

Apr 11, 2023 – 02:23 pm BST

PDB ID	:	7ZI4
EMDB ID	:	EMD-14737
Title	:	Cryo-EM structure of the human INO80 complex bound to a WT nucleosome
Authors	:	Vance, N.R.; Ayala, R.; Willhoft, O.; Tvardovskiy, A.; McCormack, E.A.;
		Bartke, T.; Zhang, X.; Wigley, D.B.
Deposited on	:	2022-04-07
Resolution	:	3.20 Å(reported)
Based on initial model	:	6HTS

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev50
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.32.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	456	76%	20%	5%	
1	С	456	82%	10	16% ·	
1	Е	456	74%	23%	·	
2	В	463	75%	17%	8%	
2	D	463	77%	17%	5%	
2	F	463	76%	17%	6%	
3	G	1556	36% 8% 56	%		
4	J	103	70%	10% 20	0%	

Mol	Chain	Length	Qua	lity of chain	
4	Ν	103	● 56%	20%	23%
5	R	356	24% 5%	72%	
6	Н	607	53%	15%	32%
7	Q	192	47%	8%	44%
8	Ι	136	51%	18%	32%
8	М	136	51%	22%	27%
9	Κ	130	72%		9% • 18%
9	Ο	130	• 72%		13% 15%
10	L	126	71%		6% 24%
10	Р	126	63%	9%	• 26%
11	Х	158	46%		54% ·
12	Y	158	5% 61%		39%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
14	BEF	G	1602	-	-	Х	-

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 42294 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms		AltConf	Trace	
1 A	Δ	134	Total	С	Ν	Ο	\mathbf{S}	Ο	0
	404	3323	2093	573	641	16	0	0	
1	1 C	447	Total	С	Ν	Ο	\mathbf{S}	0	0
	447	3394	2136	585	657	16	0	0	
1 E	442	Total	С	Ν	0	S	0	0	
	Ľ	440	3402	2143	585	657	17	0	0

• Molecule 1 is a protein called RuvB-like 1.

• Molecule 2 is a protein called RuvB-like 2.

Mol	Chain	Residues		At	oms		AltConf	Trace	
2 B	В	426	Total	С	Ν	0	S	0	0
	420	3261	2045	568	633	15	0	0	
0	Л	420	Total	С	Ν	0	S	0	0
	439	3356	2096	587	658	15	0	0	
2	Б	424	Total	С	Ν	0	S	0	0
	T,	404	3335	2083	586	650	16	0	U

• Molecule 3 is a protein called Chromatin-remodeling ATPase INO80.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	G	682	Total 4962	C 3201	N 896	0 843	S 22	0	0

• Molecule 4 is a protein called Histone H4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	4 N	70	Total	С	Ν	0	S	0	0
4		19	625	394	121	109	1	0	0
4	4 J	80	Total	С	Ν	0	\mathbf{S}	0	0
4		82	646	408	126	111	1		0

• Molecule 5 is a protein called INO80 complex subunit B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	R	101	Total 758	C 463	N 151	O 136	S 8	0	0

• Molecule 6 is a protein called Actin-related protein 5.

Mol	Chain	Residues		At	AltConf	Trace			
6	Н	412	Total 3109	C 1980	N 539	0 571	S 19	0	0

• Molecule 7 is a protein called INO80 complex subunit C.

Mol	Chain	Residues	Atoms				AltConf	Trace
7	Q	107	Total 735	C 470	N 126	O 139	0	0

• Molecule 8 is a protein called Histone H3.1.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	T	93	Total	С	Ν	Ο	S	0	0
0 1	90	751	473	142	132	4	0	0	
8	М	00	Total	С	Ν	0	\mathbf{S}	0	0
0	8 M	99	809	511	155	139	4	0	0

• Molecule 9 is a protein called Histone H2A type 1-B/E.

