

Nov 5, 2024 – 11:48 AM JST

PDB ID	:	8ZHK
EMDB ID	:	EMD-60106
Title	:	SARS-CoV-2 spike trimer (6P) in complex with three H18 Fabs, head-to-head
		aggregate (C3 symmetry)
Authors	:	Yan, Q.; Gao, X.; Liu, B.; Hou, R.; He, P.; Li, Z.; Chen, Q.; Wang, J.; He, J.;
		Chen, L.; Zhao, J.; Xiong, X.
Deposited on	:	2024-05-11
Resolution	:	6.30 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 6.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#$ Entries)	${ m EM} { m structures} \ (\#{ m Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	1278	67%	16%	17%
1	В	1278	69%	14%	17%
1	С	1278	71%	12%	17%
1	G	1278	68%	15%	17%
1	Н	1278	70%	13%	17%
1	Ι	1278	70%	13%	17%
2	D	243	74%	14%	12%
2	F	243	75%	13%	12%
2	Κ	243	78%	10%	12%

Mol	Chain	Length	Quality of chain		
2	L	243	73%	13% •	12%
2	О	243	79%	9%	12%
2	Q	243	79%	8%	12%
3	Е	243	78%	14%	8%
3	J	243	76%	16%	8%
3	М	243	77%	15%	8%
3	Ν	243	79%	12%	8%
3	Р	243	78%	14%	8%
3	R	243	78%	14%	8%
4	S	2	100%		
4	Т	2	100%		
4	U	2	100%		
4	V	2	100%		
4	W	2	50%	50%	
4	Х	2	100%		
4	Y	2	50%	50%	
4	Z	2	100%		
4	a	2	100%		
4	b	2	100%		
4	C	2	100%		
4	d	2	100%		
<u>г</u> Л	Δ	2 9	100%		
-+	f	2	100%		
4	1	2	100%		
4	g	2	100%		
4	h	2	100%		

Mol	Chain	Length	Quality of chain
4	i	2	100%
4	j	2	100%
4	k	2	100%
4	1	2	100%
4	m	2	100%
4	n	2	100%
4	0	2	100%
4	р	2	100%

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 71238 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Α	toms			AltConf	Trace
1	Δ	1066	Total	С	Ν	Ο	S	0	0
1	Π	1000	8344	5324	1394	1588	38	0	0
1	В	1066	Total	С	Ν	Ο	\mathbf{S}	0	0
1	D	1000	8344	5324	1394	1588	38	0	0
1	С	1066	Total	С	Ν	Ο	\mathbf{S}	0	0
1	U	1000	8344	5324	1394	1588	38	0	0
1	С	1066	Total	С	Ν	Ο	\mathbf{S}	0	0
1	G	1000	8344	5324	1394	1588	38	0	0
1	ц	1066	Total	С	Ν	Ο	\mathbf{S}	0	0
1		1000	8344	5324	1394	1588	38	0	0
1	т	1066	Total	С	Ν	Ο	S	0	0
	1066	8344	5324	1394	1588	38	0	0	

• Molecule 1 is a protein called Spike glycoprotein, Fibritin, Expression Tag.

There are 66 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	682	GLY	ARG	conflict	UNP P0DTC2
А	683	SER	ARG	conflict	UNP P0DTC2
А	685	SER	ARG	conflict	UNP P0DTC2
А	817	PRO	PHE	conflict	UNP P0DTC2
А	892	PRO	ALA	conflict	UNP P0DTC2
А	899	PRO	ALA	conflict	UNP P0DTC2
А	942	PRO	ALA	conflict	UNP P0DTC2
А	986	PRO	LYS	variant	UNP P0DTC2
А	987	PRO	VAL	variant	UNP P0DTC2
А	1209	GLY	-	linker	UNP P0DTC2
А	1210	SER	-	linker	UNP P0DTC2
В	682	GLY	ARG	conflict	UNP P0DTC2
В	683	SER	ARG	conflict	UNP P0DTC2
В	685	SER	ARG	conflict	UNP P0DTC2
В	817	PRO	PHE	conflict	UNP P0DTC2
В	892	PRO	ALA	conflict	UNP P0DTC2
В	899	PRO	ALA	conflict	UNP P0DTC2
В	942	PRO	ALA	conflict	UNP P0DTC2

Continu	iea jrom pre	vious page			
Chain	Residue	Modelled	Actual	Comment	Reference
В	986	PRO	LYS	variant	UNP P0DTC2
В	987	PRO	VAL	variant	UNP P0DTC2
В	1209	GLY	-	linker	UNP P0DTC2
В	1210	SER	-	linker	UNP P0DTC2
С	682	GLY	ARG	conflict	UNP P0DTC2
С	683	SER	ARG	conflict	UNP P0DTC2
С	685	SER	ARG	conflict	UNP P0DTC2
С	817	PRO	PHE	conflict	UNP P0DTC2
С	892	PRO	ALA	conflict	UNP P0DTC2
С	899	PRO	ALA	conflict	UNP P0DTC2
С	942	PRO	ALA	conflict	UNP P0DTC2
С	986	PRO	LYS	variant	UNP P0DTC2
С	987	PRO	VAL	variant	UNP P0DTC2
С	1209	GLY	-	linker	UNP P0DTC2
С	1210	SER	-	linker	UNP P0DTC2
G	682	GLY	ARG	conflict	UNP P0DTC2
G	683	SER	ARG	conflict	UNP P0DTC2
G	685	SER	ARG	conflict	UNP P0DTC2
G	817	PRO	PHE	conflict	UNP P0DTC2
G	892	PRO	ALA	conflict	UNP P0DTC2
G	899	PRO	ALA	conflict	UNP P0DTC2
G	942	PRO	ALA	conflict	UNP P0DTC2
G	986	PRO	LYS	variant	UNP P0DTC2
G	987	PRO	VAL	variant	UNP P0DTC2
G	1209	GLY	-	linker	UNP P0DTC2
G	1210	SER	-	linker	UNP P0DTC2
Н	682	GLY	ARG	conflict	UNP P0DTC2
Н	683	SER	ARG	conflict	UNP P0DTC2
Н	685	SER	ARG	conflict	UNP P0DTC2
Н	817	PRO	PHE	conflict	UNP P0DTC2
Н	892	PRO	ALA	conflict	UNP P0DTC2
Н	899	PRO	ALA	conflict	UNP P0DTC2
Н	942	PRO	ALA	conflict	UNP P0DTC2
Н	986	PRO	LYS	variant	UNP P0DTC2
Н	987	PRO	VAL	variant	UNP P0DTC2
Н	1209	GLY	-	linker	UNP P0DTC2
Н	1210	SER	-	linker	UNP P0DTC2
Ι	682	GLY	ARG	conflict	UNP P0DTC2
Ι	683	SER	ARG	conflict	UNP P0DTC2
Ι	685	SER	ARG	conflict	UNP P0DTC2
Ι	817	PRO	PHE	conflict	UNP P0DTC2
Ι	892	PRO	ALA	conflict	UNP P0DTC2

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	899	PRO	ALA	conflict	UNP P0DTC2
Ι	942	PRO	ALA conflict		UNP P0DTC2
Ι	986	PRO	LYS	variant	UNP P0DTC2
Ι	987	PRO	VAL	variant	UNP P0DTC2
Ι	1209	GLY	-	linker	UNP P0DTC2
Ι	1210	SER	-	linker	UNP P0DTC2

• Molecule 2 is a protein called Light chain of H18 Fab.

Mol	Chain	Residues		At	oms			AltConf	Trace	
9		019	Total	С	Ν	Ο	S	0	0	
	D	210	1593	989	264	335	5	0	0	
2	F	913	Total	С	Ν	0	\mathbf{S}	0	0	
2	Ľ	210	1593	989	264	335	5	0	0	
2	K	K	2 913	Total	С	Ν	0	\mathbf{S}	0	0
	Γ	213	1593	989	264	335	5	0	0	
9	т	013	Total	С	Ν	0	S	0	0	
		213	1593	989	264	335	5	0	0	
9	0	212	Total	С	Ν	0	S	0	0	
	0	210	1593	989	264	335	5	0	0	
2	0	913	Total	С	N	0	S	0	0	
	Q	210	1593	989	264	335	5	0	0	

• Molecule 3 is a protein called Heavy chain of H18 Fab.

Mol	Chain	Residues		At		AltConf	Trace		
3	F	224	Total	С	Ν	0	\mathbf{S}	0	0
0	Ľ	224	1670	1058	276	330	6	0	0
3	Т	224	Total	С	Ν	0	\mathbf{S}	0	0
0	J	224	1670	1058	276	330	6	0	0
3	М	224	Total	С	Ν	0	\mathbf{S}	0	0
0	5 M	224	1670	1058	276	330	6	0	0
3	N	224	Total	С	Ν	0	\mathbf{S}	0	0
0	1 N		1670	1058	276	330	6	0	0
3	D	224	Total	С	Ν	0	\mathbf{S}	0	0
0 1	T	224	1670	1058	276	330	6	0	0
3	В	224	Total	C	Ν	0	S	0	0
5	10	224	1670	1058	276	330	6		U

• Molecule 4 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
4	S	2	Total	С	Ν	0	0	0
1	0		28	16	2	10	0	0
4	Т	2	Total	\mathbf{C}	Ν	Ο	0	0
	1	2	28	16	2	10	0	0
4	II	2	Total	\mathbf{C}	Ν	Ο	0	0
	0	2	28	16	2	10	0	0
4	V	2	Total	\mathbf{C}	Ν	Ο	0	0
	v	2	28	16	2	10	0	0
4	W	2	Total	\mathbf{C}	Ν	Ο	0	0
т	vv		28	16	2	10	0	0
4	x	2	Total	\mathbf{C}	Ν	Ο	0	0
т	Λ		28	16	2	10	0	0
4	V	2	Total	\mathbf{C}	Ν	Ο	0	0
	1	2	28	16	2	10	0	U
	Z	2	Total	С	Ν	Ο	0	0
т			28	16	2	10	0	0
4	9	2	Total	\mathbf{C}	Ν	Ο	0	0
т	a		28	16	2	10	0	
4	h	2	Total	\mathbf{C}	Ν	Ο	0	0
	U		28	16	2	10		0
4	C	2	Total	С	Ν	Ο	0	0
т	C		28	16	2	10	0	
4	d	2	Total	С	Ν	Ο	0	0
т	u		28	16	2	10	0	0
	P	2	Total	\mathbf{C}	Ν	Ο	0	0
	C		28	16	2	10	0	0
4	f	2	Total	С	Ν	Ο	0	0
т	1		28	16	2	10	0	0
4	ď	9	Total	С	Ν	Ο	0	0
4	g	2	28	16	2	10	0	0
4	h	9	Total	С	Ν	0	0	0
4	11	2	28	16	2	10	0	0
1	i	9	Total	С	Ν	0	0	0
	1	۷	28	16	2	10	0	
1	i	9	Total	С	Ν	0	0	0
	J	۷	28	16	2	10	0	0
1	ŀ	9	Total	С	Ν	0	0	0
4	ĸ		28	16	2	10		U

Mol	Chain	Residues	Atoms	AltConf	Trace	
4	1	2	Total C N O	0	0	
4	1	2	28 16 2 10	0	0	
4	m	9	Total C N O	0	0	
4	4 111		28 16 2 10	0		
4	n	9	Total C N O	0	0	
4	11	2	28 16 2 10	0		
4	0	9	Total C N O	0	0	
4 0	0	Δ	28 16 2 10	0		
4	n	n 0	Total C N O	0	0	
	р	р	р	2	28 16 2 10	0

• Molecule 5 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	AltConf
5	А	1	Total C N O	0
		-	14 8 1 5	
5	Δ	1	Total C N O	0
0	Л	1	14 8 1 5	0
5	Λ	1	Total C N O	0
0	A	1	14 8 1 5	0
5	Δ	1	Total C N O	0
0	A	1	14 8 1 5	0
5	Λ	1	Total C N O	0
0	A	1	14 8 1 5	0
5	Λ	1	Total C N O	0
5	А	1	14 8 1 5	0

Continued from previous page...

Mol	Chain	Residues	Atoms			AltConf	
F	٨	1	Total	С	Ν	Ο	0
G	А	1	14	8	1	5	0
-	٨	1	Total	С	Ν	0	0
б	А	1	14	8	1	5	0
-	٨	1	Total	С	Ν	0	0
б	А	1	14	8	1	5	0
F	٨	1	Total	С	Ν	0	0
б	А	1	14	8	1	5	0
F	٨	1	Total	С	Ν	0	0
G	А	1	14	8	1	5	0
F	р	1	Total	С	Ν	0	0
5	D	1	14	8	1	5	0
E	D	1	Total	С	Ν	Ο	0
0	D	1	14	8	1	5	0
E	D	1	Total	С	Ν	Ο	0
G	В	1	14	8	1	5	0
	р	1	Total	С	Ν	0	0
G	В	1	14	8	1	5	0
-	р	1	Total	С	Ν	Ο	0
б	В	1	14	8	1	5	0
-	D	1	Total	С	Ν	Ο	0
б	В	1	14	8	1	5	0
F	р	1	Total	С	Ν	0	0
G	В	1	14	8	1	5	0
F	D	1	Total	С	Ν	Ο	0
5	D	1	14	8	1	5	0
F	D	1	Total	С	Ν	Ο	0
0	D	1	14	8	1	5	0
F	D	1	Total	С	Ν	Ο	0
0	D	1	14	8	1	5	0
5	В	1	Total	С	Ν	Ο	0
5	D	1	14	8	1	5	0
5	C	1	Total	С	Ν	Ο	0
0	U	1	14	8	1	5	0
5	С	1	Total	С	Ν	0	0
5		L	14	8	1	5	
5	C	1	Total	С	Ν	0	0
5		L	14	8	1	5	
Б	C	1	Total	С	Ν	0	0
	U	1	14	8	1	5	U
Б	C	1	Total	С	Ν	0	0
0			14	8	1	5	

Continued from previous page...

Mol	Chain	Residues	Atoms			AltConf	
F	C	1	Total	С	Ν	Ο	0
G	U	1	14	8	1	5	0
-	C	1	Total	С	Ν	Ο	0
б	C	1	14	8	1	5	0
-	C	1	Total	С	Ν	0	0
б	C	1	14	8	1	5	0
-	C	1	Total	С	Ν	0	0
б	C	1	14	8	1	5	0
F	C	1	Total	С	Ν	0	0
G	C	1	14	8	1	5	0
F	C	1	Total	С	Ν	0	0
5	C	1	14	8	1	5	0
E	C	1	Total	С	Ν	Ο	0
5	G	1	14	8	1	5	0
E	C	1	Total	С	Ν	Ο	0
G	G	1	14	8	1	5	0
F	C	1	Total	С	Ν	Ο	0
5	G	1	14	8	1	5	0
F	C	1	Total	С	Ν	Ο	0
G	G	1	14	8	1	5	0
E	С	1	Total	С	Ν	0	0
0	G	1	14	8	1	5	0
E	С	1	Total	С	Ν	0	0
5	G	1	14	8	1	5	0
5	С	1	Total	С	Ν	0	0
5	G	1	14	8	1	5	0
5	С	1	Total	С	Ν	Ο	0
0	G	1	14	8	1	5	0
5	С	1	Total	С	Ν	Ο	0
0	G	1	14	8	1	5	0
5	C	1	Total	С	Ν	Ο	0
5	G	1	14	8	1	5	0
5	C	1	Total	С	Ν	Ο	0
5	G	T	14	8	1	5	0
5	н	1	Total	С	Ν	Ο	0
	11	1	14	8	1	5	
5	н	1	Total	С	Ν	0	0
	11	1	14	8	1	5	
5	Н	1	Total	С	Ν	0	0
	11	1	14	8	1	5	
5	Н	1	Total	С	Ν	0	0
0	11	1	14	8	1	5	

Continued from previous page...

