG:NH1</td>
<td>1:D:40:ARG:HG3</td>
<td>1.59</td>
<td>0.99</td>
</tr>
<tr>
<td>1:E:169:HIS:O</td>
<td>1:E:175:ILE:CD1</td>
<td>2.10</td>
<td>0.98</td>
</tr>
<tr>
<td>1:E:138:MET:HB3</td>
<td>1:E:156:LEU:HD13</td>
<td>1.47</td>
<td>0.97</td>
</tr>
<tr>
<td>3:C:1403:BCD:HO32</td>
<td>3:C:1403:BCD:H13</td>
<td>1.22</td>
<td>0.94</td>
</tr>
<tr>
<td>1:B:169:HIS:O</td>
<td>1:B:175:ILE:HD11</td>
<td>1.67</td>
<td>0.94</td>
</tr>
<tr>
<td>1:B:138:MET:HB3</td>
<td>1:B:156:LEU:HD13</td>
<td>1.50</td>
<td>0.93</td>
</tr>
<tr>
<td>3:C:1403:BCD:C27</td>
<td>3:C:1403:BCD:O36</td>
<td>2.17</td>
<td>0.92</td>
</tr>
<tr>
<td>3:C:1403:BCD:C13</td>
<td>3:C:1403:BCD:O32</td>
<td>2.17</td>
<td>0.92</td>
</tr>
<tr>
<td>1:C:138:MET:HB3</td>
<td>1:C:156:LEU:CD1</td>
<td>2.00</td>
<td>0.92</td>
</tr>
<tr>
<td>3:E:1403:BCD:O37</td>
<td>3:E:1403:BCD:O21</td>
<td>1.84</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:1403:BCD:O26</td>
<td>3:C:1403:BCD:O35</td>
<td>1.88</td>
<td>0.91</td>
</tr>
<tr>
<td>3:E:1403:BCD:C37</td>
<td>3:E:1403:BCD:C21</td>
<td>2.43</td>
<td>0.91</td>
</tr>
<tr>
<td>1:D:40:ARG:HG3</td>
<td>1:D:40:ARG:HH11</td>
<td>0.76</td>
<td>0.90</td>
</tr>
<tr>
<td>3:B:1403:BCD:O32</td>
<td>3:B:1403:BCD:O23</td>
<td>1.90</td>
<td>0.89</td>
</tr>
<tr>
<td>3:D:1403:BCD:O64</td>
<td>3:D:1403:BCD:C63</td>
<td>2.21</td>
<td>0.88</td>
</tr>
<tr>
<td>1:B:7:ARG:NH1</td>
<td>4:B:1408:SO4:O1</td>
<td>2.07</td>
<td>0.88</td>
</tr>
<tr>
<td>3:B:1403:BCD:O35</td>
<td>3:B:1403:BCD:O26</td>
<td>1.91</td>
<td>0.88</td>
</tr>
<tr>
<td>3:E:1403:BCD:H56</td>
<td>3:E:1403:BCD:O57</td>
<td>1.75</td>
<td>0.86</td>
</tr>
<tr>
<td>1:B:81:MET:HE2</td>
<td>1:B:86:HIS:HA</td>
<td>1.55</td>
<td>0.86</td>
</tr>
<tr>
<td>1:E:138:MET:HB3</td>
<td>1:E:156:LEU:CD1</td>
<td>2.05</td>
<td>0.85</td>
</tr>
<tr>
<td>1:D:183:ALA:O</td>
<td>1:D:187[B]:GLU:HG3</td>
<td>1.76</td>
<td>0.85</td>
</tr>
<tr>
<td>1:D:138:MET:HB3</td>
<td>1:D:156:LEU:CD1</td>
<td>2.07</td>
<td>0.84</td>
</tr>
<tr>
<td>1:E:299:ARG:NH1</td>
<td>1:E:299:ARG:HG3</td>
<td>1.92</td>
<td>0.84</td>
</tr>
<tr>
<td>1:E:403:HIS:HD2</td>
<td>6:E:2441:HOH:O</td>
<td>1.60</td>
<td>0.84</td>
</tr>
<tr>
<td>1:C:4:MET:N</td>
<td>4:C:1406:SO4:O2</td>
<td>2.11</td>
<td>0.84</td>
</tr>
<tr>
<td>1:F:138:MET:HB3</td>
<td>1:F:156:LEU:HD13</td>
<td>1.57</td>
<td>0.84</td>
</tr>
<tr>
<td>1:D:138:MET:HB3</td>
<td>1:D:156:LEU:HD13</td>
<td>1.61</td>
<td>0.82</td>
</tr>
<tr>
<td>1:F:138:MET:HB3</td>
<td>1:F:156:LEU:CD1</td>
<td>2.10</td>
<td>0.81</td>
</tr>
<tr>
<td>1:C:138:MET:HB3</td>
<td>1:C:156:LEU:HD13</td>
<td>1.62</td>
<td>0.81</td>
</tr>
<tr>
<td>1:E:99:ARG:HE</td>
<td>1:E:347:GLN:HE22</td>
<td>1.28</td>
<td>0.80</td>
</tr>
<tr>
<td>1:B:378:ARG:NH1</td>
<td>1:B:387[A]:GLU:OE1</td>
<td>2.15</td>
<td>0.78</td>
</tr>
<tr>
<td>1:B:86:HIS:HE1</td>
<td>2:B:1402:HEM:O2D</td>
<td>1.64</td>
<td>0.78</td>
</tr>
<tr>
<td>1:E:359:ARG:HG2</td>
<td>1:E:362[B]:ARG:HH21</td>
<td>1.48</td>
<td>0.78</td>
</tr>
<tr>
<td>1:D:299:ARG:HD3</td>
<td>6:D:2347:HOH:O</td>
<td>1.85</td>
<td>0.76</td>
</tr>
<tr>
<td>1:B:133:ALA:HA</td>
<td>1:B:242:LEU:HD23</td>
<td>1.66</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:3:GLN:HA</td>
<td>4:A:1404:SO4:O1</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:C:315:GLU:OE1</td>
<td>6:C:2080:HOH:O</td>
<td>2.04</td>
<td>0.75</td>
</tr>
<tr>
<td>3:C:1403:BCD:O26</td>
<td>3:C:1403:BCD:C45</td>
<td>2.35</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:144:MET:HE2</td>
<td>6:A:2096:HOH:O</td>
<td>1.87</td>
<td>0.74</td>
</tr>
<tr>
<td>1:B:111:ARG:HH22</td>
<td>1:B:405:HIS:CD2</td>
<td>2.05</td>
<td>0.74</td>
</tr>
<tr>
<td>3:B:1403:BCD:O34</td>
<td>3:B:1403:BCD:O25</td>
<td>2.03</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:99[A]:ARG:H</td>
<td>1:D:99[A]:ARG:CD</td>
<td>1.99</td>
<td>0.74</td>
</tr>
<tr>
<td>1:E:358:GLU:OE1</td>
<td>6:E:2413:HOH:O</td>
<td>2.06</td>
<td>0.74</td>
</tr>
<tr>
<td>1:F:160:ASP:OD2</td>
<td>6:F:2235:HOH:O</td>
<td>2.06</td>
<td>0.73</td>
</tr>
<tr>
<td>1:F:86:HIS:HE1</td>
<td>2:F:1402:HEM:O2D</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:81:MET:CE</td>
<td>1:B:86:HIS:HA</td>
<td>2.17</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:99:ARG:CD</td>
<td>6:B:2407:HOH:O</td>
<td>2.35</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:169:HIS:O</td>
<td>1:B:175:ILE:CD1</td>
<td>2.36</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:196:ARG:NH1</td>
<td>6:B:2272:HOH:O</td>
<td>2.19</td>
<td>0.73</td>
</tr>
<tr>
<td>1:E:221:ASP:OD2</td>
<td>3:E:1403:BCD:H14</td>
<td>1.90</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:138:MET:HB3</td>
<td>1:B:156:LEU:CD1</td>
<td>2.19</td>
<td>0.72</td>
</tr>
<tr>
<td>1:D:165:GLY:O</td>
<td>1:D:169:HIS:HB3</td>
<td>1.90</td>
<td>0.71</td>
</tr>
<tr>
<td>1:F:249[B]:LEU:N</td>
<td>1:F:249[B]:LEU:HD12</td>
<td>2.04</td>
<td>0.71</td>
</tr>
<tr>
<td>1:E:86:HIS:HE1</td>
<td>2:E:1402:HEM:O2D</td>
<td>1.73</td>
<td>0.71</td>
</tr>
<tr>
<td>1:C:65:THR:HG21</td>
<td>6:C:2139:HOH:O</td>
<td>1.90</td>
<td>0.71</td>
</tr>
<tr>
<td>1:D:221:ASP:HB3</td>
<td>3:D:1403:BCD:H612</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1:D:86:HIS:HE1</td>
<td>2:D:1402:HEM:O2D</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:C:86:HIS:HE1</td>
<td>2:C:1402:HEM:O2D</td>
<td>1.74</td>
<td>0.70</td>
</tr>
<tr>
<td>2:F:1402:HEM:HBB2</td>
<td>2:F:1402:HEM:HMB2</td>
<td>1.74</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:86:HIS:HE1</td>
<td>2:A:1402:HEM:O2D</td>
<td>1.76</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:240:HIS:HE1</td>
<td>6:D:2292:HOH:O</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:88:LEU:HD12</td>
<td>1:B:213:VAL:HG21</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>3:C:1403:BCD:O26</td>
<td>3:C:1403:BCD:C35</td>
<td>2.41</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:99[A]:ARG:H</td>
<td>1:D:99[A]:ARG:HD2</td>
<td>1.59</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:341:HIS:HD2</td>
<td>2:C:1402:HEM:O1D</td>
<td>1.77</td>
<td>0.68</td>
</tr>
<tr>
<td>3:B:1403:BCD:O37</td>
<td>3:B:1403:BCD:O21</td>
<td>2.11</td>
<td>0.68</td>
</tr>
<tr>
<td>3:A:1403:BCD:O41</td>
<td>3:A:1403:BCD:O61</td>
<td>2.10</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:29:TRP:HH2</td>
<td>4:D:1406:SO4:O1</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:341:HIS:HE1</td>
<td>6:B:2146:HOH:O</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>1:F:105:LYS:HG3</td>
<td>6:F:2080:HOH:O</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:E:341:HIS:HD2</td>
<td>2:E:1402:HEM:O1D</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>3:E:1403:BCD:HO37</td>
<td>3:E:1403:BCD:C21</td>
<td>2.05</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:179:MET:HE1</td>
<td>3:B:1403:BCD:H652</td>
<td>1.76</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:83:ASP:OD1</td>
<td>1:A:86:HIS:HD2</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:176:GLN:OE1</td>
<td>1:A:176:GLN:HA</td>
<td>1.95</td>
<td>0.66</td>
</tr>
<tr>
<td>3:D:1403:BCD:H632</td>
<td>3:D:1403:BCD:HO64</td>
<td>1.62</td>
<td>0.65</td>
</tr>
<tr>
<td>3:B:1403:BCD:O67</td>
<td>3:B:1403:BCD:O47</td>
<td>2.11</td>
<td>0.65</td>
</tr>
<tr>
<td>2:F:1402:HEM:HBB2</td>
<td>2:F:1402:HEM:CMB</td>
<td>2.26</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:172:GLU:CB</td>
<td>6:B:2259:HOH:O</td>
<td>2.45</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:29:TRP:CH2</td>
<td>4:D:1406:SO4:O1</td>
<td>2.50</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:1403:BCD:C23</td>
<td>3:C:1403:BCD:O32</td>
<td>2.46</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:85:GLN:HB3</td>
<td>6:F:2054:HOH:O</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:4:MET:N</td>
<td>4:A:1404:SO4:O1</td>
<td>2.30</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:315:GLU:OE1</td>
<td>6:D:2069:HOH:O</td>
<td>2.15</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:341:HIS:HD2</td>
<td>2:A:1402:HEM:O1D</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:F:341:HIS:HD2</td>
<td>2:F:1402:HEM:O1D</td>
<td>1.82</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:374:PRO:HD3</td>
<td>6:B:2220:HOH:O</td>
<td>1.97</td>
<td>0.63</td>
</tr>
<tr>
<td>3:C:1403:BCD:O34</td>
<td>3:C:1403:BCD:O25</td>
<td>2.17</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:11:ASP:OD1</td>
<td>1:A:13[B]:VAL:HG22</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:F:245:GLY:O</td>
<td>1:F:249[B]:LEU:HD13</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:363:ARG:HD2</td>
<td>6:B:2416:HOH:O</td>
<td>1.98</td>
<td>0.62</td>
</tr>
<tr>
<td>1:E:7:ARG:CD</td>
<td>4:E:1406:SO4:O2</td>
<td>2.40</td>
<td>0.62</td>
</tr>
<tr>
<td>1:F:99[A]:ARG:CA</td>
<td>1:F:99[A]:ARG:NE</td>
<td>2.33</td>
<td>0.62</td>
</tr>
<tr>
<td>3:C:1403:BCD:HO61</td>
<td>3:C:1403:BCD:C12</td>
<td>2.13</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:88:LEU:CD1</td>
<td>1:B:213:VAL:CG2</td>
<td>2.78</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:105:LYS:HG3</td>
<td>6:A:2096:HOH:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:154:MET:HE2</td>
<td>1:B:158:TRP:CH2</td>
<td>2.36</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:240:HIS:HE1</td>
<td>6:B:2303:HOH:O</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:346:ASN:HD22</td>
<td>1:C:350:ARG:HH11</td>
<td>1.49</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:196:ARG:HD3</td>
<td>6:D:2256:HOH:O</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:358:GLU:OE1</td>
<td>6:D:2396:HOH:O</td>
<td>2.16</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:133:ALA:HA</td>
<td>1:A:242:LEU:HD23</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:154:MET:CE</td>
<td>1:B:158:TRP:CH2</td>
<td>2.84</td>
<td>0.60</td>
</tr>
<tr>
<td>3:C:1403:BCD:O51</td>
<td>3:C:1403:BCD:H671</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:99:ARG:HD3</td>
<td>1:E:103:MET:HG2</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>3:B:1403:BCD:O34</td>
<td>3:B:1403:BCD:C25</td>
<td>2.50</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:341:HIS:HD2</td>
<td>2:D:1402:HEM:O1D</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:341:HIS:HE1</td>