Mol	Chain	Residues	Atoms				AltConf	Trace
9	Κ	106	Total 819	C 517	N 160	0 142	0	0
9	О	111	Total 839	C 528	N 164	0 147	0	0

• Molecule 10 is a protein called Histone H2B type 1-J.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	Т	06	Total	С	Ν	Ο	\mathbf{S}	0	0
10 L	90	747	468	136	141	2	0	0	
10	D	03	Total	С	Ν	0	\mathbf{S}	0	0
10 P	93	727	456	132	137	2		0	

• Molecule 11 is a DNA chain called DNA (158-MER).

Mol	Chain	Residues	Atoms					AltConf	Trace
11	Х	158	Total 3223	C 1532	N 580	O 953	Р 158	0	0

• Molecule 12 is a DNA chain called DNA (158-MER).

Mol	Chain	Residues	Atoms					AltConf	Trace
12	Y	158	Total 3252	C 1541	N 613	0 941	Р 157	0	0

• Molecule 13 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			AltConf
12	Δ	1	Total	С	Ν	Ο	Р	0
10	A	1	27	10	5	10	2	0
12	р	1	Total	С	Ν	Ο	Р	0
10	D	1	27	10	5	10	2	0
12	С	1	Total	С	Ν	0	Р	0
10	U	1	27	10	5	10	2	0
12	Л	1	Total	С	Ν	Ο	Р	0
10	D	1	27	10	5	10	2	0
12	F	1	Total	С	Ν	Ο	Р	0
10	Ľ	1	27	10	5	10	2	0
12	F	1	Total	С	Ν	Ο	Р	0
10	T,	L	27	10	5	10	2	U
12	С	1	Total	С	Ν	Ο	Р	0
61	G	1	27	10	5	10	2	U

Mol	Chain	Residues		Ate	oms			AltConf
12	н	1	Total	С	Ν	Ο	Р	Ο
10	11	1	27	10	5	10	2	0

• Molecule 14 is BERYLLIUM TRIFLUORIDE ION (three-letter code: BEF) (formula: BeF₃) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
14	G	1	Total Be F 4 1 3	0

• Molecule 15 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atom	ıs	AltConf
15	R	1	Total 1	Zn 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RuvB-like 1

D237 D237 D136 7299 E137 7295 F136 7274 F136 M269 F136 M269 F136 M269 F136 M260 F136 M261 F136 M261 F136 M261 F136 M261 F136 M365 F136 M365 F136 M365 F136 M365 F136 M365 F146 M304 M36 M305 F167 M305 F168 M305 F169 M305 F169 M305 F169 <tr