Mol	Chain	Residues	Atoms			AltConf	
5	Ц	1	Total	С	Ν	0	0
0	11	1	14	8	1	5	0
5	н	1	Total	С	Ν	Ο	0
0	11	1	14	8	1	5	0
5	н	1	Total	С	Ν	Ο	0
0	11	1	14	8	1	5	0
5	Н	1	Total	С	Ν	Ο	0
		1	14	8	1	5	0
5	Н	1	Total	С	Ν	Ο	0
		-	14	8	1	5	
5	Н	1	Total	С	Ν	Ο	0
		-	14	8	1	5	
5	Н	1	Total	С	Ν	Ο	0
		_	14	8	1	5	
5	Ι	1	Total	С	Ν	O	0
			14	8	1	5	_
5	Ι	1	Total	С	N	Õ	0
			14	8	1	5	
5	Ι	1	Total	C	N	O E	0
			14	8		5	
5	Ι	1	Total	C	N	0	0
			14	8	1 	<u>b</u>	
5	Ι	1	Total	C	IN 1	0	0
			14 Tutul	8	1 	$\frac{5}{0}$	
5	Ι	1		C o	1N 1	U F	0
			Tatal	$\frac{\circ}{C}$	1 	$\frac{0}{0}$	
5	Ι	1	10tai 14	°	1N 1	5	0
			Total	$\frac{\circ}{C}$	I N	$\frac{1}{0}$	
5	Ι	1	10tai 14	Q Q	1N 1	5	0
			Total	$\frac{0}{C}$	I N	0	
5	Ι	1	1/	8	1 1	5	0
			Total	$\frac{0}{C}$	I N	0	
5	Ι	1	14	8	1	5	0
			Total	<u>C</u>	N	0	
5	I	1	14	8	1	5	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Spike glycoprotein, Fibritin, Expression Tag

• Molecule 1: Spike glycoprotein, Fibritin, Expression Tag

 Q1
 Q1
 Q1
 Q1
 Q1
 Q1
 Q1
 Q1
 Q1
 Q2
 Q3
 Q3
 Q4
 Q4<

• Molecule 1: Spike glycoprotein, Fibritin, Expression Tag

Chain H:

70%

17%

13%

• Molecule 1: Spike glycoprotein, Fibritin, Expression Tag

0.1.U VALL LEVU ALSIN ALSINA ALSIN A

- Molecule 2: Light chain of H18 Fab Chain D: 74% 14% 12% MET TRP SERR SERR SERR CYS SER TILE LEU VAL LEU VAL LEU VAL LEU VAL ALA ALA ALA ALA ALA GLY THR LYS LEU LEU VAL VAL LEU • Molecule 2: Light chain of H18 Fab Chain F: 75% 13% 12% LEU VAL LEU • Molecule 2: Light chain of H18 Fab Chain K: 78% 12% 10% MET TRP SERR SERR SERR SER TLE TLE TLEU TLEU VAL LEU VAL ALA ALA ALA ALA ALA ALA GLU CYS SER • Molecule 2: Light chain of H18 Fab Chain L: 73% 13% 12% MET TRP SER SER SER SER SER TILE LEU PHE LLEU PHE LLEU VAL LLEU VAL THR ALA ALA ALA ALA ALA
- Molecule 2: Light chain of H18 Fab

Chain O:	79%	9%	12%
MET GLY TRP SER SER SER SER SER LLE LLEU LLEU LLEU ALA ALA THR THR	Val. HIS SER SER ALA ALA ALA P14 C22 S31 S31 V48 V36 V36 V36 V36 V36 V147 V48 V147 V147 V147 V147 V147 V147 V147 V14 V14 V14 V14 V14 V15 V15 V15 V15 SER SER SER SER SER SER SER SER SER SER	N53 Q54 P60 D61 D61 D61 D62 L81 L81 L81 V89	T105 K106 L107 L110 GLY GLY THR LYS
LEU THR THR THR CI LEU CI 12 V14 V144 V144 V144 V144 V148 S187 S187 V188	1220 GLU SER SER		
• Molecule 2: Light c	chain of H18 Fab		
Chain Q:	79%	8%	12%
MET GLY GLY CYS SER CYS CYS CYS CYS FLE FLE FLE CYS ALA ALA ALA ALA ALA ALA THR	VALI VALI HIS SER SER ALA MI A VIS S3 1 S3 1 S3 1 S3 1 S3 1 S3 1 S3 1 S3	N53 454 855 181 181 89 89 89 80 81 110 1110 1110	LEU THR VAL LEU G118 P124 T127
C115 L1446 L1446 L1446 R147 R147 R147 R147 R185 S187 S187 S187 C1220 C12 C12			
• Molecule 3: Heavy	chain of H18 Fab		
Chain E:	78%	14%	8%
MET GLY TRP GLY TRP SER LEU LEU LEU LEU LEU VAL ALA ALA ALA ALA	ANA ANA LEU SER SER SER V1 V1 V1 V12 V12 V12 V12 V12 V12 V12 V1	V29 V26 V36 V36 V36 V40 V41 C47 I50 I50	171 192 192 100 100 8104 8105
F107 118 119 1138 1138 1142 1142 1142 1142 1142 1153	P209		
• Molecule 3: Heavy	chain of H18 Fab		
Chain J:	76%	16%	8%
MET GLY TRP SER SER SER SEU LEU LEU LEU LEU VAL ALA ALA ALA	Anu LEU SER SER ST ST ES F14 T21 T21 T21 T21 T21 T23 T23 T23 T23 T23 T23 T23 T23 T23 T23	F35 F35 F36 F40 F41 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47 F47	D74 192 195 899 W102
L103 R104 G105 R106 R106 R107 S106 S119 S119 S119 S119 S119 S119 S134 C146 C146	1155 1155 1175 1185 1185 1185 1185 1185		
• Molecule 3: Heavy	chain of H18 Fab		
Chain M:	77%	15%	8%
MET GLY TRP SER SER SER SER LEU LEU LEU LEU VAL VAL VAL VAL VAL VAL	лис LEU SER 21 11 12 12 12 12 12 12 12 12 12 12 12	135 136 140 141 141 150 153 153 153 153 153	V73 D74 A93 4100 L103
R106 1115 1117 1117 1117 1117 1117 1117 8120 8120 8134 8134 8134	6146 4175 1175 1186 1186 1186 1186 1186 1186 1186 118		
• Molecule 3: Heavy	chain of H18 Fab		

C55 C55 L55

Chain N:		79%)		12%	8%
MET GLY SER SER LEU LEU LEU	LEU LEU VAL ALA ALA ALA ALA ALA ALA ARG LEU SER SER	Q1 V2 L4 S7 S7 K13	E16 T21 V24	V29 W36 W40 Q41	150 651 153 171 171 V87	T92 4100 1101 1103 1103 1104

• Molecule 3: Heavy chain of H18 Fab

Chain P:	78%	14%	8%	

MET GLY SER SER LEU LEU LEU LEU VAL LEU VAL ALA ALA ALA ALA ALA SER SER SER

• Molecule 3: Heavy chain of H18 Fab

Chain R:	78%		14%	8%
MET TRP TRP TRP TRP TRP TRP TRP TRP TRP TR	01 03 164 164 165 161 111 121 121 121	u36 441 147 150 153	171 872 872 174 174 100	L101 L102 L103 L103 R104 R106 R106 T117

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

100%

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain T:

100%

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain U:

100%

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain V:	100%	
NAG1 NAG2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluc
Chain W:	50% 50%	•
NAG1 NAG2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluc
Chain X:	100%	
NAG1 NAG2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluc
Chain Y:	50% 50%	
NAG1 NAG2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluc
Chain Z:	100%	
NA G1 NA G2		
• Molecule opyranose	4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluc

Chain a:

100%

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain b:

100%

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain c:	100%
NAG1 NAG2	
• Molecule 4	2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-
onvranoso	

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain d:	100%
NAG1 NAG2	
• Molecule 4 opyranose	eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-a
Chain e:	100%

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Ch	ain	f:

100%

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain g:

100%

100%

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain h:

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain i:	100%	
NAG2 NAG2		
• Molecule 4: opyranose	$2\-acetamido-2\-deoxy-beta-D\-glucopyranose-(1-4)-2\-acetamido-2\-acetamido-2\-acetamido-2\-deoxy-beta-D\-glucopyranose-(1-4)-2\-acetamido-2\-de$	с
Chain j:	100%	
NA G2 NA G2		
• Molecule 4: opyranose	$2\-acetamido-2\-deoxy-beta-D\-glucopyranose-(1-4)-2\-acetamido-2\-acetamido-2\-deoxy-beta-D\-glucopyranose-(1-4)-2\-acetamido-2\-deoxy-beta-D\-glucopyranose-(1-4)-2\-acetamido-2\-acetamido-2\-deoxy-beta-D\-glucopyranose-(1-4)-2\-acetamido-2\-de$	с
Chain k:	100%	
NAG1 NAG2		
• Molecule 4: opyranose	$2\-acetamido-2\-deoxy-beta-D\-glucopyranose-(1-4)-2\-acetamido-2\-acetamido-2\-acetamido-2\-deoxy-beta-D\-glucopyranose-(1-4)-2\-acetamido-2\-do$	с
Chain l:	100%	
NAG1 NAG2		
• Molecule 4: opyranose	$2\-acetamido-2\-deoxy-beta-D\-glucopyranose-(1-4)-2\-acetamido-2\-deoxy-beta-D\-glucopyranose-$	с
Chain m:	100%	
AG1 AG2		

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain n:

100%

VAG1 VAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain o:

100%

NAG1 NAG2

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain p:

100%

NAG1 NAG2

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	16440	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	45000	Depositor
Image detector	GATAN K3 (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.27	0/8540	0.50	0/11624
1	В	0.26	0/8540	0.50	0/11624
1	С	0.27	0/8540	0.50	0/11624
1	G	0.26	0/8540	0.51	0/11624
1	Н	0.27	0/8540	0.51	0/11624
1	Ι	0.27	0/8540	0.51	0/11624
2	D	0.25	0/1630	0.50	0/2225
2	F	0.25	0/1630	0.51	0/2225
2	Κ	0.25	0/1630	0.48	0/2225
2	L	0.25	0/1630	0.49	0/2225
2	0	0.25	0/1630	0.48	0/2225
2	Q	0.25	0/1630	0.48	0/2225
3	Е	0.25	0/1713	0.52	0/2339
3	J	0.25	0/1713	0.50	0/2339
3	М	0.25	0/1713	0.51	0/2339
3	N	0.26	0/1713	0.52	0/2339
3	Р	0.25	0/1713	0.49	0/2339
3	R	0.25	0/1713	0.51	0/2339
All	All	0.26	0/71298	0.50	0/97128

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8344	0	8123	122	0
1	В	8344	0	8123	126	0
1	С	8344	0	8123	100	0
1	G	8344	0	8123	119	0
1	Н	8344	0	8123	108	0
1	Ι	8344	0	8123	105	0
2	D	1593	0	1524	23	0
2	F	1593	0	1524	20	0
2	Κ	1593	0	1524	15	0
2	L	1593	0	1524	27	0
2	0	1593	0	1524	15	0
2	Q	1593	0	1524	13	0
3	Е	1670	0	1643	19	0
3	J	1670	0	1643	29	0
3	М	1670	0	1643	23	0
3	Ν	1670	0	1643	21	0
3	Р	1670	0	1643	22	0
3	R	1670	0	1643	22	0
4	S	28	0	25	0	0
4	Т	28	0	25	0	0
4	U	28	0	25	0	0
4	V	28	0	25	0	0
4	W	28	0	25	1	0
4	Х	28	0	25	0	0
4	Y	28	0	25	1	0
4	Ζ	28	0	25	0	0
4	a	28	0	25	0	0
4	b	28	0	25	0	0
4	с	28	0	25	0	0
4	d	28	0	25	0	0
4	е	28	0	25	0	0
4	f	28	0	25	0	0
4	g	28	0	25	0	0
4	h	28	0	25	0	0
4	i	28	0	25	0	0
4	j	28	0	25	0	0
4	k	28	0	25	0	0
4	1	28	0	25	0	0
4	m	28	0	25	0	0
4	n	28	0	25	0	0
4	0	28	0	25	0	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	р	28	0	25	0	0
5	А	154	0	143	0	0
5	В	154	0	143	0	0
5	С	154	0	143	1	0
5	G	154	0	143	0	0
5	Н	154	0	143	1	0
5	Ι	154	0	143	0	0
All	All	71238	0	69198	861	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (861) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:I:330:PRO:HG2	1:I:579:PRO:HB2	1.50	0.93
1:A:577:ARG:HD3	1:A:582:LEU:HD12	1.64	0.80
1:C:738:CYS:HB3	1:C:742:ILE:HD12	1.61	0.80
3:P:11:LEU:HD22	3:P:209:PRO:HB3	1.62	0.79
1:H:902:MET:HG3	1:H:916:LEU:HD11	1.65	0.78
1:A:331:ASN:HB3	1:A:580:GLN:HA	1.65	0.77
3:J:102:TRP:HB3	3:J:105:GLY:HA3	1.66	0.76
1:B:902:MET:HG3	1:B:916:LEU:HD11	1.67	0.74
1:A:480:CYS:HA	1:A:487:ASN:HB3	1.71	0.73
3:P:102:TRP:HB3	3:P:105:GLY:HA3	1.71	0.72
1:H:770:ILE:HD11	1:H:1012:LEU:HD23	1.73	0.71
1:G:328:ARG:HH21	1:G:533:LEU:HB2	1.56	0.71
1:A:328:ARG:HB3	1:A:531:THR:HG23	1.73	0.70
1:B:106:PHE:HB2	1:B:117:LEU:HB2	1.73	0.70
1:H:106:PHE:HB2	1:H:117:LEU:HB2	1.74	0.70
2:L:163:SER:H	2:L:199:HIS:CD2	2.10	0.69
1:B:333:THR:HG23	1:B:362:VAL:HG22	1.73	0.69
1:C:374:PHE:O	3:E:104:ARG:NH2	2.26	0.69
1:I:374:PHE:O	3:N:104:ARG:NH2	2.26	0.69
1:C:106:PHE:HB2	1:C:117:LEU:HB2	1.75	0.69
2:L:145:CYS:HB3	2:L:187:SER:HB3	1.75	0.69
1:C:362:VAL:HG23	1:C:526:GLY:HA2	1.75	0.68
2:L:163:SER:H	2:L:199:HIS:HD2	1.39	0.68
1:I:106:PHE:HB2	1:I:117:LEU:HB2	1.76	0.68
2:L:118:GLY:N	2:L:151:TYR:HH	1.92	0.68
1:G:758:SER:O	1:G:762:GLN:NE2	2.27	0.68

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:N:119:SER:HB3	3:N:154:PRO:HG3	1.75	0.68
3:M:146:GLY:HA3	3:M:188:VAL:HG12	1.76	0.67
3:P:3:GLN:HE22	3:P:5:GLN:HB2	1.59	0.67
3:R:11:LEU:HD22	3:R:209:PRO:HB3	1.74	0.67
1:B:357:ARG:HH22	1:C:168:PHE:HB2	1.60	0.67
3:E:3:GLN:HE21	3:E:25:SER:HB2	1.60	0.66
3:M:29:VAL:HG13	3:M:36:TRP:HE1	1.61	0.66
1:A:328:ARG:HG3	1:A:531:THR:H	1.61	0.66
2:D:145:CYS:HB3	2:D:187:SER:HB3	1.75	0.66
3:R:146:GLY:HA3	3:R:188:VAL:HG12	1.77	0.66
2:K:145:CYS:HB3	2:K:187:SER:HB3	1.77	0.65
3:R:29:VAL:HG13	3:R:36:TRP:HE1	1.60	0.65
1:A:758:SER:O	1:A:762:GLN:NE2	2.29	0.65
1:G:742:ILE:O	1:G:1000:ARG:NH1	2.30	0.65
2:Q:145:CYS:HB3	2:Q:187:SER:HB3	1.79	0.65
3:E:146:GLY:HA3	3:E:188:VAL:HG12	1.78	0.65
2:F:143:LEU:HB2	2:F:189:LEU:HB3	1.80	0.64
1:A:87:ASN:HD21	1:A:269:TYR:HB3	1.62	0.64
3:N:146:GLY:HA3	3:N:188:VAL:HG12	1.78	0.64
3:R:11:LEU:HB2	3:R:117:THR:HB	1.80	0.64
3:R:35:PHE:HB2	3:R:100:GLN:HB3	1.79	0.64
1:C:459:SER:HA	1:G:487:ASN:H	1.63	0.64
1:B:479:PRO:HD2	1:H:494:SER:HB3	1.79	0.63
1:A:770:ILE:HD11	1:A:1012:LEU:HD23	1.80	0.63
1:C:356:LYS:HB2	1:C:397:ALA:HB3	1.81	0.63
1:G:442:ASP:O	1:G:448:ASN:ND2	2.32	0.63
1:A:742:ILE:O	1:A:1000:ARG:NH1	2.31	0.63
3:P:41:GLN:HB2	3:P:47:LEU:HD23	1.82	0.62
1:B:1052:PHE:HB2	1:B:1063:LEU:HB3	1.80	0.62
1:A:64:TRP:HE1	1:A:264:ALA:HB1	1.64	0.62
1:A:213:VAL:HG13	1:A:214:ARG:HG2	1.82	0.62
2:0:14:PRO:HA	2:O:81:LEU:HB3	1.81	0.62
1:B:473:TYR:HE2	1:H:484:GLU:HB2	1.65	0.61
1:A:1030:SER:HB3	1:C:1041:ASP:HB3	1.82	0.61
3:J:41:GLN:HB2	3:J:47:LEU:HD23	1.83	0.61
1:C:763:LEU:HD22	1:C:1008:VAL:HG21	1.83	0.61
1:G:1030:SER:HB3	1:I:1041:ASP:HB3	1.81	0.61
1:I:977:LEU:HD23	1:I:1000:ARG:HH12	1.66	0.61
1:I:742:ILE:O	1:I:1000:ARG:NH1	2.33	0.61
1:A:770:ILE:O	1:A:773:GLU:HG2	2.02	0.60
1:C:977:LEU:HD23	1:C:1000:ARG:HH12	1.66	0.60