<td>6:E:2154:HOH:O</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:166:LEU:O</td>
<td>1:D:169:HIS:CE1</td>
<td>2.56</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:177:LYS:O</td>
<td>1:D:181:THR:HG23</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>3:C:1403:BCD:C12</td>
<td>3:C:1403:BCD:O61</td>
<td>2.51</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:346:ASN:HD22</td>
<td>1:E:350:ARG:HH11</td>
<td>1.49</td>
<td>0.58</td>
</tr>
<tr>
<td>1:F:99[A]:ARG:HH22</td>
<td>1:F:347:GLN:CB</td>
<td>2.16</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:177:LYS:O</td>
<td>1:F:181:THR:HG23</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:105:LYS:HG3</td>
<td>6:B:2190:HOH:O</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:88:LEU:HD12</td>
<td>1:B:213:VAL:CG2</td>
<td>2.33</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:225:PHE:CE2</td>
<td>3:B:1403:BCD:H622</td>
<td>2.39</td>
<td>0.58</td>
</tr>
<tr>
<td>1:F:7:ARG:CD</td>
<td>4:F:1406:SO4:O2</td>
<td>2.48</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:4:MET:N</td>
<td>4:D:1406:SO4:O2</td>
<td>2.36</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:88:LEU:CD1</td>
<td>1:B:213:VAL:HG23</td>
<td>2.34</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:9:ASP:OD1</td>
<td>1:E:40:ARG:HD3</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:F:83:ASP:OD1</td>
<td>1:F:86:HIS:HD2</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:374:PRO:O</td>
<td>6:D:2417:HOH:O</td>
<td>2.17</td>
<td>0.57</td>
</tr>
<tr>
<td>2:E:1402:HEM:HBC2</td>
<td>2:E:1402:HEM:HMC1</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:11:ASP:OD1</td>
<td>1:C:13[A]:VAL:HG22</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:240:HIS:HE1</td>
<td>6:E:2302:HOH:O</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:99[B]:ARG:HG3</td>
<td>1:D:99[B]:ARG:HH11</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>3:D:1403:BCD:H662</td>
<td>3:D:1403:BCD:O57</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:341:HIS:HE1</td>
<td>6:D:2136:HOH:O</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:99[A]:ARG:HH22</td>
<td>1:F:347:GLN:HB2</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:99[B]:ARG:HG3</td>
<td>1:D:99[B]:ARG:NH1</td>
<td>2.19</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:249[B]:LEU:H</td>
<td>1:F:249[B]:LEU:CD1</td>
<td>2.18</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:9:ASP:OD1</td>
<td>1:C:40:ARG:HD3</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:249[B]:LEU:H</td>
<td>1:F:249[B]:LEU:HD12</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>3:B:1403:BCD:O41</td>
<td>3:B:1403:BCD:O61</td>
<td>2.24</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:378:ARG:NH1</td>
<td>1:C:387:GLU:HG2</td>
<td>2.20</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:346:ASN:HD22</td>
<td>1:B:350:ARG:HH11</td>
<td>1.51</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:341:HIS:HE1</td>
<td>6:C:2161:HOH:O</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:341:HIS:HD2</td>
<td>2:B:1402:HEM:O1D</td>
<td>1.90</td>
<td>0.55</td>
</tr>
<tr>
<td>1:F:249[B]:LEU:N</td>
<td>1:F:249[B]:LEU:CD1</td>
<td>2.69</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:179:MET:CE</td>
<td>3:B:1403:BCD:H652</td>
<td>2.36</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:133:ALA:HA</td>
<td>1:D:242:LEU:HD23</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:86:HIS:CE1</td>
<td>2:B:1402:HEM:O2D</td>
<td>2.55</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:213:VAL:HG23</td>
<td>1:B:213:VAL:O</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:3:GLN:HG2</td>
<td>1:A:7:ARG:HD2</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>3:C:1403:BCD:C17</td>
<td>3:C:1403:BCD:O36</td>
<td>2.55</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:177:LYS:O</td>
<td>1:D:181:THR:CG2</td>
<td>2.56</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:71:ASP:CB</td>
<td>6:E:2142:HOH:O</td>
<td>2.56</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:54:ASP:OD2</td>
<td>1:C:294:HIS:HE1</td>
<td>1.91</td>
<td>0.54</td>
</tr>
<tr>
<td>3:B:1403:BCD:O35</td>
<td>3:B:1403:BCD:C26</td>
<td>2.55</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:3:GLN:HA</td>
<td>4:B:1408:SO4:O2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:1403:BCD:HO36</td>
<td>3:C:1403:BCD:H27</td>
<td>1.69</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:236:GLU:OE1</td>
<td>1:C:240:HIS:HE1</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:198:ALA:O</td>
<td>1:B:199[B]:GLU:OE1</td>
<td>2.25</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:102:VAL:HG11</td>
<td>1:D:347[A]:GLN:HG2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:171:ASP:HB2</td>
<td>6:E:2262:HOH:O</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>3:B:1403:BCD:HO34</td>
<td>3:B:1403:BCD:HO25</td>
<td>1.41</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:83:ASP:OD1</td>
<td>1:C:86:HIS:HD2</td>
<td>1.92</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:54:ASP:OD2</td>
<td>1:D:294:HIS:HE1</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:54:ASP:OD2</td>
<td>1:B:294:HIS:HE1</td>
<td>1.92</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:7:ARG:CD</td>
<td>4:C:1406:SO4:O3</td>
<td>2.45</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:221:ASP:CB</td>
<td>3:D:1403:BCD:H612</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>3:D:1403:BCD:C51</td>
<td>3:D:1403:BCD:O21</td>
<td>2.54</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:359:ARG:HG2</td>
<td>6:A:2205:HOH:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:88:LEU:HD11</td>
<td>1:B:213:VAL:HG23</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:225:PHE:HE2</td>
<td>3:B:1403:BCD:H622</td>
<td>1.73</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:154:MET:HE2</td>
<td>1:F:158:TRP:CH2</td>
<td>2.44</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:1402:HEM:HB2</td>
<td>2:B:1402:HEM:HMC1</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>3:B:1403:BCD:HO35</td>
<td>3:B:1403:BCD:HO26</td>
<td>1.47</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:172:GLU:HA</td>
<td>1:A:175:ILE:HD12</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>3:B:1403:BCD:C37</td>
<td>3:B:1403:BCD:C21</td>
<td>2.87</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:54:ASP:OD2</td>
<td>1:E:294:HIS:HE1</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:11:ASP:OD1</td>
<td>1:F:13[A]:VAL:HG22</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:346:ASN:HD22</td>
<td>1:A:350:ARG:NH1</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:166:LEU:O</td>
<td>1:D:169:HIS:ND1</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:200:PRO:HG3</td>
<td>6:E:2286:HOH:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:154:MET:CE</td>
<td>1:F:158:TRP:CH2</td>
<td>2.93</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:403:HIS:CD2</td>
<td>6:E:2441:HOH:O</td>
<td>2.46</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:346:ASN:HD22</td>
<td>1:D:350:ARG:HH11</td>
<td>1.56</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:395:PRO:O</td>
<td>6:C:2453:HOH:O</td>
<td>2.18</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:4:MET:HG3</td>
<td>4:D:1406:SO4:O2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:162:LEU:O</td>
<td>1:F:166:LEU:HG</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:3:GLN:CA</td>
<td>4:A:1404:SO4:O1</td>
<td>2.59</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:165:GLY:HA3</td>
<td>1:C:178:LEU:HD13</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:190:LYS:NZ</td>
<td>1:D:221:ASP:OD1</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:83:ASP:OD1</td>
<td>1:F:86:HIS:CD2</td>
<td>2.63</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:347[B]:GLN:HG3</td>
<td>6:C:2422:HOH:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:4:MET:HB2</td>
<td>4:B:1408:SO4:O4</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:3:GLN:HA</td>
<td>4:E:1406:SO4:O4</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:1403:BCD:H23</td>
<td>3:C:1403:BCD:O32</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:56:GLU:OE2</td>
<td>2:E:1402:HEM:O2A</td>
<td>2.29</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:245:GLY:O</td>
<td>1:F:249[B]:LEU:CD1</td>
<td>2.60</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:341:HIS:O</td>
<td>2:D:1402:HEM:HBA2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:134:ALA:O</td>
<td>1:A:138:MET:HG3</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:99:ARG:HD3</td>
<td>1:E:103:MET:CG</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:236:GLU:HG3</td>
<td>6:E:2299:HOH:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>3:B:1403:BCD:HO34</td>
<td>3:B:1403:BCD:C25</td>
<td>2.24</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:83:ASP:OD1</td>
<td>1:B:86:HIS:HD2</td>
<td>1.96</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:170:VAL:N</td>
<td>6:C:2274:HOH:O</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:83:ASP:OD1</td>
<td>1:E:86:HIS:HD2</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:56:GLU:OE2</td>
<td>2:F:1402:HEM:O2A</td>
<td>2.29</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:88:LEU:HD11</td>
<td>1:B:213:VAL:CG2</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:345:GLY:HA3</td>
<td>2:F:1402:HEM:C3C</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>2:A:1402:HEM:CMB</td>
<td>2:A:1402:HEM:HBB2</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>2:A:1402:HEM:HMB2</td>
<td>2:A:1402:HEM:HBB2</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:166:LEU:O</td>
<td>1:B:169:HIS:ND1</td>
<td>2.45</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:11:ASP:OD1</td>
<td>1:D:13:VAL:HG22</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:378:ARG:HD3</td>
<td>1:A:387[B]:GLU:CD</td>
<td>2.34</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:190:LYS:CE</td>
<td>1:D:221:ASP:OD1</td>
<td>2.61</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:83:ASP:OD1</td>
<td>1:D:86:HIS:HD2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:4:MET:HB2</td>
<td>4:A:1404:SO4:O2</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:266:LEU:O</td>