• Molecule 2: RuvB-like 2

• Molecule 3: Chromatin-remodeling ATPase INO80

MET ALA ALA ASN ASN ASN P15 P15 P15 P17 P17 P17 P17 P17 P17 P17 P17 P17 P17	722 724 724 726 728 728 728 728 728 728 728 728 728 734	F40 641 043 043 862 650 671 671 873	ALA Q79 Q79 ALA ALA ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	E110
H119 8124 0125 0126 0126 1133 1133 1133 1134 1133	1152 1158 1158 1159 1158 1158 1166 1168 1168 1168 1168 1168	H173 M174 C181 C181 S182 S188 S188 C189 C192 C192 C192 T193	1211 1211 1211 1211 1222 1222 1222 122	E269
L260 H261 K262 K262 K262 L276 P277 L279 F2280 F2780 F2780 F2780 F2780 F2780 F2780 F2780 F2780 F2780 F2780 F2	SER THR LEU LEU THR SER GLU GLU GLU GLU ARG ARG	GLN GLN GLN GLN ARG ARG GLN GLU CLU GLU CLN ARG ARG ARG	ARG GUU GUU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	NTD
GLU LEU LEU CELY GLU GLU GLU CELY CELY CELY CELY CELY CELY CELY CELY	TLL CLU GLU CEU ASP ASP ASP SER SER SER CLU CLU CLU CLU CLU CLU	SER TYR TITR TITR TITR CLN CLN SER TITE ALA ALA ALA ALA	OLN LYS LIFS LIFE LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	PRO
GLU THR ASP ASP ASP CLU CLU CLU CLU SER SER CLU SER SER VASP	GLU GLU ASP ASP ASP ASP PRO PRO PRO CLU	GLU THR PRO CLY CLU CLU CLU PRO THR THR THR THR THR THR THR THR PRO	V433 L442 T446 T446 P452 P452 P452 P452 P452 P452 T471 L475 L475 L475	
P480 K481 D482 D484 Q484 Q484 C486 N497 T496 N497 T496 N497 V700 V700	A505 A505 B506 M507 E508 K509 K509 K509 K515 P516 C536 C536	4651 1682 1685 1665 1665 1665 1665 1665 1660 1666 1666	1574 1577 1577 1577 1577 1577 ALA ALA ALA ALA ALA ALA ALA ALA ALA SER ALA ALA SER ALA ALA SER ALA	GLY
SER ALA GLY GLY GLY GLY GLY GLY GLU GLU GLU GLN				
• Molecule 7: INO8	0 complex subuni	it C		
Chain Q:	47%	8%	44%	
MET ALA ALA ALA ALA ALA PLC PLC ALLA TLE TLE TLE THR THR SER THR SER THR THR	TLE VAL VAL ASN ASN ASN SER LYS ALA ALA ALA SER SER SER	SER HIS ASN ASN ASN ASR SER GLY CLY CLY ALA SER SER	LYS LYS LYS LYS ALA SER SER ALA ALA CLN CLN CLN CLN MLA MLA MLA	SER
GLU MET ASN MET LYS ALA LYS ALA NET CLN YAL TLE TLE TLE TLE CLN TLE GLU VAL THR THR THR THR THR THR THR THR THR THR	LIYS TILE LIYS TILE ALA ALA ARG LYS ASN PRO LYS FRO LYS PHE ARG PHE ARG PHE ARG PHE ARG PHE ARG PHE PL2 PH2 ARG	A132 SER A132 SER R139 A10 A11 A11 A139 A11 A139 A11 A139 A11 A139 A11 A139 A11 A14 SER A14 SER P155 GLY A14 GLY Y163 GLY X17 GLY X17 GLY Y178 GLY	0183 178 1184 178 1185 178 1186 178 1186 178 1200 858 1200 858 1200 858 1200 858 1200 958 1200 958 1200 958 1200 958 1200 958 1200 958 1200 958 1200 958 1200 944 1220 944 1220 944 1220 944 1220 944 1220 944	VAL SER PRO
Image: An and a state of the state of t	The H3.1	M132 SER M139 LI 48 LI 48 SER LI 48 SER SER CL Y M176 CL Y M176 CL Y M176 CL Y M177 ML A	183 186 186 186 186 186 186 186 186	VAL SER PRO
 ■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A A A A A A A A A A A A A A A A A A A	18%	235%	VAL SER PRO
Image: State of the state	ALA ALA ARA PRO ALA ARA ALA ARA ALA ALA ALA ALA ALA ALA	LYS LYS ALA PRO ALA ALA THR THR GLY GLY GLY CLY MI76 GLY GLY CLY MI76 GLY CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	TYR TYR 1000 1000 1000 1000 1000 1000 1000 10	K79 PRO ER
A Molecule 8: Histor Chain I:	II 126 II 126 II 126 II 126 II 126 II 126 II 126 II 130 II 14 II 14	LYS SER ALA PRO PRO PRO PLA ALA ALA CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	TYR TYR 4.43 4.44 4.43 4.44 4.	K79 PRO PRO
Image: State of the state	ANG	LYS ER PRO PRO AIA AIA AIA AIA AIA AIA AIA AIA AIA AI	TTR TTR TTR TTR TTR TTR TTR TTR	K79 VAL SER
Image: Section of the section of th	a 1 1 10 20 20 20 20 20 20 20 20 20 20 20 20 20	TINE STATES OF CONTRACT OF CON	1 M M 1 M M <td< td=""><td>K79 VAL SER</td></td<>	K79 VAL SER