	h a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:I:356:LYS:HB2	1:I:397:ALA:HB3	1.81	0.60	
3:J:40:ARG:HB3	3:J:50:ILE:HD11	1.84	0.60	
1:B:1047:TYR:HB2	1:B:1067:TYR:HB3	1.83	0.60	
1:G:173:GLN:HE22	1:G:175:PHE:HD2	1.50	0.60	
1:H:442:ASP:O	1:H:448:ASN:ND2	2.35	0.60	
3:N:175:ALA:HB2	3:N:185:LEU:HD23	1.83	0.60	
3:E:41:GLN:HB2	3:E:47:LEU:HD23	1.84	0.60	
1:G:458:LYS:NZ	1:G:471:GLU:OE1	2.34	0.60	
1:H:1047:TYR:HB2	1:H:1067:TYR:HB3	1.84	0.60	
1:B:64:TRP:HE1	1:B:264:ALA:HB1	1.66	0.59	
2:F:14:PRO:HA	2:F:81:LEU:HB3	1.84	0.59	
1:B:951:VAL:O	1:B:955:ASN:ND2	2.35	0.59	
3:M:35:PHE:HB2	3:M:100:GLN:HB3	1.83	0.59	
1:I:474:GLN:HE21	1:I:488:CYS:HB2	1.67	0.59	
1:A:1041:ASP:HB3	1:B:1030:SER:HB3	1.84	0.59	
1:B:239:GLN:NE2	1:B:240:THR:O	2.36	0.59	
3:J:92:THR:HG22	3:J:118:VAL:H	1.66	0.59	
3:J:146:GLY:HA3	3:J:188:VAL:HG12	1.84	0.59	
1:G:983:ARG:HG3	1:G:984:LEU:HG	1.85	0.59	
1:H:97:LYS:HB2	1:H:186:PHE:HA	1.83	0.59	
1:H:776:LYS:NZ	1:H:780:GLU:OE2	2.36	0.59	
3:R:175:ALA:HB2	3:R:185:LEU:HD23	1.84	0.59	
1:B:776:LYS:NZ	1:B:780:GLU:OE2	2.36	0.59	
3:R:11:LEU:HD13	3:R:154:PRO:HG3	1.85	0.59	
1:B:466:ARG:HD2	5:C:1303:NAG:H82	1.84	0.59	
1:C:742:ILE:O	1:C:1000:ARG:NH1	2.35	0.59	
3:E:92:THR:HG22	3:E:118:VAL:H	1.68	0.59	
1:I:328:ARG:HA	1:I:530:SER:HA	1.83	0.59	
3:N:13:LYS:O	3:N:16:GLU:HB2	2.03	0.59	
1:B:278:LYS:HB3	1:B:287:ASP:H	1.68	0.59	
1:H:278:LYS:HB3	1:H:287:ASP:H	1.68	0.59	
1:I:119:ILE:HG12	1:I:128:ILE:HG23	1.85	0.59	
1:A:173:GLN:HE22	1:A:175:PHE:HD2	1.49	0.59	
1:B:922:LEU:HD11	4:W:1:NAG:H3	1.84	0.59	
2:D:36:TRP:HB2	2:D:49:ILE:HG22	1.85	0.59	
1:A:97:LYS:HB2	1:A:186:PHE:HA	1.85	0.58	
1:B:773:GLU:OE2	1:B:774:GLN:NE2	2.33	0.58	
1:A:861:LEU:HD12	1:A:862:PRO:HD2	1.85	0.58	
1:B:905:ARG:NH1	1:B:1049:LEU:O	2.35	0.58	
1:C:239:GLN:NE2	1:C:240:THR:O	2.36	0.58	
1:G:861:LEU:HD12	1:G:862:PRO:HD2	1.84	0.58	

	the page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:329:PHE:HB2	1:A:330:PRO:HD3	1.85	0.58	
1:H:951:VAL:O	1:H:955:ASN:ND2	2.37	0.58	
1:A:442:ASP:O	1:A:448:ASN:ND2	2.36	0.58	
1:H:239:GLN:NE2	1:H:240:THR:O	2.36	0.58	
1:H:64:TRP:HE1	1:H:264:ALA:HB1	1.67	0.58	
1:H:330:PRO:HD2	1:H:528:LYS:HE2	1.84	0.58	
1:B:770:ILE:HD11	1:B:1012:LEU:HD23	1.86	0.58	
1:I:770:ILE:HD11	1:I:1012:LEU:HD13	1.84	0.58	
1:B:442:ASP:O	1:B:448:ASN:ND2	2.37	0.58	
1:G:736:VAL:HG11	1:G:1004:LEU:HD11	1.86	0.58	
1:H:905:ARG:NH1	1:H:1049:LEU:O	2.35	0.58	
1:I:239:GLN:NE2	1:I:240:THR:O	2.37	0.58	
2:Q:28:SER:OG	2:Q:31:SER:OG	2.21	0.58	
2:K:28:SER:OG	2:K:31:SER:OG	2.21	0.57	
1:H:119:ILE:HG23	1:H:128:ILE:HG12	1.86	0.57	
2:L:160:LYS:HA	2:L:165:PRO:HA	1.85	0.57	
2:Q:127:THR:HG21	3:R:144:ALA:HB3	1.86	0.57	
1:H:246:ARG:HH22	1:H:254:SER:HB3	1.69	0.57	
3:E:175:ALA:HB2	3:E:185:LEU:HD23	1.84	0.57	
3:P:40:ARG:HB3	3:P:50:ILE:HD11	1.84	0.57	
3:P:146:GLY:HA3	3:P:188:VAL:HG12	1.86	0.57	
3:R:41:GLN:HB2	3:R:47:LEU:HD23	1.86	0.57	
1:C:142:GLY:HA3	1:C:156:GLU:HB2	1.86	0.57	
2:L:36:TRP:HB2	2:L:49:ILE:HG22	1.85	0.57	
3:M:41:GLN:HB2	3:M:47:LEU:HD23	1.85	0.57	
1:B:119:ILE:HG23	1:B:128:ILE:HG12	1.87	0.57	
1:I:142:GLY:HA3	1:I:156:GLU:HB2	1.86	0.57	
1:A:365:TYR:HA	1:A:368:LEU:HD13	1.86	0.57	
1:H:142:GLY:HA3	1:H:156:GLU:HB2	1.87	0.57	
2:F:28:SER:HG	2:F:31:SER:HG	1.49	0.57	
1:H:336:CYS:HB2	1:H:338:PHE:HD1	1.69	0.57	
1:G:327:VAL:HG23	1:G:542:ASN:HB3	1.87	0.57	
1:H:24:LEU:HB2	1:H:78:ARG:HD3	1.87	0.56	
1:A:352:ALA:HA	1:A:466:ARG:HD3	1.86	0.56	
1:B:246:ARG:HH22	1:B:254:SER:HB3	1.69	0.56	
2:K:119:GLN:HE21	2:K:177:LYS:HD2	1.70	0.56	
1:B:726:ILE:HB	1:B:947:LYS:HE2	1.87	0.56	
3:M:175:ALA:HB2	3:M:185:LEU:HD23	1.87	0.56	
1:G:246:ARG:HH22	1:G:254:SER:HB3	1.69	0.56	
1:B:361:CYS:SG	1:B:362:VAL:N	2.79	0.56	
2:D:162:ASP:HB2	2:D:199:HIS:HD2	1.70	0.56	

	a sub pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:N:7:SER:OG	3:N:21:THR:OG1	2.23	0.56
3:R:7:SER:OG	3:R:21:THR:OG1	2.24	0.56
1:A:32:PHE:HB3	1:A:218:GLN:HG3	1.87	0.56
1:A:246:ARG:HH22	1:A:254:SER:HB3	1.70	0.56
1:A:763:LEU:HD22	1:A:1008:VAL:HG21	1.88	0.56
3:P:92:THR:HG22	3:P:118:VAL:H	1.70	0.56
1:A:474:GLN:HA	1:A:488:CYS:HA	1.88	0.56
3:M:134:SER:H	3:M:137:SER:HB3	1.71	0.56
1:G:32:PHE:HB3	1:G:218:GLN:HG3	1.88	0.56
3:N:41:GLN:HB2	3:N:47:LEU:HD23	1.88	0.56
3:R:134:SER:H	3:R:137:SER:HB3	1.70	0.56
1:A:123:ALA:HA	1:A:177:MET:HB3	1.88	0.55
1:A:327:VAL:HG23	1:A:542:ASN:HB3	1.88	0.55
3:E:7:SER:OG	3:E:21:THR:OG1	2.23	0.55
3:J:175:ALA:HB2	3:J:185:LEU:HD23	1.88	0.55
1:G:667:GLY:HA2	1:H:864:LEU:HA	1.88	0.55
1:I:1010:GLN:OE1	1:I:1014:ARG:NH2	2.40	0.55
1:A:98:SER:HB3	1:A:181:GLY:HA2	1.87	0.55
1:C:526:GLY:N	1:C:527:PRO:HD2	2.21	0.55
1:B:119:ILE:HG12	1:B:128:ILE:HG23	1.89	0.55
1:G:1041:ASP:HB3	1:H:1030:SER:HB3	1.88	0.55
1:H:1030:SER:HA	1:H:1034:LEU:HD12	1.88	0.55
2:L:40:ARG:NH2	2:L:84:GLU:O	2.40	0.55
1:B:1030:SER:HA	1:B:1034:LEU:HD12	1.87	0.55
1:G:97:LYS:HB2	1:G:186:PHE:HA	1.88	0.55
1:H:1041:ASP:HB3	1:I:1030:SER:HB3	1.88	0.55
1:I:128:ILE:HG21	1:I:229:LEU:HD21	1.88	0.55
1:A:1051:SER:HG	1:A:1064:HIS:HD1	1.53	0.55
1:G:78:ARG:HE	1:G:80:ASP:HB2	1.71	0.55
1:I:763:LEU:HG	1:I:1008:VAL:HG21	1.89	0.55
2:O:143:LEU:HB2	2:O:189:LEU:HB3	1.87	0.55
1:B:81:ASN:HB3	1:B:239:GLN:HE21	1.72	0.55
3:M:11:LEU:HD22	3:M:118:VAL:HB	1.88	0.55
3:P:7:SER:OG	3:P:21:THR:OG1	2.24	0.55
3:P:175:ALA:HB2	3:P:185:LEU:HD23	1.89	0.55
1:C:119:ILE:HG12	1:C:128:ILE:HG23	1.88	0.55
2:D:5:THR:HB	2:D:23:THR:HB	1.88	0.55
3:N:52:CYS:SG	3:N:100:GLN:NE2	2.80	0.55
1:A:195:LYS:HB2	1:A:202:LYS:HB2	1.89	0.55
1:C:246:ARG:HH22	1:C:254:SER:HB3	1.71	0.55
1:B:398:ASP:HB2	1:B:512:VAL:HB	1.89	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:24:LEU:HB2	1:B:78:ARG:HD3	1.88	0.54
1:B:1090:PRO:O	1:C:913:GLN:NE2	2.40	0.54
1:H:328:ARG:HH21	1:H:533:LEU:HD13	1.73	0.54
3:N:4:LEU:HG	3:N:24:VAL:HG22	1.88	0.54
1:B:142:GLY:HA3	1:B:156:GLU:HB2	1.89	0.54
1:B:763:LEU:HD22	1:B:1008:VAL:HG21	1.89	0.54
1:G:102:ARG:HG3	1:G:141:LEU:HD12	1.89	0.54
1:G:525:CYS:SG	1:G:526:GLY:N	2.81	0.54
1:C:87:ASN:HD21	1:C:269:TYR:HB3	1.72	0.54
2:F:62:ARG:NH2	2:F:85:ASP:OD2	2.40	0.54
2:K:36:TRP:HB2	2:K:49:ILE:HG22	1.87	0.54
1:G:352:ALA:HA	1:G:466:ARG:HD3	1.88	0.54
1:A:102:ARG:HG3	1:A:141:LEU:HD12	1.90	0.54
1:G:195:LYS:HB2	1:G:202:LYS:HB2	1.89	0.54
2:L:35:GLN:NE2	3:N:105:GLY:O	2.40	0.54
2:Q:36:TRP:HB2	2:Q:49:ILE:HG22	1.90	0.54
1:C:818:ILE:HD11	1:C:1054:GLN:HE21	1.71	0.54
2:D:35:GLN:NE2	3:E:105:GLY:O	2.41	0.54
3:M:7:SER:OG	3:M:21:THR:OG1	2.25	0.54
2:D:55:ARG:NH1	2:D:59:VAL:O	2.40	0.54
1:H:472:ILE:HD12	1:H:488:CYS:HB2	1.90	0.54
1:A:1028:LYS:NZ	1:A:1042:PHE:O	2.41	0.54
1:B:37:TYR:OH	1:B:54:LEU:O	2.26	0.54
1:C:97:LYS:HB2	1:C:186:PHE:HA	1.88	0.54
3:J:7:SER:OG	3:J:21:THR:OG1	2.25	0.54
1:H:119:ILE:HG12	1:H:128:ILE:HG23	1.89	0.54
1:A:417:LYS:HG3	1:A:418:ILE:HG12	1.90	0.54
1:A:769:GLY:O	1:A:772:VAL:HG12	2.08	0.54
1:B:32:PHE:HB3	1:B:218:GLN:HG3	1.89	0.54
1:C:384:PRO:HA	1:C:387:LEU:HD23	1.90	0.54
1:G:42:VAL:HG12	1:I:565:PHE:HB2	1.89	0.54
1:C:319:ARG:NE	1:C:591:SER:OG	2.34	0.53
1:H:32:PHE:HB3	1:H:218:GLN:HG3	1.90	0.53
1:I:97:LYS:HB2	1:I:186:PHE:HA	1.88	0.53
1:I:246:ARG:HH22	1:I:254:SER:HB3	1.71	0.53
1:A:667:GLY:HA2	1:B:864:LEU:HA	1.91	0.53
1:B:1041:ASP:HB3	1:C:1030:SER:HB3	1.88	0.53
1:H:1028:LYS:NZ	1:H:1042:PHE:O	2.42	0.53
1:G:1028:LYS:NZ	1:G:1042:PHE:O	2.42	0.53
3:P:134:SER:H	3:P:137:SER:HB3	1.73	0.53
2:D:40:ARG:HB2	2:D:43:SER:HB2	1.90	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:980:ILE:HA	1:G:983:ARG:HG2	1.89	0.53
2:O:145:CYS:HB3	2:O:187:SER:HB3	1.91	0.53
1:B:29:THR:HG23	1:B:62:VAL:HG13	1.91	0.53
1:I:32:PHE:HB3	1:I:218:GLN:HG3	1.91	0.53
1:G:87:ASN:HD21	1:G:269:TYR:HB3	1.73	0.53
1:G:98:SER:HB3	1:G:181:GLY:HA2	1.89	0.53
1:G:574:ASP:HA	1:G:587:ILE:HB	1.91	0.53
1:B:689:SER:OG	1:B:690:GLN:N	2.42	0.53
1:B:766:ALA:O	1:B:770:ILE:HG12	2.09	0.53
1:C:32:PHE:HB3	1:C:218:GLN:HG3	1.90	0.53
1:C:408:ARG:NH2	2:D:72:ASN:OD1	2.42	0.53
1:G:417:LYS:HG3	1:G:418:ILE:HG12	1.90	0.53
1:H:821:LEU:HD21	1:H:939:SER:HA	1.91	0.53
1:H:365:TYR:HA	1:H:368:LEU:HD13	1.91	0.53
1:H:1090:PRO:O	1:I:913:GLN:NE2	2.42	0.53
1:I:776:LYS:NZ	1:I:780:GLU:OE2	2.42	0.53
2:O:62:ARG:NH2	2:O:85:ASP:OD2	2.42	0.53
2:O:127:THR:HG21	3:P:144:ALA:HB3	1.91	0.53
1:A:736:VAL:HG11	1:A:1004:LEU:HD11	1.90	0.52
1:G:110:LEU:HB3	1:G:135:PHE:HB2	1.90	0.52
3:P:29:VAL:HA	3:P:36:TRP:HZ2	1.74	0.52
3:R:122:SER:O	3:R:124:LYS:NZ	2.42	0.52
1:B:476:GLY:N	1:B:487:ASN:O	2.36	0.52
1:A:128:ILE:HB	1:A:170:TYR:HB3	1.92	0.52
1:C:866:THR:N	1:C:869:MET:SD	2.82	0.52
1:I:501:ASN:HB2	1:I:506:GLN:HE22	1.75	0.52
1:I:951:VAL:O	1:I:955:ASN:ND2	2.42	0.52
3:P:115:LEU:HD23	3:P:156:PRO:HG3	1.92	0.52
1:A:314:GLN:NE2	1:A:316:SER:O	2.42	0.52
1:H:689:SER:OG	1:H:690:GLN:N	2.41	0.52
1:I:408:ARG:NH2	2:L:72:ASN:OD1	2.42	0.52
1:C:501:ASN:HB2	1:C:506:GLN:HE22	1.75	0.52
1:H:29:THR:HG23	1:H:62:VAL:HG13	1.91	0.52
1:C:128:ILE:HG21	1:C:229:LEU:HD21	1.92	0.52
1:A:951:VAL:O	1:A:955:ASN:ND2	2.43	0.52
1:B:1106:GLN:HE21	1:B:1109:PHE:HB3	1.75	0.52
1:C:689:SER:OG	1:C:690:GLN:N	2.42	0.52
1:G:64:TRP:HE1	1:G:264:ALA:HB1	1.75	0.52
1:A:766:ALA:O	1:A:770:ILE:HG12	2.10	0.52
1:A:776:LYS:NZ	1:A:780:GLU:OE2	2.43	0.52
1:B:353:TRP:O	1:B:466:ARG:NH2	2.43	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:I:906:PHE:HE2	1:I:916:LEU:HD13	1.74	0.52
2:L:94:TYR:CG	3:N:104:ARG:HG2	2.44	0.52
1:B:97:LYS:HB2	1:B:186:PHE:HA	1.91	0.51
1:B:861:LEU:HD12	1:B:862:PRO:HD2	1.91	0.51
1:H:906:PHE:HE1	1:H:1049:LEU:HD21	1.75	0.51
1:G:314:GLN:NE2	1:G:316:SER:O	2.43	0.51
1:H:565:PHE:HB2	1:I:42:VAL:HG12	1.93	0.51
1:B:374:PHE:HB2	3:J:104:ARG:NH2	2.26	0.51
2:D:94:TYR:CG	3:E:104:ARG:HG2	2.44	0.51
1:B:821:LEU:HD21	1:B:939:SER:HA	1.92	0.51
1:C:973:ILE:HD12	1:C:983:ARG:HH12	1.74	0.51
3:J:108:ASP:OD1	3:J:108:ASP:N	2.43	0.51
1:G:776:LYS:NZ	1:G:780:GLU:OE2	2.44	0.51
1:G:866:THR:H	1:G:869:MET:HE2	1.75	0.51
3:R:3:GLN:HE22	3:R:5:GLN:HB3	1.76	0.51
1:G:128:ILE:HB	1:G:170:TYR:HB3	1.91	0.51
1:I:327:VAL:HB	1:I:528:LYS:HG2	1.93	0.51
1:A:349:SER:OG	1:A:452:LEU:O	2.29	0.51
1:B:906:PHE:HE1	1:B:1049:LEU:HD21	1.75	0.51
1:H:37:TYR:OH	1:H:53:ASP:OD2	2.29	0.51
1:A:42:VAL:HG12	1:C:565:PHE:HB2	1.93	0.51
1:B:973:ILE:HD12	1:B:983:ARG:HH12	1.76	0.51
2:F:99:VAL:HB	3:J:49:TRP:CG	2.46	0.51
1:H:356:LYS:HB2	1:H:397:ALA:HB3	1.91	0.51
2:D:55:ARG:NE	2:D:61:ASP:HA	2.26	0.51
2:L:5:THR:HB	2:L:23:THR:HB	1.92	0.51
1:A:689:SER:OG	1:A:690:GLN:N	2.44	0.51
1:C:821:LEU:HD21	1:C:939:SER:HA	1.93	0.51
1:I:689:SER:OG	1:I:690:GLN:N	2.42	0.51
1:B:565:PHE:HB2	1:C:42:VAL:HG12	1.93	0.50
1:C:776:LYS:NZ	1:C:780:GLU:OE2	2.42	0.50
1:H:574:ASP:HA	1:H:587:ILE:HB	1.93	0.50
3:N:92:THR:HG22	3:N:118:VAL:H	1.75	0.50
1:A:167:THR:HB	1:C:357:ARG:HD3	1.93	0.50
1:I:959:LEU:HD13	1:I:962:LEU:HD12	1.93	0.50
1:A:1052:PHE:HB2	1:A:1063:LEU:HB2	1.94	0.50
1:B:376:THR:HG22	2:F:31:SER:HB3	1.94	0.50
3:J:29:VAL:HA	3:J:36:TRP:HZ2	1.77	0.50
1:H:81:ASN:HB3	1:H:239:GLN:HE21	1.75	0.50
3:M:12:VAL:H	3:M:118:VAL:HG11	1.77	0.50
1:G:689:SER:OG	1:G:690:GLN:N	2.44	0.50