<td>1:D:270:ILE:HG12</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:7:ARG:CD</td>
<td>4:A:1404:SO4:O4</td>
<td>2.58</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:138:MET:HB3</td>
<td>1:A:156:LEU:HD13</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:254[A]:ASP:OD1</td>
<td>6:B:2323:HOH:O</td>
<td>2.19</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:3:GLN:CA</td>
<td>4:B:1408:SO4:O2</td>
<td>2.61</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:105[A]:LYS:HE2</td>
<td>6:C:2206:HOH:O</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:57:ARG:NH1</td>
<td>6:E:2116:HOH:O</td>
<td>2.18</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:345:GLY:HA3</td>
<td>2:A:1402:HEM:C3C</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:346:ASN:HD22</td>
<td>1:C:350:ARG:NH1</td>
<td>2.11</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:346:ASN:HD22</td>
<td>1:D:350:ARG:NH1</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:9:ASP:OD1</td>
<td>1:F:40:ARG:HD3</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:54:ASP:OD2</td>
<td>1:B:294:HIS:CE1</td>
<td>2.66</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:240:HIS:HD2</td>
<td>6:B:2306:HOH:O</td>
<td>1.97</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:99:ARG:HE</td>
<td>1:E:347:GLN:NE2</td>
<td>2.03</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:371:ASP:C</td>
<td>1:C:371:ASP:OD1</td>
<td>2.53</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:166:LEU:O</td>
<td>1:B:169:HIS:CE1</td>
<td>2.67</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:13[B]:VAL:O</td>
<td>1:C:13[B]:VAL:HG12</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:1403:BCD:O41</td>
<td>3:C:1403:BCD:O61</td>
<td>2.32</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:56:GLU:OE2</td>
<td>2:C:1402:HEM:O2A</td>
<td>2.32</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:1402:HEM:CMB</td>
<td>2:B:1402:HEM:HB2</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:217:ARG:NE</td>
<td>6:B:2284:HOH:O</td>
<td>2.46</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:387:ARG:HB2</td>
<td>1:D:387[A]:GLU:HG2</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:105:LYS:HE3</td>
<td>1:D:108:SER:OG</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>2:D:1402:HEM:HB2</td>
<td>2:D:1402:HEM:CMB</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:54:ASP:OD2</td>
<td>1:C:294:HIS:CE1</td>
<td>2.67</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:40:ARG:NH1</td>
<td>1:D:40:ARG:CG</td>
<td>2.34</td>
<td>0.47</td>
</tr>
<tr>
<td>3:B:1403:BCD:H27</td>
<td>3:B:1403:BCD:H46</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>3:B:1403:BCD:C12</td>
<td>3:B:1403:BCD:C61</td>
<td>2.93</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:144:MET:HE1</td>
<td>1:A:348:LEU:HD22</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:234:GLY:HA2</td>
<td>2:B:1402:HEM:C2C</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:387[B]:GLU:OE2</td>
<td>6:B:2435:HOH:O</td>
<td>2.19</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:165:GLY:HA3</td>
<td>1:E:178:LEU:HD13</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:234:GLY:HA2</td>
<td>2:F:1402:HEM:C2C</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:3:GLN:CB</td>
<td>4:B:1408:SO4:O2</td>
<td>2.63</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:378:ARG:NH1</td>
<td>1:C:387:GLU:OE2</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>3:E:1403:BCD:C56</td>
<td>3:E:1403:BCD:O57</td>
<td>2.55</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:240:HIS:CG</td>
<td>1:C:385:GLY:HA3</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:190:LYS:NZ</td>
<td>1:E:221:ASP:OD1</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:85[A]:GLN:HG3</td>
<td>6:C:2175:HOH:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:54:ASP:OD2</td>
<td>1:F:294:HIS:HE1</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:345:GLY:HA3</td>
<td>2:D:1402:HEM:C3C</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:9:ASP:OD1</td>
<td>1:B:40:ARG:HD3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>3:A:1403:BCD:O35</td>
<td>3:A:1403:BCD:C16</td>
<td>2.64</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:190:LYS:CE</td>
<td>1:E:221:ASP:OD1</td>
<td>2.63</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:111:ARG:NH2</td>
<td>6:C:2226:HOH:O</td>
<td>2.43</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:165:GLY:CA</td>
<td>1:D:168:SER:H</td>
<td>2.29</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:4:MET:SD</td>
<td>4:A:1404:SO4:O2</td>
<td>2.75</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:242:LEU:HD21</td>
<td>1:D:356:MET:HG2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:160:ASP:OD2</td>
<td>6:C:2270:HOH:O</td>
<td>2.21</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:240:HIS:HD2</td>
<td>6:E:2305:HOH:O</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:3:GLN:CA</td>
<td>4:E:1406:SO4:O4</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:240:HIS:HD2</td>
<td>6:A:2308:HOH:O</td>
<td>2.00</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:382:PHE:HB3</td>
<td>6:B:2433:HOH:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:347:GLN:HG3</td>
<td>6:E:2403:HOH:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:403:HIS:HB2</td>
<td>6:E:2439:HOH:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:378:ARG:NH1</td>
<td>1:D:387[A]:GLU:OE1</td>
<td>2.49</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:346:ASN:HD22</td>
<td>1:B:350:ARG:NH1</td>
<td>2.13</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:54:ASP:OD2</td>
<td>1:A:294:HIS:HE1</td>
<td>2.01</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:166:LEU:O</td>
<td>1:C:169:HIS:ND1</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:282:ASN:HA</td>
<td>1:C:306:LEU:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>2:D:1402:HEM:HB2</td>
<td>2:D:1402:HEM:HMB2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:359:ARG:HG2</td>
<td>6:D:2195:HOH:O</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:138:MET:CE</td>
<td>6:F:2214:HOH:O</td>
<td>2.65</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:345:GLY:HA3</td>
<td>2:E:1402:HEM:C3C</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:156:LEU:HB3</td>
<td>6:A:2254:HOH:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>3:B:1403:BCD:O61</td>
<td>3:B:1403:BCD:C12</td>
<td>2.66</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:345:GLY:HA3</td>
<td>2:C:1402:HEM:C3C</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:236:GLU:HG3</td>
<td>6:D:2290:HOH:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1:B:111:ARG:NH2</td>
<td>1:B:405:HIS:NE2</td>
<td>2.67</td>
<td>0.43</td>
</tr>
<tr>
<td>3:D:1403:BCD:C66</td>
<td>3:D:1403:BCD:O57</td>
<td>2.67</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:282:ASN:HA</td>
<td>1:E:306:LEU:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:234:GLY:HA2</td>
<td>2:C:1402:HEM:C2C</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:346:ASN:HD22</td>
<td>1:E:350:ARG:NH1</td>
<td>2.15</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:221:ASP:OD2</td>
<td>3:C:1403:BCD:O23</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:398:PRO:HB2</td>
<td>1:D:400:LEU:HG</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:359:ARG:HG2</td>
<td>1:E:362:LYS:HA1</td>
<td>2.25</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:123:ARG:HG2</td>
<td>1:F:125:GLU:OE2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:85:GLN:CB</td>
<td>6:F:2054:HOH:O</td>
<td>2.61</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:233:GLY:HA2</td>
<td>5:B:1409:EDO:22</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:234:GLY:HA2</td>
<td>2:E:1402:HEM:C2C</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:141:ILE:HG21</td>
<td>1:C:231:LEU:HD23</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:233:GLY:HA2</td>
<td>5:C:1407:EDO:22</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:177:LYS:O</td>
<td>1:B:181:THR:HG23</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:294:HIS:HD2</td>
<td>6:C:2367:HOH:O</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:200:PRO:HG3</td>
<td>6:D:2275:HOH:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:99:ARG:NE</td>
<td>1:E:347:GLN:HE22</td>
<td>2.05</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:183:ALA:O</td>
<td>1:F:187:[B]:GLU:HG2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:181:THR:HB</td>
<td>6:D:2243:HOH:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:4:MET:CG</td>
<td>4:A:1404:SO4:O2</td>
<td>2.68</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:211:SER:O</td>
<td>1:A:217:ARG:HG2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:366:ASP:O</td>
<td>1:A:368:[A]:ARG:HG3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:240:HIS:HD2</td>
<td>6:C:2320:HOH:O</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:299:ARG:CG</td>
<td>1:E:299:ARG:HH11</td>
<td>2.05</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:144:MET:HE1</td>
<td>1:A:348:LEU:CD2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:49:TYR:CD1</td>
<td>1:A:317:VAL:HG21</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:209:VAL:O</td>
<td>1:D:217:ARG:NH2</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:212:GLU:OE1</td>
<td>1:E:217:[A]:ARG:CG</td>
<td>2.68</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:105:LYS:HD3</td>
<td>1:B:105:LYS:HA</td>
<td>1.75</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:1403:BCD:C45</td>
<td>3:C:1403:BCD:HO26</td>
<td>2.31</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:198:ALA:C</td>
<td>1:B:199:[B]:GLU:OE1</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:282:ASN:HA</td>
<td>1:B:306:LEU:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:162:LEU:O</td>
<td>1:C:166:LEU:HG</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:190:LYS:NZ</td>
<td>1:C:221:ASP:OD1</td>
<td>2.45</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:277:THR:O</td>
<td>1:E:278:SER:C</td>
<td>2.57</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:328:ASN:HA</td>
<td>1:D:306:LEU:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:362[B]:ARG:HG2</td>