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	156300	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	88000	Depositor
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	51.824	Depositor
Minimum map value	-26.213	Depositor
Average map value	0.003	Depositor
Map value standard deviation	1.133	Depositor
Recommended contour level	4.5	Depositor
Map size (Å)	404.80002, 404.80002, 404.80002	wwPDB
Map dimensions	368, 368, 368	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.1, 1.1, 1.1	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP, ZN, BEF

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.24	0/3366	0.48	0/4538
1	С	0.24	0/3437	0.48	0/4639
1	Е	0.24	0/3448	0.47	0/4649
2	В	0.24	0/3297	0.52	0/4444
2	D	0.24	0/3395	0.51	0/4580
2	F	0.24	0/3373	0.52	0/4546
3	G	0.26	0/5085	0.53	0/6941
4	J	0.25	0/653	0.56	0/876
4	N	0.26	0/632	0.63	0/845
5	R	0.25	0/775	0.57	0/1049
6	Н	0.25	0/3189	0.50	0/4343
7	Q	0.25	0/751	0.47	0/1028
8	Ι	0.25	0/760	0.53	0/1020
8	М	0.25	0/821	0.55	0/1102
9	K	0.24	0/829	0.54	0/1118
9	0	0.26	0/849	0.52	0/1147
10	L	0.25	0/758	0.49	0/1018
10	Р	0.29	0/738	0.50	0/993
11	Х	0.51	0/3610	0.93	1/5566~(0.0%)
12	Y	0.49	0/3653	0.88	0/5640
All	All	0.30	0/43419	0.60	1/60082~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	Х	-70	DC	P-O3'-C3'	-6.39	112.03	119.70