	sus page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:729:VAL:H	1:H:1059:GLY:HA2	1.77	0.50
1:A:735:SER:HA	1:A:767:LEU:HD13	1.94	0.50
1:B:339:GLY:HA2	1:B:342:PHE:CD2	2.47	0.50
1:G:349:SER:OG	1:G:452:LEU:O	2.30	0.50
1:G:992:GLN:OE1	1:G:995:ARG:NH2	2.42	0.50
3:P:108:ASP:OD1	3:P:108:ASP:N	2.44	0.50
1:B:37:TYR:OH	1:B:53:ASP:OD2	2.29	0.50
1:B:563:GLN:NE2	1:C:42:VAL:O	2.44	0.50
1:G:1051:SER:OG	1:G:1064:HIS:ND1	2.39	0.50
1:H:1106:GLN:HE21	1:H:1109:PHE:HB3	1.75	0.50
1:A:384:PRO:HA	1:A:387:LEU:HD23	1.92	0.50
1:B:427:ASP:OD1	1:B:427:ASP:N	2.45	0.50
2:D:50:TYR:HD2	2:D:51:GLU:HG3	1.77	0.50
1:I:729:VAL:H	1:I:1059:GLY:HA2	1.77	0.50
1:B:598:ILE:HB	1:B:609:ALA:HB3	1.94	0.50
1:G:821:LEU:HD21	1:G:939:SER:HA	1.94	0.50
2:Q:53:ASN:O	2:Q:55:ARG:NH1	2.45	0.50
1:A:454:ARG:NH1	1:A:469:SER:O	2.39	0.49
1:A:545:GLY:HA3	1:A:565:PHE:HZ	1.76	0.49
3:M:3:GLN:HE22	3:M:5:GLN:HB3	1.76	0.49
3:M:100:GLN:NE2	3:M:103:LEU:O	2.45	0.49
1:H:331:ASN:OD1	1:H:332:ILE:N	2.35	0.49
1:H:598:ILE:HB	1:H:609:ALA:HB3	1.94	0.49
1:A:126:VAL:HB	1:A:172:SER:HB3	1.94	0.49
1:A:328:ARG:HA	1:A:528:LYS:HG2	1.94	0.49
1:A:574:ASP:HA	1:A:587:ILE:HB	1.93	0.49
2:K:53:ASN:O	2:K:55:ARG:NH1	2.45	0.49
3:M:126:PRO:HG3	3:M:207:HIS:HB2	1.95	0.49
1:C:903:ALA:HB1	1:C:913:GLN:HB2	1.94	0.49
1:H:861:LEU:HD12	1:H:862:PRO:HD2	1.93	0.49
1:I:903:ALA:HB1	1:I:913:GLN:HB2	1.94	0.49
1:A:821:LEU:HD21	1:A:939:SER:HA	1.94	0.49
1:G:916:LEU:HD12	1:G:923:ILE:HD12	1.95	0.49
1:H:352:ALA:HA	1:H:466:ARG:HD3	1.94	0.49
2:L:159:TRP:CD1	2:L:170:VAL:HG13	2.47	0.49
2:F:56:PRO:HB3	3:J:106:ARG:HH21	1.77	0.49
1:G:83:VAL:HG22	1:G:239:GLN:HG3	1.94	0.49
1:G:126:VAL:HB	1:G:172:SER:HB3	1.94	0.49
1:G:213:VAL:HG22	1:G:214:ARG:HD2	1.93	0.49
2:L:50:TYR:HD2	2:L:51:GLU:HG3	1.78	0.49
1:C:106:PHE:HB3	1:C:235:ILE:HG21	1.94	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:M:40:ARG:HB3	3:M:50:ILE:HD11	1.94	0.49
1:G:726:ILE:HB	1:G:947:LYS:HE2	1.93	0.49
1:G:763:LEU:HD22	1:G:1008:VAL:HG21	1.93	0.49
1:A:37:TYR:OH	1:A:54:LEU:O	2.29	0.49
1:A:472:ILE:HD12	1:A:488:CYS:SG	2.52	0.49
1:I:374:PHE:HD1	1:I:436:TRP:HB3	1.78	0.49
1:I:574:ASP:HA	1:I:587:ILE:HB	1.94	0.49
1:H:376:THR:HG22	2:O:31:SER:HB3	1.94	0.49
1:I:1010:GLN:HA	1:I:1013:ILE:HG12	1.95	0.49
1:A:403:ARG:NH2	1:A:406:GLU:OE2	2.46	0.49
1:B:1028:LYS:NZ	1:B:1042:PHE:O	2.44	0.49
1:B:574:ASP:HA	1:B:587:ILE:HB	1.94	0.49
1:G:490:PHE:O	1:G:493:GLN:NE2	2.46	0.49
1:H:195:LYS:HB2	1:H:202:LYS:HB2	1.94	0.49
3:N:16:GLU:H	3:N:87:VAL:HG12	1.76	0.49
3:R:100:GLN:NE2	3:R:103:LEU:O	2.45	0.49
1:B:92:PHE:O	1:B:192:PHE:N	2.40	0.48
1:C:335:LEU:HD22	1:C:338:PHE:CD1	2.48	0.48
1:A:361:CYS:SG	1:A:362:VAL:N	2.86	0.48
1:H:976:VAL:HG22	1:H:978:ASN:H	1.78	0.48
1:A:617:CYS:N	1:A:649:CYS:SG	2.86	0.48
3:J:36:TRP:HB2	3:J:53:ILE:HG22	1.96	0.48
1:G:403:ARG:NH2	1:G:406:GLU:OE2	2.46	0.48
2:L:145:CYS:HB2	2:L:159:TRP:CH2	2.48	0.48
2:L:199:HIS:HB2	2:L:202:TYR:CE1	2.48	0.48
1:C:574:ASP:HA	1:C:587:ILE:HB	1.94	0.48
1:G:19:THR:OG1	1:G:255:SER:O	2.31	0.48
2:Q:6:GLN:NE2	2:Q:89:TYR:O	2.46	0.48
1:B:357:ARG:NH2	1:C:167:THR:HG22	2.28	0.48
1:B:973:ILE:HG12	1:B:992:GLN:HE21	1.79	0.48
2:K:38:GLN:NE2	2:K:89:TYR:OH	2.45	0.48
1:G:37:TYR:OH	1:G:54:LEU:O	2.29	0.48
2:Q:147:ILE:O	2:Q:185:ALA:N	2.41	0.48
1:A:905:ARG:NH1	1:A:1049:LEU:O	2.46	0.48
1:C:328:ARG:NH1	1:C:531:THR:O	2.36	0.48
1:G:361:CYS:SG	1:G:362:VAL:N	2.87	0.48
1:G:384:PRO:HA	1:G:387:LEU:HD23	1.94	0.48
1:G:738:CYS:HB3	1:G:760:CYS:HB2	1.59	0.48
1:H:57:PRO:HG3	1:H:273:ARG:HD2	1.96	0.48
1:H:663:ASP:OD1	1:H:663:ASP:N	2.44	0.48
1:I:92:PHE:O	1:I:192:PHE:N	2.43	0.48

	t is a second	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:320:VAL:H	1:A:591:SER:HB2	1.79	0.48
1:B:596:SER:HB2	1:B:611:LEU:HB3	1.95	0.48
1:H:409:GLN:NE2	1:H:415:THR:O	2.47	0.48
1:I:459:SER:OG	1:I:460:ASN:N	2.47	0.48
1:I:485:GLY:H	1:I:488:CYS:HB3	1.78	0.48
3:P:204:ASN:ND2	3:P:215:ASP:OD1	2.40	0.48
3:R:74:ASP:OD1	3:R:74:ASP:N	2.47	0.48
1:H:596:SER:HB2	1:H:611:LEU:HB3	1.95	0.48
1:I:384:PRO:HA	1:I:387:LEU:HD23	1.96	0.48
1:I:916:LEU:HD12	1:I:923:ILE:HD12	1.95	0.48
3:N:53:ILE:HD12	3:N:71:ILE:HG23	1.96	0.48
1:B:976:VAL:HG22	1:B:978:ASN:H	1.79	0.47
1:C:172:SER:OG	1:C:173:GLN:N	2.47	0.47
1:C:389:ASP:HA	1:C:527:PRO:HG3	1.94	0.47
3:J:204:ASN:ND2	3:J:215:ASP:OD1	2.39	0.47
1:H:134:GLN:HB2	1:H:161:SER:HB2	1.95	0.47
3:P:36:TRP:HB2	3:P:53:ILE:HG22	1.96	0.47
2:Q:50:TYR:HB3	3:R:106:ARG:HG3	1.96	0.47
1:I:34:ARG:NH1	1:I:191:GLU:OE2	2.48	0.47
1:B:725:GLU:HG2	1:B:1064:HIS:HE2	1.78	0.47
1:B:993:ILE:O	1:B:997:ILE:HG12	2.14	0.47
1:C:484:GLU:HG2	1:C:490:PHE:HB2	1.95	0.47
3:M:74:ASP:OD1	3:M:74:ASP:N	2.47	0.47
1:G:1035:GLY:HA3	1:I:1040:VAL:HG11	1.97	0.47
3:R:153:PHE:HB2	3:R:182:LEU:HD22	1.97	0.47
1:A:477:SER:HB3	1:I:452:LEU:HG	1.96	0.47
1:B:948:LEU:HD11	1:B:1059:GLY:HA3	1.96	0.47
1:G:490:PHE:HD2	1:G:492:LEU:H	1.62	0.47
1:H:735:SER:HA	1:H:767:LEU:HD13	1.97	0.47
1:A:722:VAL:HG22	1:A:1065:VAL:HG22	1.96	0.47
1:A:916:LEU:HD12	1:A:923:ILE:HD12	1.97	0.47
1:B:899:PRO:HA	1:B:902:MET:HG2	1.97	0.47
1:C:374:PHE:HD1	1:C:436:TRP:HB3	1.78	0.47
1:C:733:LYS:O	1:C:861:LEU:N	2.43	0.47
1:A:37:TYR:OH	1:A:53:ASP:OD1	2.33	0.47
1:B:134:GLN:HB2	1:B:161:SER:HB2	1.96	0.47
1:C:1028:LYS:NZ	1:C:1042:PHE:O	2.48	0.47
3:E:53:ILE:HD12	3:E:71:ILE:HG23	1.95	0.47
1:G:320:VAL:H	1:G:591:SER:HB2	1.79	0.47
1:G:435:ALA:HB2	1:G:510:VAL:HG23	1.95	0.47
1:G:617:CYS:N	1:G:649:CYS:SG	2.87	0.47