<td>1:E:363:ARG:HG3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:199[B]:GLU:OE1</td>
<td>1:B:199[B]:GLU:CA</td>
<td>2.66</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:213:VAL:O</td>
<td>1:B:213:VAL:CG2</td>
<td>2.69</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:278:SER:N</td>
<td>1:E:279:PRO:HD3</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:294:ARG:HG3</td>
<td>1:E:294:ARG:HA</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:144:MET:HB2</td>
<td>1:A:144:MET:HE2</td>
<td>1.60</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:99:ARG:HD2</td>
<td>1:A:103:MET:HG3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:236:GLU:HG3</td>
<td>6:B:2302:HOH:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:134:ALA:O</td>
<td>1:F:138:MET:HG3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:81:MET:CE</td>
<td>1:B:89:ARG:HB3</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:83:ASP:OD1</td>
<td>1:C:86:HIS:CD2</td>
<td>2.71</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:114:ASP:OD1</td>
<td>6:A:2205:HOH:O</td>
<td>2.22</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:166:LEU:O</td>
<td>1:C:169:HIS:CE1</td>
<td>2.74</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:253:ARG:HA</td>
<td>1:D:253:ARG:HD2</td>
<td>1.78</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:196:ARG:HD3</td>
<td>1:F:196:ARG:HA</td>
<td>1.95</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:199[A]:GLU:OE1</td>
<td>6:B:2278:HOH:O</td>
<td>2.22</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:253:ARG:HD2</td>
<td>1:C:253:ARG:HA</td>
<td>1.81</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:7:ARG:NH1</td>
<td>4:E:1406:SO4:O2</td>
<td>2.45</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:111:ARG:NE</td>
<td>6:C:2226:HOH:O</td>
<td>2.46</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:111:ARG:O</td>
<td>1:C:115:THR:HG23</td>
<td>2.20</td>
<td>0.40</td>
</tr>
</tbody>
</table>

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:E:2187:HOH:O</td>
<td>6:F:2414:HOH:O</td>
<td>1.89</td>
<td>0.31</td>
</tr>
</tbody>
</table>
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>405/407 (100%)</td>
<td>393 (97%)</td>
<td>12 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>407/407 (100%)</td>
<td>394 (97%)</td>
<td>13 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>407/407 (100%)</td>
<td>391 (96%)</td>
<td>16 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>407/407 (100%)</td>
<td>395 (97%)</td>
<td>12 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>406/407 (100%)</td>
<td>395 (97%)</td>
<td>11 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>406/407 (100%)</td>
<td>397 (98%)</td>
<td>9 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2438/2442 (100%)</td>
<td>2365 (97%)</td>
<td>73 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>340/349 (97%)</td>
<td>332 (98%)</td>
<td>8 (2%)</td>
<td>52 41</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>341/349 (98%)</td>
<td>330 (97%)</td>
<td>11 (3%)</td>
<td>42 29</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>343/349 (98%)</td>
<td>330 (96%)</td>
<td>13 (4%)</td>
<td>36 21</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>346/349 (99%)</td>
<td>336 (97%)</td>
<td>10 (3%)</td>
<td>45 32</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>345/349 (99%)</td>
<td>333 (96%)</td>
<td>12 (4%)</td>
<td>39 25</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>346/349 (99%)</td>
<td>337 (97%)</td>
<td>9 (3%)</td>
<td>49 37</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2061/2094 (98%)</td>
<td>1998 (97%)</td>
<td>63 (3%)</td>
<td>45 29</td>
</tr>
</tbody>
</table>
All (63) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>77</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>99</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>105</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>125</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>169</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>199</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>371</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>378</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>77</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>104</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>125</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>138</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>164</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>181</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>216</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>265</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>378</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>403</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>405</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>65</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>77</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>108</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>202</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>253</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>265</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>368A</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>368B</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>371</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>372A</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>372B</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>378</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>399</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>40</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>77</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>99A</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>99B</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>125</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>171</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>181</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>202</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>265</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>378</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>77</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>99</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>125</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>138</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>164</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>169</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>175</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>202</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>265</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>299</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>305</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>371</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>77</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>99[A]</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>99[B]</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>100</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>105</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>168</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>181</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>199</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>299</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (46) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>86</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>94</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>216</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>240</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>294</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>323</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>341</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>346</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>72</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>86</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>240</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>294</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>323</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>341</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>346</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>72</td>
<td>GLN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>86</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>240</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>294</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>323</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>341</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>346</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>86</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>240</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>294</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>323</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>341</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>346</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>86</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>216</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>240</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>294</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>323</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>341</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>346</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>347</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>86</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>216</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>240</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>294</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>323</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>341</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>346</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>347</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>403</td>
<td>HIS</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.