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3323	0	3410	61	0
1	С	3394	0	3430	54	0
1	Е	3402	0	3486	78	0
2	В	3261	0	3296	57	0
2	D	3356	0	3383	58	0
2	F	3335	0	3371	59	0
3	G	4962	0	4421	93	0
4	J	646	0	680	10	0
4	Ν	625	0	658	19	0
5	R	758	0	741	12	0
6	Н	3109	0	2888	57	0
7	Q	735	0	642	13	0
8	Ι	751	0	784	17	0
8	М	809	0	845	21	0
9	Κ	819	0	879	10	0
9	0	839	0	885	13	0
10	L	747	0	762	5	0
10	Р	727	0	742	11	0
11	Х	3223	0	1777	69	0
12	Y	3252	0	1773	50	0
13	А	27	0	12	3	0
13	В	27	0	12	3	0
13	С	27	0	12	1	0
13	D	27	0	12	0	0
13	Ε	27	0	12	3	0
13	F	27	0	12	1	0
13	G	27	0	12	5	0
13	Н	27	0	12	0	0
14	G	4	0	0	2	0
15	R	1	0	0	0	0
All	All	42294	0	38949	656	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (656) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
11 V 70 DO Ho?		distance (A)	overlap (A)
11:X:-70:DC:H2"	11:X:-69:DT:H5	1.41	0.98
3:G:549:LYS:HB2	13:G:1601:ADP:01B	1.68	0.94
1:E:146:PRO:HA	1:E:153:THR:HG23	1.59	0.83
11:X:-30:DC:O2	12:Y:30:DG:N2	2.10	0.81
3:G:1186:THR:HG22	3:G:1212:ARG:HG3	1.61	0.81
3:G:549:LYS:NZ	13:G:1601:ADP:O2B	2.15	0.80
11:X:5:DG:N1	12:Y:-5:DC:N3	2.29	0.75
4:N:44:LYS:NZ	9:K:115:LEU:O	2.21	0.73
2:D:382:MET:HG2	2:D:421:VAL:HB	1.71	0.73
11:X:-43:DC:N3	12:Y:43:DG:N1	2.28	0.72
11:X:-43:DC:O2	12:Y:43:DG:N2	2.17	0.72
1:A:238:VAL:HG21	3:G:861:LEU:HD11	1.73	0.71
2:F:74:LEU:HB2	2:F:354:LEU:HD23	1.72	0.71
2:B:40:ARG:O	2:B:53:ARG:NH2	2.24	0.71
6:H:472:LEU:HA	6:H:475:ILE:HG12	1.74	0.69
11:X:-71:DG:H2'	11:X:-70:DC:C6	2.28	0.68
11:X:-30:DC:N3	12:Y:30:DG:N1	2.31	0.67
4:N:59:LYS:O	4:N:63:GLU:HG2	1.95	0.67
4:N:63:GLU:O	4:N:67:ARG:HG2	1.96	0.66
8:I:58:THR:HG21	9:O:81:ARG:HD3	1.78	0.66
8:I:50:GLU:OE2	4:J:39:ARG:NH1	2.29	0.65
12:Y:46:DC:H2"	12:Y:47:DT:C5	2.31	0.65
3:G:545:MET:HA	13:G:1601:ADP:O2B	1.96	0.65
3:G:1209:ARG:HA	3:G:1212:ARG:HE	1.62	0.64
1:A:447:LEU:HD22	2:B:331:GLY:HA2	1.80	0.64
3:G:937:GLY:HA3	3:G:941:GLN:H	1.63	0.64
9:O:42:ARG:HB3	10:P:88:THR:HG22	1.81	0.63
2:B:314:ARG:NH1	2:B:317:GLU:OE1	2.32	0.63
10:P:35:GLU:HA	12:Y:48:DA:OP1	1.98	0.63
2:B:401:TYR:OH	2:B:433:PHE:O	2.16	0.62
11:X:-72:DC:H2'	11:X:-71:DG:C8	2.34	0.62
2:D:23:GLY:O	2:D:374:ARG:NH2	2.32	0.62
8:M:72:ARG:NH2	11:X:-22:DC:OP2	2.31	0.62
1:A:24:LEU:O	1:A:46:ARG:NH2	2.33	0.62
1:E:404:ARG:NH2	13:E:501:ADP:O1A	2.29	0.62
9:O:39:TYR:HB3	10:P:78:SER:HB2	1.81	0.61
1:A:362:ARG:HD2	2:F:434:LEU:HD11	1.81	0.61
1:C:184:ARG:NH2	3:G:1077:TRP:O	2.34	0.61