	sus page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:974:SER:HB3	1:G:980:ILE:HG23	1.97	0.47
1:G:993:ILE:O	1:G:997:ILE:HG12	2.15	0.47
1:I:106:PHE:HB3	1:I:235:ILE:HG21	1.96	0.47
2:L:159:TRP:HD1	2:L:170:VAL:HG13	1.80	0.47
1:A:335:LEU:HB3	1:A:338:PHE:HE1	1.80	0.47
1:A:435:ALA:HB2	1:A:510:VAL:HG23	1.96	0.47
1:G:948:LEU:HD21	1:G:1059:GLY:HA3	1.96	0.47
1:C:95:THR:HA	1:C:189:LEU:HA	1.96	0.47
1:C:1030:SER:HA	1:C:1034:LEU:HD12	1.97	0.47
1:G:239:GLN:NE2	1:G:240:THR:O	2.48	0.47
1:G:493:GLN:N	1:G:493:GLN:OE1	2.48	0.47
2:O:81:LEU:HD11	2:O:107:LEU:HD11	1.97	0.47
2:O:89:TYR:HB2	2:O:105:THR:HB	1.97	0.47
1:A:880:GLY:O	1:A:884:SER:OG	2.30	0.47
1:B:433:VAL:HG22	1:B:512:VAL:HG22	1.96	0.47
1:C:476:GLY:HA3	1:C:487:ASN:HB3	1.97	0.47
1:G:565:PHE:HB2	1:H:42:VAL:HG12	1.97	0.47
2:L:160:LYS:HE2	2:L:165:PRO:HB3	1.97	0.47
2:Q:147:ILE:HB	2:Q:185:ALA:HB3	1.97	0.47
1:B:721:SER:OG	1:B:1066:THR:OG1	2.32	0.46
1:B:742:ILE:HG12	1:B:1000:ARG:HB3	1.97	0.46
3:J:5:GLN:OE1	3:J:23:THR:OG1	2.32	0.46
1:I:453:TYR:HB3	1:I:495:TYR:HE1	1.81	0.46
1:I:457:ARG:HD2	1:I:457:ARG:HA	1.72	0.46
1:I:976:VAL:HG22	1:I:978:ASN:H	1.80	0.46
2:Q:145:CYS:O	2:Q:187:SER:N	2.48	0.46
1:A:490:PHE:CE2	1:A:492:LEU:HB2	2.49	0.46
1:C:34:ARG:NH1	1:C:191:GLU:OE2	2.48	0.46
1:H:476:GLY:HA3	1:H:487:ASN:HD21	1.80	0.46
1:I:403:ARG:NH2	1:I:406:GLU:OE2	2.48	0.46
1:A:948:LEU:HD21	1:A:1059:GLY:HA3	1.97	0.46
1:B:475:ALA:H	1:B:488:CYS:HA	1.81	0.46
1:B:703:ASN:ND2	1:C:787:GLN:OE1	2.45	0.46
1:G:92:PHE:O	1:G:192:PHE:N	2.41	0.46
1:H:886:TRP:HB3	1:H:1035:GLY:HA2	1.97	0.46
1:I:538:CYS:HB2	1:I:590:CYS:HB3	1.78	0.46
1:C:92:PHE:O	1:C:192:PHE:N	2.43	0.46
3:J:53:ILE:HD12	3:J:71:ILE:HG23	1.98	0.46
1:G:905:ARG:NH1	1:G:1049:LEU:O	2.44	0.46
3:N:115:LEU:HD23	3:N:156:PRO:HG3	1.98	0.46
1:C:431:GLY:HA2	1:C:514:SER:HA	1.97	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:886:TRP:HB3	1:C:1035:GLY:HA2	1.97	0.46
3:J:102:TRP:HB3	3:J:105:GLY:CA	2.41	0.46
2:K:145:CYS:O	2:K:187:SER:N	2.48	0.46
1:H:1033:VAL:HG22	1:H:1051:SER:HB2	1.97	0.46
1:I:886:TRP:HB3	1:I:1035:GLY:HA2	1.97	0.46
1:A:457:ARG:NH1	1:A:467:ASP:OD2	2.48	0.46
1:A:529:LYS:HB2	1:A:529:LYS:HE2	1.59	0.46
1:A:565:PHE:HB2	1:B:42:VAL:HG12	1.97	0.46
1:A:992:GLN:OE1	1:A:995:ARG:NH2	2.45	0.46
1:B:116:SER:N	1:B:131:CYS:O	2.46	0.46
1:B:409:GLN:NE2	1:B:415:THR:O	2.47	0.46
1:B:1103:PHE:HZ	4:Y:1:NAG:H62	1.80	0.46
1:G:329:PHE:CG	1:G:330:PRO:HD3	2.51	0.46
1:G:808:ASP:OD1	1:G:808:ASP:N	2.43	0.46
1:I:431:GLY:HA2	1:I:514:SER:HA	1.97	0.46
1:I:474:GLN:HB2	1:I:488:CYS:SG	2.56	0.46
1:B:886:TRP:HB3	1:B:1035:GLY:HA2	1.96	0.46
1:C:403:ARG:NH2	1:C:406:GLU:OE2	2.49	0.46
1:I:172:SER:OG	1:I:173:GLN:N	2.49	0.46
1:I:948:LEU:HD21	1:I:1059:GLY:HA3	1.98	0.46
3:P:74:ASP:OD1	3:P:74:ASP:N	2.49	0.46
1:A:563:GLN:NE2	1:B:42:VAL:O	2.49	0.46
3:E:13:LYS:HB2	3:E:16:GLU:HG3	1.98	0.46
1:H:734:THR:HG22	1:H:860:VAL:HG22	1.98	0.46
1:B:734:THR:HG22	1:B:860:VAL:HG22	1.97	0.46
2:D:22:CYS:HB3	2:D:74:ALA:HB3	1.98	0.46
2:F:48:VAL:HA	2:F:59:VAL:HG11	1.98	0.46
2:K:6:GLN:NE2	2:K:89:TYR:O	2.49	0.46
1:G:142:GLY:HA3	1:G:156:GLU:HB2	1.97	0.46
1:H:766:ALA:O	1:H:770:ILE:HG12	2.16	0.46
1:H:993:ILE:O	1:H:997:ILE:HG12	2.15	0.46
1:B:403:ARG:HG2	1:B:497:PHE:HE1	1.81	0.46
3:J:74:ASP:OD1	3:J:74:ASP:N	2.48	0.46
1:H:516:GLU:HG2	1:H:518:LEU:HD22	1.97	0.46
1:B:19:THR:OG1	1:B:255:SER:O	2.33	0.45
1:B:738:CYS:HB3	1:B:742:ILE:HD12	1.98	0.45
2:D:62:ARG:NE	2:D:79:SER:O	2.48	0.45
1:I:95:THR:HA	1:I:189:LEU:HA	1.97	0.45
1:A:974:SER:HB3	1:A:980:ILE:HG23	1.98	0.45
2:D:147:ILE:HB	2:D:185:ALA:HB3	1.98	0.45
1:A:972:ALA:HA	1:A:995:ARG:HH22	1.82	0.45

	Jus puye	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:I:1028:LYS:NZ	1:I:1042:PHE:O	2.49	0.45
1:G:474:GLN:HA	1:G:480:CYS:HB3	1.98	0.45
1:I:596:SER:N	1:I:611:LEU:O	2.50	0.45
2:L:162:ASP:HB2	2:L:199:HIS:HB3	1.97	0.45
1:C:78:ARG:NH2	1:C:80:ASP:OD2	2.40	0.45
1:C:596:SER:N	1:C:611:LEU:O	2.50	0.45
2:K:149:ASP:OD1	2:K:178:GLN:NE2	2.38	0.45
1:H:563:GLN:NE2	1:I:42:VAL:O	2.49	0.45
1:H:911:VAL:HG22	1:H:1108:ASN:HB2	1.99	0.45
1:I:733:LYS:O	1:I:861:LEU:N	2.46	0.45
1:A:961:THR:O	1:A:965:GLN:HG2	2.17	0.45
1:G:37:TYR:OH	1:G:53:ASP:OD1	2.33	0.45
1:G:545:GLY:HA3	1:G:565:PHE:HZ	1.80	0.45
1:A:78:ARG:HE	1:A:80:ASP:HB2	1.81	0.45
1:A:821:LEU:HD11	1:A:939:SER:HB3	1.98	0.45
1:A:993:ILE:O	1:A:997:ILE:HG12	2.16	0.45
1:B:80:ASP:N	1:B:80:ASP:OD1	2.48	0.45
1:B:592:PHE:HB3	1:B:614:ASP:HB3	1.98	0.45
1:C:320:VAL:H	1:C:591:SER:HB2	1.82	0.45
2:F:131:PRO:HD3	2:F:143:LEU:HD13	1.97	0.45
1:G:106:PHE:HB2	1:G:117:LEU:HB2	1.98	0.45
1:G:563:GLN:NE2	1:H:42:VAL:O	2.49	0.45
1:H:331:ASN:OD1	5:H:1306:NAG:N2	2.50	0.45
2:L:6:GLN:NE2	2:L:89:TYR:O	2.50	0.45
1:A:253:ASP:OD1	1:A:253:ASP:N	2.45	0.45
3:E:29:VAL:HA	3:E:36:TRP:HZ2	1.82	0.45
1:H:214:ARG:HH11	1:H:215:ASP:H	1.64	0.45
1:I:1030:SER:HA	1:I:1034:LEU:HD12	1.98	0.45
1:A:142:GLY:HA3	1:A:156:GLU:HB2	1.98	0.45
1:G:961:THR:O	1:G:965:GLN:HG2	2.17	0.45
1:G:1129:VAL:HG13	1:H:917:TYR:HB3	1.99	0.45
1:I:905:ARG:NH1	1:I:1049:LEU:O	2.50	0.45
3:P:53:ILE:HD12	3:P:71:ILE:HG23	1.97	0.45
1:A:525:CYS:SG	1:A:526:GLY:N	2.90	0.45
1:B:34:ARG:NH1	1:B:191:GLU:OE2	2.49	0.45
1:C:494:SER:OG	1:C:495:TYR:N	2.50	0.45
1:G:917:TYR:HB3	1:I:1129:VAL:HG13	1.99	0.45
1:I:735:SER:HA	1:I:767:LEU:HD13	1.97	0.45
2:L:14:PRO:HA	2:L:81:LEU:HB2	1.99	0.45
1:A:1129:VAL:HG13	1:B:917:TYR:HB3	1.99	0.44
1:G:821:LEU:HD11	1:G:939:SER:HB3	1.98	0.44

	sue page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:34:ARG:NH1	1:H:191:GLU:OE2	2.49	0.44
1:H:403:ARG:HG2	1:H:497:PHE:HE1	1.81	0.44
1:H:617:CYS:N	1:H:649:CYS:SG	2.90	0.44
3:P:5:GLN:OE1	3:P:23:THR:OG1	2.32	0.44
1:A:866:THR:H	1:A:869:MET:HE2	1.82	0.44
1:B:214:ARG:HH11	1:B:215:ASP:H	1.66	0.44
1:G:1141:LEU:HD13	1:I:1141:LEU:HD11	1.99	0.44
1:H:80:ASP:OD1	1:H:80:ASP:N	2.50	0.44
1:C:1037:SER:OG	1:C:1043:CYS:SG	2.68	0.44
1:G:1030:SER:HA	1:G:1034:LEU:HD12	1.99	0.44
1:H:909:ILE:HG13	1:H:911:VAL:HG23	2.00	0.44
1:I:766:ALA:O	1:I:770:ILE:HG12	2.18	0.44
1:A:538:CYS:HB2	1:A:590:CYS:HB3	1.70	0.44
1:A:738:CYS:HB3	1:A:742:ILE:HD12	2.00	0.44
1:A:1141:LEU:HD13	1:C:1141:LEU:HD11	1.99	0.44
1:B:57:PRO:HG3	1:B:273:ARG:HD2	1.98	0.44
1:B:195:LYS:HB2	1:B:202:LYS:HB2	1.98	0.44
1:B:374:PHE:HB2	3:J:104:ARG:HH22	1.81	0.44
1:B:909:ILE:HG13	1:B:911:VAL:HG23	1.99	0.44
2:F:91:CYS:O	2:F:102:GLY:N	2.51	0.44
2:K:147:ILE:O	2:K:185:ALA:N	2.42	0.44
1:I:656:VAL:HG22	1:I:658:ASN:H	1.83	0.44
1:A:529:LYS:H	1:A:529:LYS:HZ3	1.66	0.44
1:B:327:VAL:HG23	1:B:542:ASN:HB2	2.00	0.44
1:H:821:LEU:HD11	1:H:939:SER:HB3	2.00	0.44
1:I:328:ARG:HG2	1:I:531:THR:H	1.82	0.44
1:I:331:ASN:OD1	1:I:331:ASN:N	2.50	0.44
1:I:1106:GLN:HE21	1:I:1109:PHE:HB3	1.82	0.44
2:D:145:CYS:O	2:D:187:SER:N	2.50	0.44
1:G:720:ILE:HG13	1:G:923:ILE:HG23	2.00	0.44
1:A:106:PHE:HB2	1:A:117:LEU:HB2	1.99	0.44
1:A:1035:GLY:HA3	1:C:1040:VAL:HG11	2.00	0.44
1:A:1082:CYS:HB2	1:A:1126:CYS:HB2	1.94	0.44
1:B:911:VAL:HG22	1:B:1108:ASN:HB2	1.98	0.44
1:B:1033:VAL:HG22	1:B:1051:SER:HB2	2.00	0.44
1:G:596:SER:N	1:G:611:LEU:O	2.51	0.44
1:I:712:ILE:HB	1:I:1077:THR:HG21	1.99	0.44
3:R:40:ARG:HB3	3:R:50:ILE:HD11	1.99	0.44
3:R:53:ILE:HD12	3:R:71:ILE:HG23	2.00	0.44
1:B:642:VAL:HG22	1:B:651:ILE:HG22	1.99	0.44
1:C:729:VAL:H	1:C:1059:GLY:HA2	1.82	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:F:145:CYS:O	2:F:187:SER:N	2.43	0.44
1:G:1052:PHE:HB2	1:G:1063:LEU:HB2	2.00	0.44
1:A:596:SER:N	1:A:611:LEU:O	2.51	0.43
1:A:886:TRP:HH2	1:A:904:TYR:HB3	1.83	0.43
2:D:22:CYS:N	2:D:74:ALA:O	2.51	0.43
2:D:162:ASP:HB2	2:D:199:HIS:CD2	2.51	0.43
1:H:459:SER:OG	1:H:460:ASN:N	2.51	0.43
1:I:395:VAL:HG23	1:I:524:VAL:HG21	2.00	0.43
1:C:976:VAL:HG22	1:C:978:ASN:H	1.82	0.43
1:C:1106:GLN:HE21	1:C:1109:PHE:HB3	1.83	0.43
2:F:129:PHE:HB2	2:F:144:VAL:HB	2.00	0.43
1:G:528:LYS:HA	1:G:528:LYS:HD2	1.79	0.43
1:G:879:ALA:O	1:G:883:THR:OG1	2.29	0.43
1:I:213:VAL:O	1:I:214:ARG:HD3	2.19	0.43
2:O:6:GLN:NE2	2:O:89:TYR:O	2.49	0.43
1:A:976:VAL:HG22	1:A:978:ASN:H	1.83	0.43
1:C:656:VAL:HG22	1:C:658:ASN:H	1.83	0.43
1:G:886:TRP:HH2	1:G:904:TYR:HB3	1.83	0.43
1:G:1097:SER:HB3	1:G:1102:TRP:CD2	2.54	0.43
3:N:29:VAL:HA	3:N:36:TRP:HZ2	1.83	0.43
3:R:36:TRP:HB2	3:R:53:ILE:HG22	2.00	0.43
1:A:1030:SER:HA	1:A:1034:LEU:HD12	1.99	0.43
1:B:906:PHE:CD2	1:B:916:LEU:HD12	2.53	0.43
1:B:1069:PRO:HG2	1:C:892:PRO:HD2	2.00	0.43
3:M:53:ILE:HD12	3:M:71:ILE:HG23	1.99	0.43
1:G:453:TYR:HB3	1:G:495:TYR:CE1	2.54	0.43
1:H:83:VAL:HG11	1:H:237:ARG:HE	1.84	0.43
1:H:138:ASP:N	1:H:138:ASP:OD1	2.52	0.43
1:H:1029:MET:HE1	1:H:1053:PRO:HG3	2.00	0.43
1:A:726:ILE:HB	1:A:947:LYS:HE2	2.00	0.43
1:C:138:ASP:OD1	1:C:138:ASP:N	2.51	0.43
1:C:617:CYS:N	1:C:649:CYS:SG	2.91	0.43
3:M:36:TRP:HB2	3:M:53:ILE:HG22	2.01	0.43
1:G:972:ALA:HA	1:G:995:ARG:HH22	1.83	0.43
1:H:822:LEU:HB3	1:H:938:LEU:HD21	1.99	0.43
3:N:13:LYS:HD2	3:N:119:SER:OG	2.17	0.43
1:C:80:ASP:OD1	1:C:80:ASP:N	2.52	0.43
2:D:14:PRO:HA	2:D:81:LEU:HB2	2.01	0.43
2:K:4:LEU:HD11	2:K:93:SER:HB2	2.01	0.43
3:M:120:SER:OG	3:M:121:ALA:N	2.51	0.43
1:G:24:LEU:HB2	1:G:78:ARG:HH11	1.84	0.43

	Jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:642:VAL:HG22	1:H:651:ILE:HG22	2.00	0.43
1:H:726:ILE:HB	1:H:947:LYS:HE2	1.99	0.43
1:I:391:CYS:HB3	1:I:525:CYS:HB3	1.65	0.43
2:L:159:TRP:O	2:L:166:VAL:N	2.51	0.43
1:B:901:GLN:O	1:B:905:ARG:HG2	2.18	0.43
2:F:47:THR:HG21	3:J:106:ARG:HG3	2.01	0.43
3:J:134:SER:H	3:J:137:SER:HB3	1.84	0.43
1:H:453:TYR:O	1:H:493:GLN:N	2.48	0.43
1:I:821:LEU:HD11	1:I:939:SER:HB3	1.99	0.43
1:B:138:ASP:OD1	1:B:138:ASP:N	2.52	0.43
1:B:342:PHE:CD1	1:B:511:VAL:HG11	2.54	0.43
2:F:141:ALA:HB3	2:F:191:LEU:HB3	2.01	0.43
1:G:719:THR:HG23	1:G:1070:ALA:HB2	1.99	0.43
1:H:116:SER:N	1:H:131:CYS:O	2.47	0.43
1:A:328:ARG:HB2	1:A:530:SER:HA	2.00	0.43
1:A:719:THR:HG23	1:A:1070:ALA:HB2	2.00	0.43
1:B:342:PHE:HA	1:B:347:PHE:HZ	1.83	0.43
1:B:516:GLU:HG2	1:B:518:LEU:HD22	2.01	0.43
1:G:457:ARG:HA	1:G:457:ARG:HD2	1.65	0.43
1:I:456:PHE:HB2	1:I:491:PRO:HB3	2.00	0.43
1:I:617:CYS:N	1:I:649:CYS:SG	2.91	0.43
1:A:458:LYS:NZ	1:A:471:GLU:OE1	2.52	0.43
1:C:905:ARG:NH1	1:C:1049:LEU:O	2.50	0.43
1:G:538:CYS:HB2	1:G:590:CYS:HB3	1.69	0.43
1:I:277:LEU:HD12	1:I:285:ILE:HD13	2.01	0.43
1:C:126:VAL:HB	1:C:172:SER:HB3	2.01	0.42
2:F:22:CYS:HB3	2:F:74:ALA:HB3	2.01	0.42
2:K:35:GLN:HG2	3:M:106:ARG:HB3	2.01	0.42
1:G:328:ARG:HB2	1:G:530:SER:HA	2.00	0.42
1:A:358:ILE:HG22	1:A:524:VAL:HG21	2.01	0.42
1:C:1097:SER:HB3	1:C:1102:TRP:CD2	2.54	0.42
3:E:12:VAL:HG13	3:E:118:VAL:HG13	2.00	0.42
1:G:409:GLN:O	1:G:414:GLN:NE2	2.52	0.42
1:G:735:SER:HA	1:G:767:LEU:HD13	2.01	0.42
1:G:909:ILE:HG13	1:G:911:VAL:HG23	2.01	0.42
1:H:84:LEU:HD22	1:H:267:VAL:HG11	2.02	0.42
1:I:93:ALA:HA	1:I:191:GLU:HA	2.02	0.42
2:L:22:CYS:N	2:L:74:ALA:O	2.53	0.42
2:Q:4:LEU:HD11	2:Q:93:SER:HB2	2.01	0.42
1:A:1097:SER:HB3	1:A:1102:TRP:CD2	2.54	0.42
2:D:17:THR:HA	2:D:79:SER:HA	2.01	0.42

	bas page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:976:VAL:HG22	1:G:978:ASN:H	1.84	0.42
1:H:1037:SER:OG	1:H:1043:CYS:SG	2.72	0.42
1:B:364:ASP:HA	1:B:388:ASN:HD21	1.85	0.42
2:F:119:GLN:HG2	2:F:151:TYR:CD1	2.54	0.42
3:M:12:VAL:HG11	3:M:18:LEU:HD12	2.02	0.42
1:G:110:LEU:HD22	1:G:135:PHE:HD2	1.84	0.42
1:G:478:THR:HG21	1:G:486:PHE:HB2	2.01	0.42
1:G:880:GLY:O	1:G:884:SER:OG	2.31	0.42
1:H:808:ASP:OD1	1:H:808:ASP:N	2.53	0.42
1:H:1045:LYS:HB2	1:H:1045:LYS:HE2	1.80	0.42
1:I:78:ARG:NH2	1:I:80:ASP:OD2	2.40	0.42
1:I:138:ASP:OD1	1:I:138:ASP:N	2.51	0.42
2:L:147:ILE:HB	2:L:185:ALA:HB3	2.01	0.42
1:A:720:ILE:HG13	1:A:923:ILE:HG23	2.01	0.42
1:A:909:ILE:HG13	1:A:911:VAL:HG23	2.02	0.42
1:B:342:PHE:HB3	1:B:436:TRP:CH2	2.55	0.42
1:C:93:ALA:HA	1:C:191:GLU:HA	2.02	0.42
1:G:886:TRP:HB3	1:G:1035:GLY:HA2	2.01	0.42
1:I:906:PHE:CE2	1:I:916:LEU:HD13	2.54	0.42
2:O:36:TRP:HB2	2:O:49:ILE:HG22	2.01	0.42
1:A:239:GLN:NE2	1:A:240:THR:O	2.52	0.42
1:A:323:THR:OG1	1:A:324:GLU:OE1	2.31	0.42
1:A:472:ILE:HA	1:A:491:PRO:HD3	2.02	0.42
1:B:733:LYS:O	1:B:861:LEU:N	2.47	0.42
1:C:24:LEU:HB2	1:C:78:ARG:HH11	1.84	0.42
1:C:722:VAL:HG22	1:C:1065:VAL:HG22	2.02	0.42
2:F:50:TYR:HE1	3:J:105:GLY:HA2	1.84	0.42
1:H:1069:PRO:HG2	1:I:892:PRO:HD2	2.01	0.42
1:I:642:VAL:HG13	1:I:651:ILE:HG22	2.01	0.42
2:L:167:LYS:HD2	2:L:167:LYS:N	2.35	0.42
1:C:328:ARG:HE	1:C:580:GLN:HG3	1.85	0.42
1:C:642:VAL:HG13	1:C:651:ILE:HG22	2.01	0.42
2:F:53:ASN:O	2:F:55:ARG:NH1	2.53	0.42
3:M:207:HIS:CD2	3:M:209:PRO:HD2	2.55	0.42
1:H:170:TYR:CE2	1:H:172:SER:HB3	2.55	0.42
1:H:214:ARG:NH1	1:H:215:ASP:H	2.18	0.42
1:H:222:ALA:HB2	1:H:285:ILE:HB	2.01	0.42
1:I:126:VAL:HB	1:I:172:SER:HB3	2.00	0.42
2:Q:124:PRO:HA	2:Q:150:PHE:HB3	2.02	0.42
1:A:566:GLY:HA2	1:B:43:PHE:H	1.84	0.42
1:A:822:LEU:HD11	1:A:1061:VAL:HG11	2.02	0.42

	tus page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:435:ALA:HB2	1:C:510:VAL:HG22	2.02	0.42
2:K:119:GLN:HG3	2:K:181:ASN:OD1	2.20	0.42
1:H:1097:SER:HB3	1:H:1102:TRP:CD2	2.55	0.42
2:O:47:THR:HG21	3:P:106:ARG:NE	2.35	0.42
1:A:81:ASN:HD21	1:A:242:LEU:HD12	1.85	0.42
1:C:1019:ARG:NH1	1:C:1023:ASN:OD1	2.53	0.42
1:G:763:LEU:HD13	1:G:1004:LEU:HD23	2.02	0.42
1:I:714:ILE:HD12	1:I:1096:VAL:HG11	2.02	0.42
3:N:102:TRP:HD1	3:N:105:GLY:N	2.18	0.42
3:R:53:ILE:HD13	3:R:73:VAL:HG23	2.02	0.42
1:B:222:ALA:HB2	1:B:285:ILE:HB	2.01	0.41
1:B:476:GLY:HA3	1:B:487:ASN:HB3	2.01	0.41
1:B:808:ASP:OD1	1:B:808:ASP:N	2.53	0.41
1:B:972:ALA:HB2	1:B:995:ARG:HD2	2.02	0.41
1:C:216:LEU:HA	1:C:217:PRO:HD3	1.95	0.41
3:J:13:LYS:HA	3:J:13:LYS:HD3	1.74	0.41
1:G:612:TYR:HD2	1:G:649:CYS:HB2	1.85	0.41
1:H:733:LYS:HE2	1:H:861:LEU:HD23	2.00	0.41
1:I:1097:SER:HB3	1:I:1102:TRP:CD2	2.54	0.41
1:A:579:PRO:HA	1:A:582:LEU:HD13	2.01	0.41
1:C:21:ARG:HH21	1:C:79:PHE:HB3	1.85	0.41
2:F:151:TYR:CD1	2:F:152:PRO:HA	2.55	0.41
3:J:119:SER:HB2	3:J:153:PHE:HZ	1.85	0.41
1:G:995:ARG:HA	1:G:998:THR:HG22	2.01	0.41
1:H:92:PHE:O	1:H:192:PHE:N	2.40	0.41
2:L:22:CYS:HB3	2:L:74:ALA:HB3	2.01	0.41
2:L:145:CYS:O	2:L:187:SER:N	2.51	0.41
2:O:22:CYS:HB3	2:O:74:ALA:HB3	2.03	0.41
1:A:713:ALA:HB3	1:B:894:LEU:HB3	2.02	0.41
1:A:886:TRP:HB3	1:A:1035:GLY:HA2	2.01	0.41
2:D:172:THR:HA	2:D:187:SER:HA	2.03	0.41
3:J:20:LEU:HD12	3:J:95:TYR:HD2	1.85	0.41
2:K:18:VAL:HG12	2:K:81:LEU:HD21	2.02	0.41
1:G:737:ASP:OD2	1:I:317:ASN:ND2	2.50	0.41
1:G:1037:SER:OG	1:G:1043:CYS:SG	2.68	0.41
1:H:108:THR:HG22	1:H:236:THR:HG22	2.02	0.41
1:H:327:VAL:HG22	1:H:542:ASN:H	1.85	0.41
1:I:997:ILE:O	1:I:1001:LEU:HG	2.20	0.41
3:R:102:TRP:HD1	3:R:105:GLY:HA3	1.84	0.41
1:A:159:VAL:HG23	1:A:160:TYR:CD1	2.56	0.41
1:A:409:GLN:O	1:A:414:GLN:NE2	2.54	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:821:LEU:HD11	1:C:939:SER:HB3	2.02	0.41
2:D:64:SER:O	2:D:77:THR:N	2.49	0.41
3:J:34:TYR:HB2	3:J:99:ARG:NH2	2.35	0.41
1:H:338:PHE:O	1:H:341:VAL:HG12	2.20	0.41
1:I:1051:SER:OG	1:I:1064:HIS:ND1	2.38	0.41
1:A:770:ILE:HA	1:A:773:GLU:CD	2.41	0.41
1:B:733:LYS:HE2	1:B:861:LEU:HD23	2.02	0.41
1:C:453:TYR:HB3	1:C:495:TYR:HE1	1.86	0.41
1:C:901:GLN:O	1:C:905:ARG:HG2	2.20	0.41
3:E:4:LEU:HD22	3:E:22:CYS:SG	2.60	0.41
3:E:11:LEU:HD21	3:E:209:PRO:HB3	2.02	0.41
3:E:40:ARG:HB3	3:E:50:ILE:HD11	2.02	0.41
1:H:454:ARG:HG3	1:H:491:PRO:HB2	2.01	0.41
1:A:480:CYS:HB2	1:A:488:CYS:HB3	1.82	0.41
1:A:612:TYR:HD2	1:A:649:CYS:HB2	1.85	0.41
1:A:995:ARG:HA	1:A:998:THR:HG22	2.02	0.41
1:B:84:LEU:HD22	1:B:267:VAL:HG11	2.01	0.41
1:B:342:PHE:HD1	1:B:511:VAL:HG11	1.85	0.41
3:J:216:LYS:HB2	3:J:216:LYS:HE2	1.87	0.41
2:K:89:TYR:HB2	2:K:105:THR:HB	2.02	0.41
1:H:1086:LYS:HD2	1:H:1122:VAL:HG11	2.03	0.41
1:I:473:TYR:H	1:I:491:PRO:HD3	1.86	0.41
2:O:53:ASN:O	2:O:55:ARG:NH1	2.53	0.41
1:G:472:ILE:HG13	1:G:480:CYS:SG	2.61	0.41
1:H:21:ARG:HH21	1:H:79:PHE:HB3	1.86	0.41
1:H:457:ARG:HD2	1:H:457:ARG:HA	1.70	0.41
1:H:472:ILE:HG23	1:H:488:CYS:HB2	2.02	0.41
1:I:21:ARG:HH21	1:I:79:PHE:HB3	1.86	0.41
1:I:24:LEU:HB2	1:I:78:ARG:HH11	1.85	0.41
1:I:102:ARG:HG3	1:I:141:LEU:HG	2.03	0.41
3:N:40:ARG:HB3	3:N:50:ILE:HD11	2.03	0.41
1:B:490:PHE:CE2	1:B:492:LEU:HB2	2.56	0.41
2:D:162:ASP:CG	2:D:200:ARG:H	2.24	0.41
3:J:14:PRO:HG2	3:J:120:SER:HA	2.02	0.41
3:M:42:PRO:HA	3:M:93:ALA:HA	2.02	0.41
1:I:326:ILE:H	1:I:326:ILE:HG13	1.72	0.41
2:0:22:CYS:N	2:0:74:ALA:O	2.53	0.41
3:P:5:GLN:NE2	3:P:6:GLU:O	2.50	0.41
2:Q:18:VAL:HG12	2:Q:81:LEU:HD21	2.02	0.41
1:A:88:ASP:OD1	1:A:88:ASP:N	2.53	0.41
1:B:88:ASP:OD1	1:B:88:ASP:N	2.54	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:170:TYR:CE2	1:B:172:SER:HB3	2.55	0.41
1:B:214:ARG:NH1	1:B:215:ASP:H	2.18	0.41
1:C:317:ASN:HB3	1:C:319:ARG:NH1	2.36	0.41
1:C:714:ILE:HD12	1:C:1096:VAL:HG11	2.03	0.41
1:C:808:ASP:OD1	1:C:808:ASP:N	2.51	0.41
3:E:138:THR:OG1	3:E:142:THR:O	2.30	0.41
2:F:143:LEU:HB3	2:F:159:TRP:CZ3	2.56	0.41
3:M:53:ILE:HD13	3:M:73:VAL:HG23	2.01	0.41
3:M:115:LEU:HD21	3:M:117:THR:HG22	2.03	0.41
1:G:81:ASN:HD21	1:G:242:LEU:HD12	1.86	0.41
1:G:159:VAL:HG23	1:G:160:TYR:CD1	2.56	0.41
1:G:429:PHE:HZ	1:G:512:VAL:HG11	1.85	0.41
1:G:974:SER:HB2	1:G:983:ARG:HH12	1.86	0.41
1:G:984:LEU:HB2	1:G:989:ALA:HB2	2.02	0.41
1:H:733:LYS:O	1:H:861:LEU:N	2.50	0.41
1:I:323:THR:OG1	1:I:324:GLU:OE1	2.33	0.41
1:I:332:ILE:H	1:I:332:ILE:HG12	1.69	0.41
1:I:369:TYR:HH	3:N:104:ARG:H	1.69	0.41
1:I:598:ILE:HB	1:I:609:ALA:HB3	2.03	0.41
2:O:60:PRO:HB2	2:O:62:ARG:HG2	2.03	0.41
1:B:342:PHE:HA	1:B:347:PHE:CZ	2.56	0.41
1:B:769:GLY:HA2	1:B:772:VAL:HG12	2.02	0.41
3:E:39:ILE:HD11	3:E:107:PHE:CZ	2.56	0.41
3:E:119:SER:HB2	3:E:153:PHE:HE2	1.85	0.41
1:H:374:PHE:HB2	3:P:104:ARG:NH2	2.36	0.41
1:H:1090:PRO:HG2	1:I:913:GLN:HE22	1.86	0.41
1:B:21:ARG:HH21	1:B:79:PHE:HB3	1.86	0.40
1:C:950:ASP:OD1	1:C:951:VAL:N	2.55	0.40
1:G:123:ALA:HA	1:G:177:MET:HB3	2.03	0.40
1:I:88:ASP:OD1	1:I:88:ASP:N	2.55	0.40
1:I:172:SER:HG	1:I:173:GLN:H	1.69	0.40
1:A:896:ILE:HG13	1:C:712:ILE:HG13	2.03	0.40
1:B:357:ARG:NH2	1:C:168:PHE:HB2	2.33	0.40
1:C:474:GLN:HB3	1:C:477:SER:OG	2.21	0.40
2:D:194:GLU:OE2	2:D:194:GLU:N	2.36	0.40
1:G:458:LYS:HA	1:G:473:TYR:CE1	2.55	0.40
1:I:304:LYS:HE2	1:I:304:LYS:HB3	1.90	0.40
1:B:1090:PRO:HG2	1:C:913:GLN:HE22	1.86	0.40
1:C:457:ARG:HD2	1:C:457:ARG:HA	1.70	0.40
1:C:1125:ASN:OD1	1:C:1126:CYS:N	2.54	0.40
1:G:83:VAL:HG11	1:G:237:ARG:CZ	2.51	0.40