5.6 Ligand geometry

35 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>A</td>
<td>1402</td>
<td>1.5</td>
<td>27,50,50</td>
<td>2.22</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>A</td>
<td>1403</td>
<td>-</td>
<td>84,84,84</td>
<td>0.77</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>A</td>
<td>1404</td>
<td>-</td>
<td>4,4,4</td>
<td>0.74</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>A</td>
<td>1405</td>
<td>-</td>
<td>4,4,4</td>
<td>0.66</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>A</td>
<td>1406</td>
<td>2</td>
<td>3,3,3</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>B</td>
<td>1402</td>
<td>1.5</td>
<td>27,50,50</td>
<td>2.31</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>B</td>
<td>1403</td>
<td>-</td>
<td>84,84,84</td>
<td>0.91</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>B</td>
<td>1406</td>
<td>-</td>
<td>4,4,4</td>
<td>0.77</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>B</td>
<td>1407</td>
<td>-</td>
<td>4,4,4</td>
<td>0.61</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>B</td>
<td>1408</td>
<td>-</td>
<td>4,4,4</td>
<td>0.78</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>B</td>
<td>1409</td>
<td>2</td>
<td>3,3,3</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>C</td>
<td>1402</td>
<td>1.5</td>
<td>27,50,50</td>
<td>2.06</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>C</td>
<td>1403</td>
<td>-</td>
<td>84,84,84</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1404</td>
<td>-</td>
<td>4,4,4</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1405</td>
<td>-</td>
<td>4,4,4</td>
<td>0.79</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1406</td>
<td>-</td>
<td>4,4,4</td>
<td>0.62</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>C</td>
<td>1407</td>
<td>2</td>
<td>3,3,3</td>
<td>0.86</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>D</td>
<td>1402</td>
<td>1.5</td>
<td>27,50,50</td>
<td>2.23</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>D</td>
<td>1403</td>
<td>-</td>
<td>84,84,84</td>
<td>0.69</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1404</td>
<td>-</td>
<td>4,4,4</td>
<td>0.81</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1405</td>
<td>-</td>
<td>4,4,4</td>
<td>1.01</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1406</td>
<td>-</td>
<td>4,4,4</td>
<td>0.82</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>D</td>
<td>1407</td>
<td>2</td>
<td>3,3,3</td>
<td>1.18</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>E</td>
<td>1402</td>
<td>1.5</td>
<td>27,50,50</td>
<td>2.30</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>E</td>
<td>1403</td>
<td>-</td>
<td>84,84,84</td>
<td>0.91</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1404</td>
<td>-</td>
<td>4,4,4</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1405</td>
<td>-</td>
<td>4,4,4</td>
<td>0.85</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1406</td>
<td>1</td>
<td>4,4,4</td>
<td>0.56</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>E</td>
<td>1407</td>
<td>2</td>
<td>3,3,3</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>F</td>
<td>1402</td>
<td>1.5</td>
<td>27,50,50</td>
<td>2.13</td>
</tr>
</tbody>
</table>
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HEM</td>
<td>A</td>
<td>1402</td>
<td>1,5</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>A</td>
<td>1403</td>
<td>-</td>
<td>2/2/35/35</td>
<td>0/42/182/182</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>A</td>
<td>1404</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>A</td>
<td>1405</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>A</td>
<td>1406</td>
<td>2</td>
<td>-</td>
<td>0/1/1/1</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>B</td>
<td>1402</td>
<td>1,5</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>B</td>
<td>1403</td>
<td>-</td>
<td>2/2/35/35</td>
<td>0/42/182/182</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>B</td>
<td>1406</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>B</td>
<td>1407</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>B</td>
<td>1408</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>B</td>
<td>1409</td>
<td>2</td>
<td>-</td>
<td>0/1/1/1</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>C</td>
<td>1402</td>
<td>1,5</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>C</td>
<td>1403</td>
<td>-</td>
<td>2/2/35/35</td>
<td>0/42/182/182</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1404</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1405</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1406</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>C</td>
<td>1407</td>
<td>2</td>
<td>-</td>
<td>0/1/1/1</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>D</td>
<td>1402</td>
<td>1,5</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>D</td>
<td>1403</td>
<td>-</td>
<td>1/1/35/35</td>
<td>0/42/182/182</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1404</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1405</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1406</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>D</td>
<td>1407</td>
<td>2</td>
<td>-</td>
<td>0/1/1/1</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>E</td>
<td>1402</td>
<td>1,5</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>E</td>
<td>1403</td>
<td>-</td>
<td>3/3/35/35</td>
<td>0/42/182/182</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1404</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1405</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>E</td>
<td>1407</td>
<td>2</td>
<td>-</td>
<td>0/1/1/1</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HEM</td>
<td>F</td>
<td>1402</td>
<td>1,5</td>
<td>-</td>
<td>0/6/54/54</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>F</td>
<td>1403</td>
<td>-</td>
<td>2/2/35/35</td>
<td>1/42/182/182</td>
<td>0/0/8/8</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>F</td>
<td>1404</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>F</td>
<td>1405</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>F</td>
<td>1406</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

All (65) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-3.91</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-3.79</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-3.79</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-3.47</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-3.20</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-3.18</td>
<td>1.36</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-C2B</td>
<td>-2.80</td>
<td>1.36</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-2.68</td>
<td>1.36</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-2.31</td>
<td>1.37</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-C2C</td>
<td>-2.14</td>
<td>1.37</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>C4A-NA</td>
<td>2.00</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>2.03</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>C1C-C2C</td>
<td>2.09</td>
<td>1.47</td>
<td>1.42</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C1C-C2C</td>
<td>2.09</td>
<td>1.47</td>
<td>1.42</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O51-C11</td>
<td>2.12</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CMA-C3A</td>
<td>2.14</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C1D-ND</td>
<td>2.15</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O25-C25</td>
<td>2.20</td>
<td>1.48</td>
<td>1.43</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CMC-C2C</td>
<td>2.21</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>C4B-NB</td>
<td>2.22</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C12</td>
<td>2.23</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O56-C16</td>
<td>2.27</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>C1A-NA</td>
<td>2.27</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>2.31</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>C4A-NA</td>
<td>2.35</td>
<td>1.41</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CAD-C3D</td>
<td>2.35</td>
<td>1.56</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>CMA-C3A</td>
<td>2.37</td>
<td>1.56</td>
<td>1.51</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C33-C23</td>
<td>2.39</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>C1D-ND</td>
<td>2.42</td>
<td>1.41</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CAA-C2A</td>
<td>2.65</td>
<td>1.56</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>2.65</td>
<td>1.57</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>2.66</td>
<td>1.57</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>2.66</td>
<td>1.57</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>CMC-C2C</td>
<td>2.76</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>2.79</td>
<td>1.53</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CMC-C2C</td>
<td>2.87</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>2.91</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2C</td>
<td>2.87</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>3.07</td>
<td>1.57</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>CAA-C2A</td>
<td>3.09</td>
<td>1.57</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>3.11</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>3.16</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>3.18</td>
<td>1.59</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.25</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.42</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2B</td>
<td>3.44</td>
<td>1.59</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.48</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D</td>
<td>3.48</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.54</td>
<td>1.54</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C12</td>
<td>3.72</td>
<td>1.51</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>3.82</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>C3B-CAB</td>
<td>3.83</td>
<td>1.55</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C12</td>
<td>3.89</td>
<td>1.51</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>4.38</td>
<td>1.56</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>4.49</td>
<td>1.56</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>4.76</td>
<td>1.57</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>4.85</td>
<td>1.52</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>4.95</td>
<td>1.52</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>4.95</td>
<td>1.57</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.01</td>
<td>1.52</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>C3C-CAC</td>
<td>5.30</td>
<td>1.58</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.46</td>
<td>1.53</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.59</td>
<td>1.54</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>C3D-C2D</td>
<td>5.67</td>
<td>1.54</td>
<td>1.37</td>
</tr>
</tbody>
</table>

All (329) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C54-C44</td>
<td>-10.35</td>
<td>87.79</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O55-C55-C45</td>
<td>-9.32</td>
<td>89.97</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C15-O44-C44</td>
<td>-8.88</td>
<td>95.79</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O53-C53-C43</td>
<td>-8.41</td>
<td>91.90</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C37-C47-C57</td>
<td>-7.96</td>
<td>92.44</td>
<td>110.93</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C14-O43-C43</td>
<td>-7.79</td>
<td>98.50</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C36-C46-C56</td>
<td>-7.59</td>
<td>93.32</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C12-O41-C41</td>
<td>-7.21</td>
<td>99.95</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C16-O45-C45</td>
<td>-7.13</td>
<td>100.15</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C33-C43-C53</td>
<td>-6.12</td>
<td>96.72</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C13-O42-C42</td>
<td>-6.12</td>
<td>102.68</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C15-O44-C44</td>
<td>-5.85</td>
<td>103.35</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O53-C53-C43</td>
<td>-5.64</td>
<td>97.79</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C13-C23-C33</td>
<td>-5.59</td>
<td>96.72</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C13-O42-C42</td>
<td>-5.29</td>
<td>104.76</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O51-C51-C61</td>
<td>-5.27</td>
<td>93.17</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C15-O44-C44</td>
<td>-5.24</td>
<td>104.89</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O37-C57-C57</td>
<td>-5.30</td>
<td>103.26</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C35-C45-C55</td>
<td>-5.32</td>
<td>98.47</td>
<td>109.76</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CAD-CBD-CGD</td>
<td>-4.21</td>
<td>105.46</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O53-C13-C23</td>
<td>-5.04</td>
<td>99.52</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C17-O57-C57</td>
<td>-4.54</td>
<td>100.39</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C12-O41-C41</td>
<td>-5.10</td>
<td>105.23</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C15-C25-C35</td>
<td>-4.46</td>
<td>100.78</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O56-C56-C46</td>
<td>-4.73</td>
<td>99.72</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C14-O54-C54</td>
<td>-4.69</td>
<td>104.47</td>
<td>113.71</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O27-C27-C37</td>
<td>-5.08</td>
<td>98.49</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O53-C13-C23</td>
<td>-5.03</td>
<td>99.52</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C35-C45-C55</td>
<td>-4.86</td>
<td>99.65</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C12-O41-C41</td>
<td>-4.83</td>
<td>105.89</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O56-C56-C46</td>
<td>-4.73</td>
<td>99.72</td>
<td>109.76</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-4.63</td>
<td>103.78</td>
<td>107.00</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O41-C12-C22</td>
<td>-4.58</td>
<td>95.95</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C32-C42-C52</td>
<td>-4.55</td>
<td>100.36</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C37-C47-C57</td>
<td>-4.54</td>
<td>100.39</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O53-C13-C23</td>
<td>-4.46</td>
<td>100.78</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O44-C44-C34</td>
<td>-4.35</td>
<td>95.59</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C42</td>
<td>-4.33</td>
<td>100.57</td>
<td>109.76</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CAD-CBD-CGD</td>
<td>-4.21</td>
<td>105.46</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C16-C26-C36</td>
<td>-4.20</td>
<td>101.19</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C26-C36-C46</td>
<td>-4.16</td>
<td>100.11</td>
<td>109.68</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O22-C22-C32</td>