2:B:374:ARG:NH2	2:B:378:GLU:OE2	2.34	0.61
6:H:182:SER:HB3	6:H:200:GLU:H	1.65	0.61
11:X:-9:DT:H2'	11:X:-8:DT:C6	2.36	0.61
11:X:5:DG:N2	12:Y:-5:DC:O2	2.19	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
12:Y:27:DT:H2"	12:Y:28:DA:H5"	1.82	0.60
1:A:15:ILE:HD13	1:A:382:GLU:HA	1.83	0.60
1:E:124:ILE:HD12	1:E:292:ALA:HB2	1.83	0.60
6:H:564:TYR:HA	6:H:574:TYR:HE2	1.66	0.60
1:A:275:LEU:HD13	2:F:261:PHE:HB3	1.83	0.59
11:X:5:DG:H2"	11:X:6:DG:C8	2.37	0.59
1:A:367:THR:OG1	1:A:370:GLU:OE1	2.20	0.59
1:C:244:ASP:OD2	1:C:276:ARG:NH1	2.35	0.59
6:H:142:LEU:HD22	6:H:563:GLU:HB2	1.84	0.59
4:J:64:ASN:O	4:J:93:GLN:NE2	2.35	0.59
12:Y:11:DC:H2'	12:Y:12:DG:C8	2.38	0.59
1:C:268:LYS:NZ	2:D:267:GLU:O	2.35	0.58
2:F:165:THR:HG23	2:F:167:GLU:H	1.67	0.58
11:X:-46:DG:H1'	11:X:-45:DC:H5'	1.85	0.58
3:G:1100:SER:OG	3:G:1103:LEU:HB2	2.04	0.58
8:M:121:PRO:O	8:M:125:GLN:HG2	2.03	0.58
11:X:65:DA:H2'	11:X:66:DT:C6	2.38	0.58
2:F:97:ASP:HB3	2:F:130:ARG:HH22	1.69	0.58
2:F:174:LEU:HD13	2:F:178:MET:HB3	1.86	0.58
3:G:888:PHE:HB3	3:G:891:LEU:HD12	1.85	0.58
2:D:309:PHE:HA	2:D:312:LEU:HD12	1.84	0.58
1:E:147:MET:HG3	1:E:150:TYR:HD2	1.68	0.58
1:A:415:LEU:HD23	2:B:58:VAL:HG13	1.85	0.57
2:D:162:THR:HG22	2:D:171:ILE:HG12	1.86	0.57
1:C:117:ARG:HH21	1:C:240:LEU:HB3	1.69	0.57
3:G:1102:LYS:NZ	3:G:1195:ASP:OD1	2.33	0.57
2:B:367:THR:O	2:B:371:LEU:HG	2.04	0.57
1:C:71:PRO:HD2	1:C:74:THR:HG21	1.87	0.57
3:G:1136:TYR:OH	3:G:1140:ARG:NH1	2.37	0.57
1:A:119:ALA:HB3	1:A:325:PRO:HG3	1.86	0.57
8:M:108:ASN:O	8:M:112:ILE:HG13	2.04	0.57
1:E:203:GLN:NE2	3:G:928:GLN:OE1	2.37	0.57
11:X:-16:DC:H2"	11:X:-15:DC:C5	2.39	0.57
1:A:333:ARG:HH11	1:A:333:ARG:HG3	1.70	0.57
1:C:116:PHE:HE2	1:C:318:ALA:HB1	1.69	0.57
1:E:150:TYR:HA	5:R:287:PRO:HA	1.87	0.57
3:G:1064:ARG:HA	3:G:1067:GLN:HG3	1.87	0.57
6:H:170:SER:O	6:H:174:ASN:ND2	2.36	0.57
6:H:223:GLN:O	6:H:227:GLN:HG2	2.05	0.56
1:E:146:PRO:HB3	1:E:152:LYS:N	2.21	0.56
3:G:1174:LEU:HD13	3:G:1179:GLY:HA3	1.87	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
8:M:47:ALA:O	8:M:51:ILE:HG12	2.05	0.56
11:X:-72:DC:H2'	11:X:-71:DG:H8	1.69	0.56
2:B:105:GLY:HA2	2:B:298:ILE:HD11	1.87	0.56
4:N:47:SER:HB3	4:N:50:ILE:HG12	1.88	0.56
9:K:55:LEU:HD21	10:L:70:PHE:HB2	1.88	0.56
2:D:261:PHE:HB3	1:E:275:LEU:HD22	1.86	0.56
1:C:408:GLN:OE1	2:D:71:ARG:NE	2.39	0.56
2:B:140:GLY:HA2	2:B:228:PRO:HG2	1.87	0.56
2:B:362:TYR:OH	13:B:501:ADP:N6	2.37	0.56