A 4 a ma 1	A + a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:276:LEU:HD22	1:G:301:CYS:HA	2.03	0.40
1:H:384:PRO:HA	1:H:387:LEU:HD23	2.03	0.40
1:I:1125:ASN:OD1	1:I:1126:CYS:N	2.54	0.40
2:L:162:ASP:HB2	2:L:199:HIS:CD2	2.56	0.40
1:B:663:ASP:OD1	1:B:664:ILE:N	2.54	0.40
1:C:367:VAL:HG13	1:C:368:LEU:HD12	2.04	0.40
3:J:119:SER:HB2	3:J:153:PHE:CZ	2.56	0.40
1:G:898:PHE:O	1:G:902:MET:HG2	2.21	0.40
1:G:950:ASP:OD1	1:G:951:VAL:N	2.55	0.40
3:N:13:LYS:HB2	3:N:16:GLU:OE1	2.20	0.40
1:B:617:CYS:N	1:B:649:CYS:SG	2.95	0.40
1:B:713:ALA:HB3	1:C:894:LEU:HB3	2.03	0.40
1:C:719:THR:HG23	1:C:1070:ALA:HB2	2.04	0.40
1:H:906:PHE:CD2	1:H:916:LEU:HD12	2.56	0.40
1:I:435:ALA:HB2	1:I:510:VAL:HG22	2.02	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	А	1054/1278~(82%)	1012 (96%)	42 (4%)	0	100	100
1	В	1054/1278~(82%)	1017~(96%)	37~(4%)	0	100	100
1	С	1054/1278~(82%)	1011 (96%)	43 (4%)	0	100	100
1	G	1054/1278~(82%)	1012 (96%)	42 (4%)	0	100	100
1	Н	1054/1278~(82%)	1018 (97%)	36~(3%)	0	100	100
1	Ι	1054/1278~(82%)	1022 (97%)	32 (3%)	0	100	100
2	D	209/243~(86%)	197 (94%)	12 (6%)	0	100	100
2	F	209/243~(86%)	199~(95%)	10 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	Κ	209/243~(86%)	197~(94%)	12 (6%)	0	100	100
2	L	209/243~(86%)	197~(94%)	12 (6%)	0	100	100
2	Ο	209/243~(86%)	198~(95%)	11 (5%)	0	100	100
2	Q	209/243~(86%)	199~(95%)	10 (5%)	0	100	100
3	Ε	222/243~(91%)	218~(98%)	4 (2%)	0	100	100
3	J	222/243~(91%)	215 (97%)	7 (3%)	0	100	100
3	М	222/243~(91%)	214 (96%)	8 (4%)	0	100	100
3	Ν	222/243~(91%)	216 (97%)	6 (3%)	0	100	100
3	Р	222/243~(91%)	216 (97%)	6 (3%)	0	100	100
3	R	$22\overline{2/243}~(91\%)$	$2\overline{15} (97\%)$	7(3%)	0	100	100
All	All	8910/10584~(84%)	8573 (96%)	337 (4%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	934/1106~(84%)	924~(99%)	10 (1%)	70 80
1	В	934/1106~(84%)	933 (100%)	1 (0%)	92 95
1	С	934/1106~(84%)	926~(99%)	8 (1%)	75 83
1	G	934/1106~(84%)	930 (100%)	4 (0%)	89 91
1	Η	934/1106~(84%)	930 (100%)	4 (0%)	89 91
1	Ι	934/1106~(84%)	928~(99%)	6 (1%)	84 88
2	D	184/208~(88%)	182~(99%)	2(1%)	70 80
2	F	184/208~(88%)	184 (100%)	0	100 100
2	Κ	184/208~(88%)	184 (100%)	0	100 100
2	L	$18\overline{4/208}~(88\%)$	$1\overline{79} (97\%)$	5(3%)	40 58
2	0	184/208~(88%)	184 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
2	Q	184/208~(88%)	184 (100%)	0	100 100		
3	Ε	192/209~(92%)	191 (100%)	1 (0%)	86 89		
3	J	192/209~(92%)	191 (100%)	1 (0%)	86 89		
3	М	192/209~(92%)	192 (100%)	0	100 100		
3	Ν	192/209~(92%)	190~(99%)	2(1%)	73 82		
3	Р	192/209~(92%)	191 (100%)	1 (0%)	86 89		
3	R	192/209~(92%)	191 (100%)	1 (0%)	86 89		
All	All	7860/9138~(86%)	7814 (99%)	46 (1%)	82 88		

All (46) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	21	ARG
1	А	328	ARG
1	А	331	ASN
1	А	338	PHE
1	А	342	PHE
1	А	529	LYS
1	А	532	ASN
1	А	582	LEU
1	А	1106	GLN
1	А	1107	ARG
1	В	21	ARG
1	С	21	ARG
1	С	360	ASN
1	С	362	VAL
1	С	462	LYS
1	С	523	THR
1	С	525	CYS
1	С	529	LYS
1	С	530	SER
2	D	163	SER
2	D	164	SER
3	Е	100	GLN
3	J	106	ARG
1	G	21	ARG
1	G	328	ARG
1	G	1106	GLN
1	G	1107	ARG
1	Н	21	ARG

Mol	Chain	Res	Type
1	Н	528	LYS
1	Н	529	LYS
1	Н	530	SER
1	Ι	21	ARG
1	Ι	326	ILE
1	Ι	331	ASN
1	Ι	334	ASN
1	Ι	335	LEU
1	Ι	922	LEU
2	L	106	LYS
2	L	162	ASP
2	L	164	SER
2	L	166	VAL
2	L	167	LYS
3	N	3	GLN
3	N	16	GLU
3	Р	106	ARG
3	R	11	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	173	GLN
1	А	955	ASN
1	А	1106	GLN
1	В	239	GLN
1	В	955	ASN
1	С	439	ASN
1	С	506	GLN
3	Е	3	GLN
2	F	39	GLN
3	J	41	GLN
3	М	3	GLN
1	G	448	ASN
1	G	1106	GLN
1	Н	239	GLN
1	Н	448	ASN
1	Н	955	ASN
1	Ι	439	ASN
1	Ι	474	GLN
1	Ι	506	GLN
1	Ι	955	ASN

Continued from previous page...

Mol	Chain	Res	Type
3	Ν	100	GLN
3	Р	3	GLN
3	R	3	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

48 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type		Dog	Link	Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	NAG	S	1	4,1	14,14,15	0.25	0	17,19,21	0.43	0
4	NAG	S	2	4	14,14,15	0.28	0	17,19,21	0.44	0
4	NAG	Т	1	4,1	14,14,15	0.25	0	17,19,21	0.46	0
4	NAG	Т	2	4	14,14,15	0.26	0	17,19,21	0.39	0
4	NAG	U	1	4,1	14,14,15	0.18	0	17,19,21	0.41	0
4	NAG	U	2	4	14,14,15	0.26	0	17,19,21	0.42	0
4	NAG	V	1	4,1	14,14,15	0.24	0	17,19,21	0.47	0
4	NAG	V	2	4	14,14,15	0.34	0	17,19,21	0.45	0
4	NAG	W	1	4,1	14,14,15	0.24	0	17,19,21	0.43	0
4	NAG	W	2	4	14,14,15	0.30	0	17,19,21	0.43	0
4	NAG	Х	1	4,1	14,14,15	0.25	0	17,19,21	0.49	0
4	NAG	Х	2	4	14,14,15	0.25	0	17,19,21	0.41	0
4	NAG	Y	1	4,1	14,14,15	0.25	0	17,19,21	0.45	0
4	NAG	Y	2	4	14,14,15	0.28	0	17,19,21	0.40	0
4	NAG	Z	1	4,1	14,14,15	0.28	0	17,19,21	0.49	0
4	NAG	Z	2	4	14,14,15	0.27	0	17,19,21	0.43	0

Mal	Turne	Chain	Dec	Timle	Bo	ond leng	$_{\rm sths}$	Bond angles		gles
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	a	1	4,1	14,14,15	0.24	0	17,19,21	0.44	0
4	NAG	a	2	4	14,14,15	0.25	0	17,19,21	0.43	0
4	NAG	b	1	4,1	14,14,15	0.25	0	17,19,21	0.46	0
4	NAG	b	2	4	14,14,15	0.26	0	17,19,21	0.41	0
4	NAG	с	1	4,1	14,14,15	0.21	0	17,19,21	0.45	0
4	NAG	с	2	4	14,14,15	0.27	0	17,19,21	0.42	0
4	NAG	d	1	4,1	14,14,15	0.27	0	17,19,21	0.49	0
4	NAG	d	2	4	14,14,15	0.30	0	17,19,21	0.42	0
4	NAG	е	1	4,1	14,14,15	0.25	0	17,19,21	0.44	0
4	NAG	е	2	4	14,14,15	0.25	0	17,19,21	0.43	0
4	NAG	f	1	4,1	14,14,15	0.25	0	17,19,21	0.46	0
4	NAG	f	2	4	14,14,15	0.26	0	17,19,21	0.41	0
4	NAG	g	1	4,1	14,14,15	0.20	0	17,19,21	0.41	0
4	NAG	g	2	4	14,14,15	0.26	0	17,19,21	0.43	0
4	NAG	h	1	4,1	14,14,15	0.25	0	17,19,21	0.46	0
4	NAG	h	2	4	14,14,15	0.27	0	17,19,21	0.43	0
4	NAG	i	1	4,1	14,14,15	0.25	0	17,19,21	0.43	0
4	NAG	i	2	4	14,14,15	0.25	0	17,19,21	0.44	0
4	NAG	j	1	4,1	14,14,15	0.23	0	17,19,21	0.48	0
4	NAG	j	2	4	14,14,15	0.25	0	17,19,21	0.42	0
4	NAG	k	1	4,1	14,14,15	0.25	0	17,19,21	0.44	0
4	NAG	k	2	4	14,14,15	0.27	0	17,19,21	0.41	0
4	NAG	1	1	4,1	14,14,15	0.28	0	17,19,21	0.49	0
4	NAG	1	2	4	14,14,15	0.26	0	17,19,21	0.42	0
4	NAG	m	1	4,1	14,14,15	0.26	0	17,19,21	0.44	0
4	NAG	m	2	4	14,14,15	0.25	0	17,19,21	0.43	0
4	NAG	n	1	4,1	14,14,15	0.25	0	17,19,21	0.46	0
4	NAG	n	2	4	14,14,15	0.25	0	17,19,21	0.42	0
4	NAG	0	1	4,1	14,14,15	0.20	0	17,19,21	0.45	0
4	NAG	0	2	4	14,14,15	0.27	0	17,19,21	0.43	0
4	NAG	р	1	4,1	14,14,15	0.26	0	17,19,21	0.49	0
4	NAG	р	2	4	14,14,15	0.26	0	17,19,21	0.42	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	S	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	S	2	4	-	2/6/23/26	0/1/1/1
4	NAG	Т	1	4,1	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	Т	2	4	-	0/6/23/26	0/1/1/1
4	NAG	U	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	U	2	4	-	2/6/23/26	0/1/1/1
4	NAG	V	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	V	2	4	-	2/6/23/26	0/1/1/1
4	NAG	W	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	W	2	4	-	2/6/23/26	0/1/1/1
4	NAG	Х	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	Х	2	4	-	2/6/23/26	0/1/1/1
4	NAG	Y	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	Y	2	4	-	2/6/23/26	0/1/1/1
4	NAG	Z	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	Z	2	4	-	2/6/23/26	0/1/1/1
4	NAG	a	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	a	2	4	-	2/6/23/26	0/1/1/1
4	NAG	b	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	b	2	4	-	2/6/23/26	0/1/1/1
4	NAG	с	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	с	2	4	-	2/6/23/26	0/1/1/1
4	NAG	d	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	d	2	4	-	2/6/23/26	0/1/1/1
4	NAG	е	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	е	2	4	-	2/6/23/26	0/1/1/1
4	NAG	f	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	f	2	4	-	0/6/23/26	0/1/1/1
4	NAG	g	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	g	2	4	-	2/6/23/26	0/1/1/1
4	NAG	h	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	h	2	4	-	2/6/23/26	0/1/1/1
4	NAG	i	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	i	2	4	-	2/6/23/26	0/1/1/1
4	NAG	j	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	j	2	4	-	2/6/23/26	0/1/1/1
4	NAG	k	1	4,1	_	0/6/23/26	0/1/1/1
4	NAG	k	2	4	_	2/6/23/26	0/1/1/1
4	NAG	1	1	4,1	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	1	2	4	-	2/6/23/26	0/1/1/1
4	NAG	m	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	m	2	4	-	2/6/23/26	0/1/1/1
4	NAG	n	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	n	2	4	-	2/6/23/26	0/1/1/1
4	NAG	0	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	0	2	4	-	2/6/23/26	0/1/1/1
4	NAG	р	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	р	2	4	-	2/6/23/26	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (68) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms	
4	V	2	NAG	O5-C5-C6-O6	
4	d	2	NAG	O5-C5-C6-O6	
4	h	2	NAG	O5-C5-C6-O6	
4	р	2	NAG	O5-C5-C6-O6	
4	Ζ	2	NAG	O5-C5-C6-O6	
4	1	2	NAG	O5-C5-C6-O6	
4	Y	2	NAG	C4-C5-C6-O6	
4	k	2	NAG	C4-C5-C6-O6	
4	V	2	NAG	C4-C5-C6-O6	
4	с	2	NAG	C4-C5-C6-O6	
4	h	2	NAG	C4-C5-C6-O6	
4	0	2	NAG	C4-C5-C6-O6	
4	Т	1	NAG	O5-C5-C6-O6	
4	f	1	NAG	O5-C5-C6-O6	
4	j	1	NAG	O5-C5-C6-O6	
4	Ζ	2	NAG	C4-C5-C6-O6	
4	l	2	NAG	C4-C5-C6-O6	
4	d	1	NAG	O5-C5-C6-O6	
4	р	1	NAG	O5-C5-C6-O6	
4	Х	1	NAG	O5-C5-C6-O6	
4	b	1	NAG	O5-C5-C6-O6	
4	Ζ	1	NAG	O5-C5-C6-O6	
4	1	1	NAG	O5-C5-C6-O6	

Mol	Chain	Res	Type	Atoms
4	n	1	NAG	O5-C5-C6-O6
4	р	2	NAG	C4-C5-C6-O6
4	S	2	NAG	O5-C5-C6-O6
4	U	2	NAG	O5-C5-C6-O6
4	a	2	NAG	O5-C5-C6-O6
4	е	2	NAG	O5-C5-C6-O6
4	g	2	NAG	O5-C5-C6-O6
4	m	2	NAG	O5-C5-C6-O6
4	d	2	NAG	C4-C5-C6-O6
4	S	2	NAG	C4-C5-C6-O6
4	Ζ	1	NAG	C4-C5-C6-O6
4	a	2	NAG	C4-C5-C6-O6
4	е	2	NAG	C4-C5-C6-O6
4	1	1	NAG	C4-C5-C6-O6
4	m	2	NAG	C4-C5-C6-O6
4	d	1	NAG	C4-C5-C6-O6
4	j	1	NAG	C4-C5-C6-O6
4	р	1	NAG	C4-C5-C6-O6
4	Т	1	NAG	C4-C5-C6-O6
4	Х	1	NAG	C4-C5-C6-O6
4	f	1	NAG	C4-C5-C6-O6
4	W	2	NAG	O5-C5-C6-O6
4	Y	2	NAG	O5-C5-C6-O6
4	i	2	NAG	O5-C5-C6-O6
4	k	2	NAG	O5-C5-C6-O6
4	n	1	NAG	C4-C5-C6-O6
4	b	1	NAG	C4-C5-C6-O6
4	U	2	NAG	C4-C5-C6-O6
4	g	2	NAG	C4-C5-C6-O6
4	W	2	NAG	C4-C5-C6-O6
4	i	2	NAG	C4-C5-C6-O6
4	с	2	NAG	O5-C5-C6-O6
4	0	2	NAG	O5-C5-C6-O6
4	h	1	NAG	O5-C5-C6-O6
4	V	1	NAG	O5-C5-C6-O6
4	h	1	NAG	C4-C5-C6-O6
4	V	1	NAG	C4-C5-C6-O6
4	n	2	NAG	C4-C5-C6-O6
4	b	2	NAG	C4-C5-C6-O6
4	j	2	NAG	C4-C5-C6-O6
4	X	2	NAG	C4-C5-C6-O6
4	n	2	NAG	O5-C5-C6-O6

Continued from previous page...

Mol	Chain	Res	Type	Atoms
4	b	2	NAG	O5-C5-C6-O6
4	j	2	NAG	O5-C5-C6-O6
4	Х	2	NAG	O5-C5-C6-O6

There are no ring outliers.