<td>-4.08</td>
<td>100.83</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C32-C42-C52</td>
<td>-4.05</td>
<td>101.52</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C15-C25-C35</td>
<td>-4.04</td>
<td>101.53</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C17-C27-C37</td>
<td>-4.00</td>
<td>101.60</td>
<td>109.98</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>CBA-CAA-C2A</td>
<td>-3.99</td>
<td>104.85</td>
<td>112.48</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-3.94</td>
<td>104.25</td>
<td>107.00</td>
</tr>
</tbody>
</table>
| 3 | E | 1403| BCD | O23-C23-C13 | -3.94 | 100.39 | 110.06

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C16-O45-C45</td>
<td>-3.93</td>
<td>108.14</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C16-O45-C45</td>
<td>-3.92</td>
<td>108.17</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O57-C57-C47</td>
<td>-3.86</td>
<td>101.57</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C16-O56-C56</td>
<td>-3.85</td>
<td>106.12</td>
<td>113.71</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-3.78</td>
<td>105.25</td>
<td>112.47</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O66-C66-C56</td>
<td>-3.75</td>
<td>98.21</td>
<td>111.29</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O57-C17-C27</td>
<td>-3.74</td>
<td>102.31</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C26-C36-C46</td>
<td>-3.67</td>
<td>101.25</td>
<td>109.68</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C14-O54-C54</td>
<td>-3.62</td>
<td>105.60</td>
<td>112.47</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O66-C66-C56</td>
<td>-3.59</td>
<td>97.40</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O57-C17-C27</td>
<td>-3.55</td>
<td>109.11</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C26-C36-C46</td>
<td>-3.54</td>
<td>100.62</td>
<td>107.00</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-3.50</td>
<td>105.25</td>
<td>112.47</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C62</td>
<td>-3.47</td>
<td>98.21</td>
<td>111.29</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C13-O42-C42</td>
<td>-3.44</td>
<td>109.31</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C13-O53</td>
<td>-3.43</td>
<td>100.62</td>
<td>107.00</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O47-C47</td>
<td>-3.43</td>
<td>98.21</td>
<td>111.29</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C17-O46-C46</td>
<td>-3.42</td>
<td>109.31</td>
<td>117.97</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-3.41</td>
<td>100.62</td>
<td>107.00</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O35-C35-C45</td>
<td>-3.39</td>
<td>100.81</td>
<td>109.93</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-3.38</td>
<td>104.64</td>
<td>107.00</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O47-C47-C37</td>
<td>-3.37</td>
<td>109.31</td>
<td>117.97</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-3.36</td>
<td>100.62</td>
<td>107.00</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C37-C47-C57</td>
<td>-3.35</td>
<td>103.15</td>
<td>110.93</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CAD-CBD-CGD</td>
<td>-3.34</td>
<td>109.31</td>
<td>117.97</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C1D-C2D-C3D</td>
<td>-3.33</td>
<td>109.31</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C36-C46-C56</td>
<td>-3.32</td>
<td>103.56</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C67-C57-C47</td>
<td>-3.31</td>
<td>102.89</td>
<td>109.68</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-3.30</td>
<td>107.03</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-3.29</td>
<td>107.03</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C36-C46-C56</td>
<td>-3.28</td>
<td>103.56</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C67-C57-C47</td>
<td>-3.27</td>
<td>102.08</td>
<td>109.68</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-3.26</td>
<td>104.77</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C17-O46-C46</td>
<td>-3.25</td>
<td>110.05</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C34-C44-C54</td>
<td>-3.24</td>
<td>103.70</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C32-C42-C52</td>
<td>-3.23</td>
<td>103.70</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C33-C43-C53</td>
<td>-3.22</td>
<td>103.75</td>
<td>110.93</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-3.21</td>
<td>106.59</td>
<td>112.47</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O53-C53-C43</td>
<td>-3.20</td>
<td>103.23</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O34-C34-C44</td>
<td>-3.19</td>
<td>101.65</td>
<td>109.93</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O56-C16-C26</td>
<td>-3.18</td>
<td>103.75</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C16-C26-C36</td>
<td>-3.17</td>
<td>103.58</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C54-C64</td>
<td>-3.16</td>
<td>98.78</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C16-O45-C45</td>
<td>-3.15</td>
<td>110.43</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C35-C45-C55</td>
<td>-3.14</td>
<td>103.94</td>
<td>110.93</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C16-C26-C36</td>
<td>-3.00</td>
<td>103.70</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C31-C41-C51</td>
<td>-2.96</td>
<td>104.05</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C36-C46-C56</td>
<td>-2.95</td>
<td>104.07</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C36-C46-C56</td>
<td>-2.92</td>
<td>104.15</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O56-C16-C26</td>
<td>-2.88</td>
<td>104.16</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CMA-C3A-C4A</td>
<td>-2.88</td>
<td>124.04</td>
<td>128.46</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C32-C42-C52</td>
<td>-2.88</td>
<td>104.24</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C22-C32-C42</td>
<td>-2.87</td>
<td>103.09</td>
<td>109.68</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O44-C15-O55</td>
<td>-2.86</td>
<td>102.55</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O61-C61-C51</td>
<td>-2.84</td>
<td>101.38</td>
<td>111.29</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O55-C15-C25</td>
<td>-2.84</td>
<td>104.25</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C17-O57</td>
<td>-2.83</td>
<td>102.65</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O31-C31-C21</td>
<td>-2.82</td>
<td>103.76</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O55-C55-C45</td>
<td>-2.82</td>
<td>103.78</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O21-C21-C11</td>
<td>-2.78</td>
<td>103.23</td>
<td>110.06</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>CBD-CAD-C3D</td>
<td>-2.78</td>
<td>107.16</td>
<td>112.47</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C24-C34-C44</td>
<td>-2.77</td>
<td>103.32</td>
<td>109.68</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CAA-CBA-CGA</td>
<td>-2.76</td>
<td>107.95</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O34-C34-C44</td>
<td>-2.76</td>
<td>102.50</td>
<td>109.93</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C14-O43-C43</td>
<td>-2.75</td>
<td>111.10</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O62-C62-C52</td>
<td>-2.75</td>
<td>101.70</td>
<td>111.29</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C14-C24</td>
<td>-2.74</td>
<td>104.47</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O51-C51</td>
<td>-2.68</td>
<td>108.42</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C17-O46-C46</td>
<td>-2.67</td>
<td>111.31</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C15-O44-C44</td>
<td>-2.64</td>
<td>111.38</td>
<td>117.97</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CAD-CBD-CGD</td>
<td>-2.63</td>
<td>108.17</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C15-O44-C44</td>
<td>-2.62</td>
<td>111.43</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C16-O56-C56</td>
<td>-2.60</td>
<td>108.59</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O51-C51</td>
<td>-2.59</td>
<td>108.61</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O56-C56-C46</td>
<td>-2.57</td>
<td>104.31</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O61-C61-C51</td>
<td>-2.55</td>
<td>102.40</td>
<td>111.29</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O43-C14-O54</td>
<td>-2.54</td>
<td>103.45</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C33-C43-C53</td>
<td>-2.50</td>
<td>105.11</td>
<td>110.93</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CAA-CBA-CGA</td>
<td>-2.50</td>
<td>108.39</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O55-C15-C25</td>
<td>-2.50</td>
<td>104.98</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C42</td>
<td>-2.49</td>
<td>104.47</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C25-C35-C45</td>
<td>-2.49</td>
<td>103.97</td>
<td>109.68</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>CAD-CBD-CGD</td>
<td>-2.47</td>
<td>108.44</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C24-C34-C44</td>
<td>-2.42</td>
<td>104.12</td>
<td>109.68</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C12-O41-C41</td>
<td>-2.41</td>
<td>111.94</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O51-C51</td>
<td>-2.39</td>
<td>108.99</td>
<td>113.71</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D-C1D</td>
<td>-2.38</td>
<td>124.80</td>
<td>128.46</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CMA-C3A-C4A</td>
<td>-2.38</td>
<td>124.80</td>
<td>128.46</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O65-C65-C55</td>
<td>-2.36</td>
<td>103.04</td>
<td>111.29</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C25-C35-C45</td>
<td>-2.35</td>
<td>104.29</td>
<td>109.68</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C17-C27-C37</td>
<td>-2.33</td>
<td>105.10</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O45-C16-O56</td>
<td>-2.33</td>
<td>104.06</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O51-C51-C41</td>
<td>-2.33</td>
<td>104.81</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C33-C43-C53</td>
<td>-2.31</td>
<td>105.57</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C37-C47-C57</td>
<td>-2.29</td>
<td>105.62</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O43-C14-O54</td>
<td>-2.28</td>
<td>104.19</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C11-C21-C31</td>
<td>-2.24</td>
<td>105.28</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C33-C43-C53</td>
<td>-2.24</td>
<td>105.73</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C14-O43-C43</td>
<td>-2.27</td>
<td>112.30</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C37-C47-C57</td>
<td>-2.22</td>
<td>108.80</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C35-C45-C55</td>
<td>-2.22</td>
<td>105.77</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C23</td>
<td>-2.18</td>
<td>105.26</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C42</td>
<td>-2.18</td>
<td>105.14</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C54-C44</td>
<td>-2.17</td>
<td>105.16</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O51-C51</td>
<td>-2.22</td>
<td>109.33</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C35-C45-C55</td>
<td>-2.22</td>
<td>105.77</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C23</td>
<td>-2.18</td>
<td>105.26</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C42</td>
<td>-2.18</td>
<td>105.14</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C54-C44</td>
<td>-2.17</td>
<td>105.16</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O51-C51</td>
<td>-2.22</td>
<td>109.33</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C35-C45-C55</td>
<td>-2.22</td>
<td>105.77</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C23</td>
<td>-2.18</td>
<td>105.26</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C42</td>
<td>-2.18</td>
<td>105.14</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C54-C44</td>
<td>-2.17</td>
<td>105.16</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C23</td>
<td>-2.18</td>
<td>105.26</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C14-O43-C43</td>
<td>-2.27</td>
<td>108.84</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O51-C51</td>
<td>-2.22</td>
<td>109.33</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C35-C45-C55</td>
<td>-2.22</td>
<td>105.77</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C23</td>
<td>-2.18</td>
<td>105.26</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C42</td>
<td>-2.18</td>
<td>105.14</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C54-C44</td>
<td>-2.17</td>
<td>105.16</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C23</td>
<td>-2.18</td>
<td>105.26</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C14-O43-C43</td>
<td>-2.27</td>
<td>108.84</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O51-C51</td>
<td>-2.22</td>
<td>109.33</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C35-C45-C55</td>
<td>-2.22</td>
<td>105.77</td>
<td>110.93</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C23</td>
<td>-2.18</td>
<td>105.26</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C42</td>
<td>-2.18</td>
<td>105.14</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C54-C44</td>
<td>-2.17</td>
<td>105.16</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C23</td>
<td>-2.18</td>
<td>105.26</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C14-O43-C43</td>
<td>-2.27</td>
<td>108.84</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O51-C51</td>
<td>-2.22</td>
<td>109.33</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C35-C45-C55</td>
<td>-2.22</td>
<td>105.77</td>
<td>110.93</td>
</tr>
<tr>
<td>Mol</td>
<td>Chain</td>
<td>Res</td>
<td>Type</td>
<td>Atoms</td>
<td>Z</td>
<td>Observed(°)</td>
<td>Ideal(°)</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>----------------</td>
<td>-----</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O31-C31-C21</td>
<td>-2.00</td>
<td>105.67</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C16-O56-C56</td>
<td>2.01</td>
<td>117.67</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O45-C45-C35</td>
<td>2.01</td>
<td>112.67</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O47-C47-C57</td>
<td>2.01</td>
<td>114.99</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C25-C35-C45</td>
<td>2.03</td>
<td>114.34</td>
<td>109.68</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C43</td>
<td>2.03</td>
<td>115.41</td>
<td>109.93</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O55-C55-C55</td>
<td>2.03</td>
<td>117.71</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O27-C27-C17</td>
<td>2.04</td>
<td>115.06</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O32-C32-C42</td>
<td>2.04</td>
<td>115.43</td>
<td>109.93</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C62-C52-C42</td>
<td>2.07</td>
<td>117.71</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O44-C44-C34</td>
<td>2.08</td>
<td>112.86</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C12-C22-C32</td>
<td>2.08</td>
<td>114.33</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O22-C22-C12</td>
<td>2.09</td>
<td>115.20</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O51-C51-C61</td>
<td>2.10</td>
<td>111.70</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C12-C22-C32</td>
<td>2.10</td>
<td>114.38</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O44-C44-C54</td>
<td>2.10</td>
<td>115.25</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O43-C43-C53</td>
<td>2.11</td>
<td>115.26</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O56-C56-C66</td>
<td>2.11</td>
<td>111.74</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O25-C25-C35</td>
<td>2.13</td>
<td>115.31</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CMC-C2C-C3C</td>
<td>2.14</td>
<td>128.78</td>
<td>124.88</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O23-C23-C13</td>
<td>2.15</td>
<td>115.34</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O23-C23-C33</td>
<td>2.15</td>
<td>115.37</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D-C3D</td>
<td>2.16</td>
<td>129.01</td>
<td>124.94</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O57-C57-C67</td>
<td>2.19</td>
<td>111.94</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O34-C34-C24</td>
<td>2.20</td>
<td>115.47</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O32-C32-C42</td>
<td>2.22</td>
<td>115.93</td>
<td>109.93</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O25-C25-C15</td>
<td>2.23</td>
<td>115.53</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C17-C57</td>
<td>2.25</td>
<td>117.03</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O41-C12-C22</td>
<td>2.26</td>
<td>114.06</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O65-C65-C55</td>
<td>2.26</td>
<td>119.18</td>
<td>111.29</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C54-C64</td>
<td>2.27</td>
<td>112.13</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O51-C51-C61</td>
<td>2.28</td>
<td>112.16</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O31-C31-C21</td>
<td>2.28</td>
<td>115.67</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C14-C24-C34</td>
<td>2.28</td>
<td>114.75</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O45-C16-O56</td>
<td>2.32</td>
<td>117.23</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C63-C53-C43</td>
<td>2.32</td>
<td>120.14</td>
<td>113.31</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D-C3D</td>
<td>2.33</td>
<td>129.33</td>
<td>124.94</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C46-C36</td>
<td>2.33</td>
<td>113.53</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C54-C64</td>
<td>2.34</td>
<td>112.32</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C13-C23-C33</td>
<td>2.34</td>
<td>114.88</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C62-C52-C42</td>
<td>2.36</td>
<td>112.05</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O53-C13-C23</td>
<td>2.39</td>
<td>115.47</td>
<td>110.34</td>
</tr>
</tbody>
</table>

Continued from previous page...

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2B-C3B</td>
<td>2.41</td>
<td>129.26</td>
<td>124.88</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O35-C35-C25</td>
<td>2.41</td>
<td>115.97</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O45-C45-C35</td>
<td>2.43</td>
<td>113.79</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O44-C44-C54</td>
<td>2.43</td>
<td>116.15</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O23-C23-C13</td>
<td>2.44</td>
<td>116.05</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C46-C36</td>
<td>2.44</td>
<td>113.83</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O47-C47-C37</td>
<td>2.45</td>
<td>113.85</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C17-C27</td>
<td>2.45</td>
<td>114.58</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O36-C36-C26</td>
<td>2.46</td>
<td>116.09</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C14-C24</td>
<td>2.47</td>
<td>115.65</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O26-C26-C16</td>
<td>2.47</td>
<td>116.13</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C11-C21-C31</td>
<td>2.48</td>
<td>115.17</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O32-C32-C42</td>
<td>2.50</td>
<td>116.68</td>
<td>109.93</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C12-C22</td>
<td>2.53</td>
<td>115.78</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O47-C47-C57</td>
<td>2.53</td>
<td>116.44</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C13-O53-C53</td>
<td>2.55</td>
<td>118.74</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C43</td>
<td>2.56</td>
<td>116.83</td>
<td>109.93</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D-C3D</td>
<td>2.57</td>
<td>129.78</td>
<td>124.94</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O55-C55-C65</td>
<td>2.60</td>
<td>112.97</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C11-O47-C47</td>
<td>2.60</td>
<td>124.48</td>
<td>117.97</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O22-C22-C12</td>
<td>2.64</td>
<td>116.54</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O41-C12-O52</td>
<td>2.64</td>
<td>118.14</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O26-C26-C36</td>
<td>2.66</td>
<td>116.54</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2B-C3B</td>
<td>2.66</td>
<td>129.73</td>
<td>124.88</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O43-C14-C24</td>
<td>2.68</td>
<td>115.18</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O45-C45-C55</td>
<td>2.68</td>
<td>116.86</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O43-C43-C53</td>
<td>2.69</td>
<td>116.86</td>
<td>109.42</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>2.70</td>
<td>108.78</td>
<td>106.90</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O53-C13-C23</td>
<td>2.72</td>
<td>116.18</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O47-C11-O51</td>
<td>2.74</td>
<td>118.42</td>
<td>110.66</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O41-C12-C22</td>
<td>2.74</td>
<td>115.36</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C67-C57-C47</td>
<td>2.76</td>
<td>121.42</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C11-C21-C31</td>
<td>2.77</td>
<td>115.78</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C14-C24-C34</td>
<td>2.78</td>
<td>115.79</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O25-C25-C15</td>
<td>2.78</td>
<td>116.88</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O55-C55-C65</td>
<td>2.80</td>
<td>113.46</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C13-C23-C33</td>
<td>2.81</td>
<td>115.85</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O34-C34-C24</td>
<td>2.82</td>
<td>116.92</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D-C3D</td>
<td>2.83</td>
<td>130.28</td>
<td>124.94</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>2.84</td>
<td>108.88</td>
<td>106.90</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C64-C54-C44</td>
<td>2.89</td>
<td>121.80</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O45-C45-C35</td>
<td>2.91</td>
<td>115.09</td>
<td>107.27</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O45-C16-C26</td>
<td>2.95</td>
<td>115.91</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O62-C62-C52</td>
<td>2.96</td>
<td>121.61</td>
<td>111.29</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CMD-C2D-C3D</td>
<td>2.97</td>
<td>130.55</td>
<td>124.94</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O36-C36-C26</td>
<td>2.98</td>
<td>117.30</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O47-C47-C37</td>
<td>2.99</td>
<td>115.31</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C46-C56</td>
<td>3.04</td>
<td>117.85</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C66-C56-C46</td>
<td>3.07</td>
<td>122.36</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O41-C12-O52</td>
<td>3.09</td>
<td>119.41</td>
<td>110.66</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2B-C3B</td>
<td>3.10</td>
<td>130.52</td>
<td>124.88</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O56-C16-C26</td>
<td>3.13</td>
<td>117.07</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O25-C25-C15</td>
<td>3.16</td>
<td>117.82</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O26-C26-C36</td>
<td>3.22</td>
<td>117.86</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C66-C56-C46</td>
<td>3.32</td>
<td>123.07</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O55-C55-C65</td>
<td>3.34</td>
<td>114.81</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O26-C26-C36</td>
<td>3.34</td>
<td>118.15</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>CMB-C2B-C3B</td>
<td>3.36</td>
<td>130.99</td>
<td>124.88</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O23-C23-C13</td>
<td>3.41</td>
<td>118.44</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C17-C27-C37</td>
<td>3.45</td>
<td>117.20</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O47-C11-C21</td>
<td>3.46</td>
<td>117.25</td>
<td>108.08</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>3.50</td>
<td>109.34</td>
<td>106.90</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C16-C26-C36</td>
<td>3.52</td>
<td>117.34</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C14-C24</td>
<td>3.52</td>
<td>117.90</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O44-C44-C54</td>
<td>3.52</td>
<td>119.19</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O47-C47-C37</td>
<td>3.53</td>
<td>116.75</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O56-C16-C26</td>
<td>3.57</td>
<td>118.00</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C62-C52-C42</td>
<td>3.60</td>
<td>123.90</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C14-C24</td>
<td>3.61</td>
<td>118.09</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O27-C27-C17</td>
<td>3.61</td>
<td>118.92</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C46-C36</td>
<td>3.66</td>
<td>117.10</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O41-C12-C22</td>
<td>3.66</td>
<td>117.79</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C63-C53-C43</td>
<td>3.67</td>
<td>124.13</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C62</td>
<td>3.70</td>
<td>115.73</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C17-C27-C37</td>
<td>3.70</td>
<td>117.72</td>
<td>109.98</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O44-C15-C25</td>
<td>3.71</td>
<td>117.92</td>
<td>108.08</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>3.71</td>
<td>109.49</td>
<td>106.90</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O44-C15-C25</td>
<td>3.72</td>
<td>117.94</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C42-C52</td>
<td>3.74</td>
<td>119.79</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O43-C14-C24</td>
<td>3.75</td>
<td>118.04</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C63-C53-C43</td>
<td>3.80</td>
<td>124.48</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O51-C51-C61</td>
<td>3.96</td>
<td>116.38</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C13-C23</td>
<td>3.98</td>
<td>118.64</td>
<td>108.08</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>C4C-C3C-C2C</td>
<td>4.00</td>
<td>109.69</td>
<td>106.90</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C46-C36</td>
<td>4.02</td>
<td>118.08</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C12-C22</td>
<td>4.05</td>
<td>119.04</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O33-C33-C23</td>
<td>4.10</td>
<td>119.92</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C65-C55-C45</td>
<td>4.10</td>
<td>125.39</td>
<td>113.31</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C13-C23</td>
<td>4.11</td>
<td>118.97</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C13-C23</td>
<td>4.11</td>
<td>118.99</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O41-C41-C31</td>
<td>4.19</td>
<td>118.54</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O41-C13-C23</td>
<td>4.11</td>
<td>118.97</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C13-C23</td>
<td>4.11</td>
<td>118.99</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O43-C14-C24</td>
<td>4.36</td>
<td>119.65</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C16-O56-C56</td>
<td>4.37</td>
<td>123.33</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O22-C22-C12</td>
<td>4.37</td>
<td>120.80</td>
<td>110.06</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C42-C32</td>
<td>4.39</td>
<td>119.06</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O57-C57-C67</td>
<td>4.39</td>
<td>117.47</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C42-C32</td>
<td>4.40</td>
<td>119.11</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C13-O53-C53</td>
<td>4.53</td>
<td>122.64</td>
<td>113.71</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O41-C41-C31</td>
<td>4.66</td>
<td>119.81</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C42-C52</td>
<td>4.80</td>
<td>122.72</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C17-C27</td>
<td>4.81</td>
<td>120.83</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O55-C15-C25</td>
<td>4.84</td>
<td>120.75</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C46-C56</td>
<td>4.87</td>
<td>122.91</td>
<td>109.42</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O42-C13-C23</td>
<td>5.17</td>
<td>121.78</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O53-C53-C43</td>
<td>5.25</td>
<td>120.90</td>
<td>109.76</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C12-C22</td>
<td>5.29</td>
<td>121.70</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>O52-C52-C62</td>
<td>5.30</td>
<td>119.76</td>
<td>106.43</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O43-C43-C33</td>
<td>5.32</td>
<td>121.58</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O47-C47-C37</td>
<td>5.36</td>
<td>121.68</td>
<td>107.27</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>O46-C17-C27</td>
<td>5.47</td>
<td>122.58</td>
<td>108.08</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>O54-C14-C24</td>
<td>5.55</td>
<td>122.27</td>
<td>110.34</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>O45-C45-C55</td>
<td>5.89</td>
<td>125.74</td>
<td>109.42</td>
</tr>
</tbody>
</table>

All (12) chirality outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C11</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C14</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>C17</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C11</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>C17</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C11</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>C17</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>C17</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C14</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C26</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C11</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>C17</td>
</tr>
</tbody>
</table>

All (1) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>C44-O44-C15-C25</td>
</tr>
</tbody>
</table>

There are no ring outliers.