2 monomers are involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	Y	1	NAG	1	0
4	W	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

66 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Turna		Chain	Res	Link	Bond lengths			Bond angles		
MOI	Moi Type Cham	Counts			RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
5	NAG	С	1304	1	14,14,15	0.35	0	17,19,21	0.47	0
5	NAG	G	1303	1	14,14,15	0.50	0	17,19,21	0.52	0
5	NAG	С	1309	1	14,14,15	0.28	0	17,19,21	0.45	0
5	NAG	Ι	1309	1	14,14,15	0.28	0	17,19,21	0.45	0

7.7.1	T		Ъ	T · 1	Bo	ond leng	ths	В	Bond angles		
NIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
5	NAG	С	1302	1	14,14,15	0.39	0	17,19,21	0.33	0	
5	NAG	В	1308	1	14,14,15	0.27	0	17,19,21	0.43	0	
5	NAG	Н	1309	1	14,14,15	0.28	0	17,19,21	0.43	0	
5	NAG	Н	1310	1	14,14,15	0.26	0	17,19,21	0.46	0	
5	NAG	G	1308	1	$14,\!14,\!15$	0.27	0	$17,\!19,\!21$	0.42	0	
5	NAG	С	1303	1	$14,\!14,\!15$	0.41	0	$17,\!19,\!21$	0.42	0	
5	NAG	А	1308	1	14,14,15	0.27	0	17,19,21	0.43	0	
5	NAG	A	1310	1	14,14,15	0.25	0	17,19,21	0.45	0	
5	NAG	G	1306	1	14,14,15	0.25	0	17,19,21	0.42	0	
5	NAG	С	1307	1	14,14,15	0.37	0	17,19,21	0.72	0	
5	NAG	С	1306	1	14,14,15	0.26	0	17,19,21	0.43	0	
5	NAG	С	1310	1	14,14,15	0.24	0	17,19,21	0.44	0	
5	NAG	В	1307	1	$14,\!14,\!15$	0.48	0	$17,\!19,\!21$	0.95	1 (5%)	
5	NAG	Ι	1305	1	14,14,15	0.30	0	17,19,21	0.43	0	
5	NAG	В	1310	1	14,14,15	0.25	0	17,19,21	0.45	0	
5	NAG	G	1305	1	14,14,15	0.24	0	17,19,21	0.42	0	
5	NAG	Ι	1301	1	14,14,15	0.26	0	17,19,21	0.44	0	
5	NAG	А	1304	1	14,14,15	0.23	0	17,19,21	0.40	0	
5	NAG	Н	1301	1	14,14,15	0.40	0	17,19,21	0.38	0	
5	NAG	Н	1306	1	14,14,15	0.55	0	17,19,21	0.62	0	
5	NAG	А	1309	1	14,14,15	0.27	0	17,19,21	0.44	0	
5	NAG	Ι	1311	1	14,14,15	0.53	0	17,19,21	0.72	1 (5%)	
5	NAG	Н	1305	1	14,14,15	0.25	0	17,19,21	0.43	0	
5	NAG	Н	1311	1	14,14,15	0.28	0	17,19,21	0.48	0	
5	NAG	А	1301	1	14,14,15	0.29	0	17,19,21	0.46	0	
5	NAG	G	1301	1	14,14,15	0.28	0	17,19,21	0.47	0	
5	NAG	Ι	1308	1	14,14,15	0.28	0	17,19,21	0.43	0	
5	NAG	G	1311	1	$14,\!14,\!15$	0.24	0	$17,\!19,\!21$	0.45	0	
5	NAG	В	1304	1	$14,\!14,\!15$	0.32	0	$17,\!19,\!21$	0.56	0	
5	NAG	Н	1308	1	$14,\!14,\!15$	0.24	0	$17,\!19,\!21$	0.43	0	
5	NAG	G	1307	1	$14,\!14,\!15$	0.36	0	$17,\!19,\!21$	0.72	0	
5	NAG	Н	1302	1	$14,\!14,\!15$	0.22	0	$17,\!19,\!21$	0.50	0	
5	NAG	В	1303	1	$14,\!14,\!15$	0.25	0	17,19,21	0.40	0	
5	NAG	С	1311	1	$14,\!14,\!15$	0.52	0	$17,\!19,\!21$	0.72	1 (5%)	
5	NAG	А	1303	1	14,14,15	0.47	0	17,19,21	0.52	0	
5	NAG	В	1306	1	14,14,15	0.21	0	17,19,21	0.43	0	
5	NAG	В	1309	1	14,14,15	0.27	0	17,19,21	0.43	0	
5	NAG	В	1302	1	14,14,15	0.23	0	17,19,21	0.50	0	
5	NAG	Ι	1303	1	14,14,15	0.39	0	17,19,21	0.34	0	
5	NAG	С	1305	1	14,14,15	0.30	0	17,19,21	0.43	0	
5	NAG	G	1309	1	14,14,15	0.28	0	17,19,21	0.45	0	
5	NAG	А	1302	1	14,14,15	0.23	0	17,19,21	0.48	0	

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	В	ond ang	les
IVIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
5	NAG	С	1301	1	14,14,15	0.30	0	17,19,21	0.46	0
5	NAG	Ι	1304	1	14,14,15	0.36	0	17,19,21	0.48	0
5	NAG	А	1306	1	14,14,15	0.35	0	17,19,21	0.48	0
5	NAG	Н	1304	1	14,14,15	0.34	0	17,19,21	0.57	0
5	NAG	Н	1307	1	14,14,15	0.55	0	17,19,21	0.80	1 (5%)
5	NAG	Ι	1307	1	14,14,15	0.38	0	17,19,21	0.72	0
5	NAG	Ι	1310	1	14,14,15	0.23	0	17,19,21	0.42	0
5	NAG	А	1305	1	14,14,15	0.25	0	17,19,21	0.43	0
5	NAG	В	1301	1	14,14,15	0.41	0	17,19,21	0.38	0
5	NAG	G	1310	1	14,14,15	0.25	0	17,19,21	0.44	0
5	NAG	А	1311	1	14,14,15	0.25	0	17,19,21	0.45	0
5	NAG	G	1302	1	14,14,15	0.24	0	17,19,21	0.48	0
5	NAG	А	1307	1	14,14,15	0.35	0	17,19,21	0.72	0
5	NAG	В	1311	1	14,14,15	0.28	0	17,19,21	0.48	0
5	NAG	Н	1303	1	14,14,15	0.24	0	17,19,21	0.39	0
5	NAG	В	1305	1	14,14,15	0.25	0	17,19,21	0.43	0
5	NAG	Ι	1306	1	14,14,15	0.30	0	17,19,21	0.54	0
5	NAG	Ι	1302	1	14,14,15	0.40	0	17,19,21	0.33	0
5	NAG	G	1304	1	14,14,15	0.23	0	17,19,21	0.41	0
5	NAG	С	1308	1	14,14,15	0.28	0	17,19,21	0.44	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	С	1304	1	-	0/6/23/26	0/1/1/1
5	NAG	G	1303	1	-	0/6/23/26	0/1/1/1
5	NAG	С	1309	1	-	1/6/23/26	0/1/1/1
5	NAG	Ι	1309	1	-	1/6/23/26	0/1/1/1
5	NAG	С	1302	1	-	1/6/23/26	0/1/1/1
5	NAG	В	1308	1	-	2/6/23/26	0/1/1/1
5	NAG	Н	1309	1	-	2/6/23/26	0/1/1/1
5	NAG	Н	1310	1	-	0/6/23/26	0/1/1/1
5	NAG	G	1308	1	-	2/6/23/26	0/1/1/1
5	NAG	С	1303	1	-	0/6/23/26	0/1/1/1
5	NAG	А	1308	1	-	2/6/23/26	0/1/1/1
5	NAG	A	1310	1	-	0/6/23/26	0/1/1/1
5	NAG	G	1306	1	-	2/6/23/26	0/1/1/1
5	NAG	С	1307	1	-	1/6/23/26	0/1/1/1

0 0 1 0 0 0	nuca ji o			••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	С	1306	1	-	2/6/23/26	0/1/1/1
5	NAG	С	1310	1	-	0/6/23/26	0/1/1/1
5	NAG	В	1307	1	-	3/6/23/26	0/1/1/1
5	NAG	Ι	1305	1	-	2/6/23/26	0/1/1/1
5	NAG	В	1310	1	-	0/6/23/26	0/1/1/1
5	NAG	G	1305	1	-	2/6/23/26	0/1/1/1
5	NAG	Ι	1301	1	-	2/6/23/26	0/1/1/1
5	NAG	А	1304	1	-	2/6/23/26	0/1/1/1
5	NAG	Н	1301	1	-	2/6/23/26	0/1/1/1
5	NAG	Н	1306	1	_	4/6/23/26	0/1/1/1
5	NAG	А	1309	1	-	1/6/23/26	0/1/1/1
5	NAG	Ι	1311	1	-	0/6/23/26	0/1/1/1
5	NAG	Н	1305	1	-	0/6/23/26	0/1/1/1
5	NAG	Н	1311	1	-	2/6/23/26	0/1/1/1
5	NAG	А	1301	1	-	2/6/23/26	0/1/1/1
5	NAG	G	1301	1	-	2/6/23/26	0/1/1/1
5	NAG	Ι	1308	1	-	2/6/23/26	0/1/1/1
5	NAG	G	1311	1	-	2/6/23/26	0/1/1/1
5	NAG	В	1304	1	-	2/6/23/26	0/1/1/1
5	NAG	Н	1308	1	-	2/6/23/26	0/1/1/1
5	NAG	G	1307	1	-	3/6/23/26	0/1/1/1
5	NAG	Н	1302	1	-	0/6/23/26	0/1/1/1
5	NAG	В	1303	1	-	2/6/23/26	0/1/1/1
5	NAG	С	1311	1	-	0/6/23/26	0/1/1/1
5	NAG	А	1303	1	-	0/6/23/26	0/1/1/1
5	NAG	В	1306	1	-	3/6/23/26	0/1/1/1
5	NAG	В	1309	1	-	2/6/23/26	0/1/1/1
5	NAG	В	1302	1	-	0/6/23/26	0/1/1/1
5	NAG	Ι	1303	1	-	0/6/23/26	0/1/1/1
5	NAG	С	1305	1	-	2/6/23/26	0/1/1/1
5	NAG	G	1309	1	-	1/6/23/26	0/1/1/1
5	NAG	А	1302	1	-	2/6/23/26	0/1/1/1
5	NAG	С	1301	1	-	2/6/23/26	0/1/1/1
5	NAG	Ι	1304	1	-	0/6/23/26	0/1/1/1
5	NAG	А	1306	1	-	$\frac{2}{6}/\frac{23}{26}$	0/1/1/1
5	NAG	Н	1304	1	-	2/6/23/26	0/1/1/1

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	Н	1307	1	-	3/6/23/26	0/1/1/1
5	NAG	Ι	1307	1	-	1/6/23/26	0/1/1/1
5	NAG	Ι	1310	1	-	0/6/23/26	0/1/1/1
5	NAG	А	1305	1	-	2/6/23/26	0/1/1/1
5	NAG	В	1301	1	-	2/6/23/26	0/1/1/1
5	NAG	G	1310	1	-	0/6/23/26	0/1/1/1
5	NAG	А	1311	1	-	2/6/23/26	0/1/1/1
5	NAG	G	1302	1	-	2/6/23/26	0/1/1/1
5	NAG	А	1307	1	-	3/6/23/26	0/1/1/1
5	NAG	В	1311	1	-	2/6/23/26	0/1/1/1
5	NAG	Н	1303	1	-	2/6/23/26	0/1/1/1
5	NAG	В	1305	1	-	0/6/23/26	0/1/1/1
5	NAG	Ι	1306	1	-	2/6/23/26	0/1/1/1
5	NAG	Ι	1302	1	-	2/6/23/26	0/1/1/1
5	NAG	G	1304	1	-	2/6/23/26	0/1/1/1
5	NAG	С	1308	1	-	2/6/23/26	0/1/1/1

Continued from previous page...

There are no bond length outliers.

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	В	1307	NAG	C1-O5-C5	2.63	115.75	112.19
5	Ι	1311	NAG	C1-O5-C5	2.62	115.75	112.19
5	С	1311	NAG	C1-O5-C5	2.61	115.73	112.19
5	Н	1307	NAG	C1-O5-C5	2.08	115.02	112.19

There are no chirality outliers.

All (96) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	А	1302	NAG	C4-C5-C6-O6
5	G	1302	NAG	C4-C5-C6-O6
5	А	1301	NAG	O5-C5-C6-O6
5	G	1301	NAG	O5-C5-C6-O6
5	В	1307	NAG	O5-C5-C6-O6
5	Ι	1301	NAG	O5-C5-C6-O6
5	G	1301	NAG	C4-C5-C6-O6
5	А	1308	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
5	G	1308	NAG	O5-C5-C6-O6
5	А	1301	NAG	C4-C5-C6-O6
5	В	1308	NAG	O5-C5-C6-O6
5	В	1309	NAG	O5-C5-C6-O6
5	G	1307	NAG	O5-C5-C6-O6
5	Н	1309	NAG	O5-C5-C6-O6
5	Ι	1308	NAG	O5-C5-C6-O6
5	А	1302	NAG	O5-C5-C6-O6
5	С	1308	NAG	O5-C5-C6-O6
5	G	1302	NAG	O5-C5-C6-O6
5	Н	1308	NAG	O5-C5-C6-O6
5	В	1303	NAG	C4-C5-C6-O6
5	А	1304	NAG	O5-C5-C6-O6
5	А	1307	NAG	O5-C5-C6-O6
5	В	1311	NAG	O5-C5-C6-O6
5	С	1301	NAG	O5-C5-C6-O6
5	G	1304	NAG	O5-C5-C6-O6
5	Н	1303	NAG	C4-C5-C6-O6
5	В	1303	NAG	O5-C5-C6-O6
5	Н	1303	NAG	O5-C5-C6-O6
5	Н	1311	NAG	O5-C5-C6-O6
5	В	1301	NAG	O5-C5-C6-O6
5	Н	1301	NAG	O5-C5-C6-O6
5	С	1301	NAG	C4-C5-C6-O6
5	Ι	1301	NAG	C4-C5-C6-O6
5	С	1305	NAG	C4-C5-C6-O6
5	Н	1308	NAG	C4-C5-C6-O6
5	Ι	1305	NAG	C4-C5-C6-O6
5	В	1308	NAG	C4-C5-C6-O6
5	G	1307	NAG	C4-C5-C6-O6
5	Н	1301	NAG	C4-C5-C6-O6
5	Ι	1308	NAG	C4-C5-C6-O6
5	А	1307	NAG	C4-C5-C6-O6
5	В	1307	NAG	C4-C5-C6-O6
5	С	1308	NAG	C4-C5-C6-O6
5	A	1306	NAG	C8-C7-N2-C2
5	A	1306	NAG	O7-C7-N2-C2
5	В	1306	NAG	C8-C7-N2-C2
5	В	1306	NAG	O7-C7-N2-C2
5	C	1306	NAG	C8-C7-N2-C2
5	C	1306	NAG	07-C7-N2-C2
5	l G	1306	NAG	C8-C7-N2-C2

Continued from previous page...

Mol	Chain	Res	Type	Atoms
5	G	1306	NAG	O7-C7-N2-C2
5	Н	1306	NAG	C8-C7-N2-C2
5	Н	1306	NAG	O7-C7-N2-C2
5	Ι	1306	NAG	C8-C7-N2-C2
5	Ι	1306	NAG	O7-C7-N2-C2
5	А	1304	NAG	C4-C5-C6-O6
5	G	1304	NAG	C4-C5-C6-O6
5	Н	1306	NAG	O5-C5-C6-O6
5	А	1308	NAG	C4-C5-C6-O6
5	В	1301	NAG	C4-C5-C6-O6
5	G	1308	NAG	C4-C5-C6-O6
5	В	1304	NAG	O5-C5-C6-O6
5	Н	1311	NAG	C4-C5-C6-O6
5	Н	1304	NAG	O5-C5-C6-O6
5	В	1311	NAG	C4-C5-C6-O6
5	С	1309	NAG	O5-C5-C6-O6
5	Ι	1309	NAG	O5-C5-C6-O6
5	Ι	1302	NAG	O5-C5-C6-O6
5	Н	1306	NAG	C4-C5-C6-O6
5	Ι	1305	NAG	O5-C5-C6-O6
5	С	1305	NAG	O5-C5-C6-O6
5	С	1302	NAG	O5-C5-C6-O6
5	В	1309	NAG	C4-C5-C6-O6
5	Н	1309	NAG	C4-C5-C6-O6
5	Н	1307	NAG	O5-C5-C6-O6
5	G	1309	NAG	O5-C5-C6-O6
5	А	1309	NAG	O5-C5-C6-O6
5	Н	1307	NAG	C4-C5-C6-O6
5	В	1304	NAG	C4-C5-C6-O6
5	G	1305	NAG	C4-C5-C6-O6
5	Н	1304	NAG	C4-C5-C6-O6
5	А	1305	NAG	C4-C5-C6-O6
5	G	1305	NAG	O5-C5-C6-O6
5	А	1305	NAG	O5-C5-C6-O6
5	G	1311	NAG	C4-C5-C6-O6
5	A	1311	NAG	C4-C5-C6-O6
5	G	1311	NAG	O5-C5-C6-O6
5	A	1307	NAG	C3-C2-N2-C7
5	В	1307	NAG	C3-C2-N2-C7
5	С	1307	NAG	C3-C2-N2-C7
5	G	1307	NAG	C3-C2-N2-C7
5	Н	1307	NAG	C3-C2-N2-C7

Continued from previous page...

Mol	Chain	Res	Type	Atoms
5	Ι	1307	NAG	C3-C2-N2-C7
5	А	1311	NAG	O5-C5-C6-O6
5	Ι	1302	NAG	C4-C5-C6-O6
5	В	1306	NAG	C4-C5-C6-O6

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	<i>paae</i>
0 0 1 0 0 0 0 0 0 0 0	J. 0110	proceed as	P ~ 9 ~

There are no ring outliers.

2 monomers are involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	С	1303	NAG	1	0
5	Н	1306	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