20 monomers are involved in 172 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1402</td>
<td>HEM</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1403</td>
<td>BCD</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1404</td>
<td>SO4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1402</td>
<td>HEM</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1403</td>
<td>BCD</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1408</td>
<td>SO4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>1409</td>
<td>EDO</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1402</td>
<td>HEM</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1403</td>
<td>BCD</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1406</td>
<td>SO4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>1407</td>
<td>EDO</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1402</td>
<td>HEM</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1403</td>
<td>BCD</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1406</td>
<td>SO4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1402</td>
<td>HEM</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1403</td>
<td>BCD</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1406</td>
<td>SO4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1402</td>
<td>HEM</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1403</td>
<td>BCD</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1406</td>
<td>SO4</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.
5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q < 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>402/407 (98%)</td>
<td>-0.33</td>
<td>8 (1%)</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>404/407 (99%)</td>
<td>-0.32</td>
<td>6 (1%)</td>
<td>73</td>
<td>79</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>402/407 (98%)</td>
<td>-0.30</td>
<td>7 (1%)</td>
<td>70</td>
<td>76</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>402/407 (98%)</td>
<td>-0.28</td>
<td>6 (1%)</td>
<td>73</td>
<td>79</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>402/407 (98%)</td>
<td>-0.30</td>
<td>8 (1%)</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>402/407 (98%)</td>
<td>-0.30</td>
<td>8 (1%)</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>All</td>
<td>-0.31</td>
<td>43 (1%)</td>
<td>68</td>
<td>75</td>
</tr>
</tbody>
</table>

All (43) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>165</td>
<td>GLY</td>
<td>5.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>170</td>
<td>VAL</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>170</td>
<td>VAL</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>167</td>
<td>SER</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>165</td>
<td>GLY</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>168</td>
<td>SER</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>165</td>
<td>GLY</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>167</td>
<td>SER</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>170</td>
<td>VAL</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>168</td>
<td>SER</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>165</td>
<td>GLY</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>170</td>
<td>VAL</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>166</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>170</td>
<td>VAL</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>168</td>
<td>SER</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>165</td>
<td>GLY</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>170</td>
<td>VAL</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>169</td>
<td>HIS</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>168</td>
<td>SER</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Continued on next page...
6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q< 0.9’ lists the number of atoms with occupancy less than 0.9.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>EDO</td>
<td>B</td>
<td>1409</td>
<td>4/4</td>
<td>0.89</td>
<td>0.15</td>
<td>19,20,22,32</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>A</td>
<td>1403</td>
<td>77/77</td>
<td>0.89</td>
<td>0.17</td>
<td>21,40,45,49</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>C</td>
<td>1403</td>
<td>77/77</td>
<td>0.90</td>
<td>0.13</td>
<td>22,37,45,50</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>B</td>
<td>1403</td>
<td>77/77</td>
<td>0.90</td>
<td>0.15</td>
<td>21,38,43,46</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>D</td>
<td>1403</td>
<td>77/77</td>
<td>0.91</td>
<td>0.15</td>
<td>24,39,44,51</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>F</td>
<td>1403</td>
<td>77/77</td>
<td>0.91</td>
<td>0.15</td>
<td>26,39,45,48</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>BCD</td>
<td>E</td>
<td>1403</td>
<td>77/77</td>
<td>0.91</td>
<td>0.15</td>
<td>25,38,42,49</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>E</td>
<td>1407</td>
<td>4/4</td>
<td>0.95</td>
<td>0.14</td>
<td>22,23,25,31</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>B</td>
<td>1408</td>
<td>5/5</td>
<td>0.95</td>
<td>0.50</td>
<td>30,43,45,49</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1406</td>
<td>5/5</td>
<td>0.95</td>
<td>0.57</td>
<td>32,42,45,47</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1406</td>
<td>5/5</td>
<td>0.96</td>
<td>0.55</td>
<td>29,44,46,47</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>A</td>
<td>1406</td>
<td>4/4</td>
<td>0.96</td>
<td>0.10</td>
<td>19,22,23,30</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1406</td>
<td>5/5</td>
<td>0.96</td>
<td>0.50</td>
<td>29,41,44,49</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>F</td>
<td>1405</td>
<td>5/5</td>
<td>0.96</td>
<td>0.21</td>
<td>33,34,36,37</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1406</td>
<td>5/5</td>
<td>0.97</td>
<td>0.15</td>
<td>27,28,31,32</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1406</td>
<td>5/5</td>
<td>0.97</td>
<td>0.14</td>
<td>30,30,35,36</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>F</td>
<td>1407</td>
<td>4/4</td>
<td>0.97</td>
<td>0.12</td>
<td>18,21,22,27</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1405</td>
<td>5/5</td>
<td>0.97</td>
<td>0.20</td>
<td>34,34,35,38</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>D</td>
<td>1407</td>
<td>4/4</td>
<td>0.97</td>
<td>0.11</td>
<td>19,20,21,34</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>F</td>
<td>1406</td>
<td>5/5</td>
<td>0.97</td>
<td>0.54</td>
<td>27,41,41,48</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1405</td>
<td>5/5</td>
<td>0.97</td>
<td>0.17</td>
<td>33,33,35,36</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>E</td>
<td>1405</td>
<td>5/5</td>
<td>0.98</td>
<td>0.14</td>
<td>25,26,31,31</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>D</td>
<td>1404</td>
<td>5/5</td>
<td>0.98</td>
<td>0.16</td>
<td>25,25,31,32</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>C</td>
<td>1404</td>
<td>5/5</td>
<td>0.98</td>
<td>0.12</td>
<td>26,28,29,32</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>A</td>
<td>1405</td>
<td>5/5</td>
<td>0.98</td>
<td>0.14</td>
<td>27,30,31,33</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>B</td>
<td>1407</td>
<td>5/5</td>
<td>0.98</td>
<td>0.12</td>
<td>23,29,30,31</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SO4</td>
<td>A</td>
<td>1404</td>
<td>5/5</td>
<td>0.98</td>
<td>0.50</td>
<td>27,42,43,44</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>C</td>
<td>1407</td>
<td>4/4</td>
<td>0.98</td>
<td>0.11</td>
<td>21,23,26,30</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>F</td>
<td>1402</td>
<td>43/43</td>
<td>0.98</td>
<td>0.09</td>
<td>10,14,19,28</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>A</td>
<td>1402</td>
<td>43/43</td>
<td>0.98</td>
<td>0.09</td>
<td>11,14,17,22</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EDO</td>
<td>C</td>
<td>1407</td>
<td>4/4</td>
<td>0.98</td>
<td>0.11</td>
<td>21,23,26,30</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>D</td>
<td>1402</td>
<td>43/43</td>
<td>0.99</td>
<td>0.09</td>
<td>8,14,16,22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>C</td>
<td>1402</td>
<td>43/43</td>
<td>0.99</td>
<td>0.09</td>
<td>9,14,17,24</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>E</td>
<td>1402</td>
<td>43/43</td>
<td>0.99</td>
<td>0.09</td>
<td>9,14,17,22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>HEM</td>
<td>B</td>
<td>1402</td>
<td>43/43</td>
<td>0.99</td>
<td>0.09</td>
<td>10,13,16,24</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.