2:D:246:GLU:OE1	1:E:274:LYS:NZ	2.34	0.56
2:B:42:ALA:HA	2:B:47:VAL:HG12	1.88	0.56
1:C:133:GLY:HA2	1:C:224:PRO:HG2	1.88	0.56
1:A:56:ILE:HG12	1:A:326:ILE:HG21	1.87	0.55
2:B:83:LYS:N	13:B:501:ADP:O1B	2.39	0.55
11:X:28:DA:H61	12:Y:-28:DT:H3	1.55	0.55
2:B:80:GLY:N	13:B:501:ADP:O2B	2.35	0.55
1:E:33:LYS:O	1:E:46:ARG:NH2	2.37	0.55
1:C:415:LEU:O	1:C:419:ILE:HG12	2.07	0.55
3:G:1121:LEU:HD22	3:G:1172:PHE:HB3	1.88	0.55
4:N:50:ILE:O	4:N:53:GLU:HG3	2.07	0.55
8:I:77:ASP:OD1	8:I:78:PHE:N	2.39	0.55
11:X:-38:DT:H2"	11:X:-37:DA:C8	2.42	0.55
12:Y:5:DT:H2"	12:Y:6:DT:C5	2.41	0.55
6:H:15:PRO:HB2	6:H:17:PRO:HD3	1.89	0.55
9:O:112:GLN:HB2	9:O:115:LEU:CD1	2.37	0.55
1:E:177:PHE:HA	1:E:180:LEU:HD12	1.89	0.55
1:E:256:ILE:O	1:E:260:MET:HB2	2.07	0.55
1:A:67:LEU:HD23	1:A:360:ILE:HG12	1.89	0.54
6:H:577:ILE:HD11	7:Q:155:PRO:HG2	1.89	0.54
8:M:60:LEU:HD12	8:M:64:LYS:HE3	1.89	0.54
2:D:424:ASP:OD1	2:D:425:ASP:N	2.41	0.54
1:E:304:VAL:HG21	1:E:329:PHE:HB3	1.89	0.54
2:F:83:LYS:N	13:F:501:ADP:O3B	2.40	0.54
3:G:1133:LEU:HD22	3:G:1173:LEU:HD11	1.90	0.54
12:Y:25:DC:H2"	12:Y:26:DG:C8	2.42	0.54
2:D:270:SER:O	2:D:273:ARG:N	2.40	0.54
2:F:60:LEU:HD12	2:F:90:MET:HG3	1.88	0.54
2:B:124:ARG:NH1	2:B:248:ASP:OD2	2.40	0.54
1:E:71:PRO:O	1:E:76:LYS:NZ	2.40	0.54
11:X:-37:DA:H2"	11:X:-36:DA:C8	2.42	0.54
2:B:243:SER:HB2	2:B:246:GLU:HB2	1.90	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:308:ASP:OD1	1:C:309:ILE:N	2.41	0.54
2:B:46:MET:HE2	2:B:53:ARG:HD3	1.90	0.54
1:C:33:LYS:O	1:C:46:ARG:NH2	2.40	0.54
2:B:107:GLU:HG3	1:C:109:THR:HG21	1.90	0.53
10:P:90:THR:OG1	10:P:93:GLU:OE1	2.17	0.53
11:X:-10:DT:H2'	11:X:-9:DT:C6	2.42	0.53
12:Y:26:DG:H2'	12:Y:27:DT:C6	2.42	0.53
1:E:24:LEU:O	1:E:46:ARG:NE	2.41	0.53
1:E:405:TYR:O	1:E:409:LEU:HD13	2.08	0.53
2:D:247:ILE:HG22	2:D:276:ILE:HD12	1.90	0.53
11:X:-47:DA:H4'	11:X:-46:DG:H5'	1.90	0.53
2:D:74:LEU:HB2	2:D:354:LEU:HD11	1.90	0.53
2:D:451:LEU:HD11	2:F:349:ASP:HB3	1.91	0.53
2:D:303:MET:HG3	1:E:313:THR:HG21	1.90	0.53
1:E:97:VAL:HG23	1:E:99:SER:H	1.71	0.53
3:G:581:ASN:OD1	3:G:582:TRP:N	2.41	0.53
1:C:52:ILE:O	1:C:56:ILE:HG12	2.09	0.53
2:F:131:ILE:HG21	3:G:944:LEU:HD12	1.91	0.53
6:H:106:LEU:O	6:H:110:GLU:HG3	2.09	0.53
6:H:278:LEU:HD22	6:H:279:PRO:HD2	1.91	0.53
9:K:79:ILE:HG12	9:K:82:HIS:CE1	2.44	0.53
3:G:602:PRO:HA	3:G:605:ARG:HG2	1.91	0.52
3:G:1209:ARG:O	3:G:1212:ARG:HD2	2.09	0.52
11:X:-73:DC:H2'	11:X:-72:DC:C6	2.44	0.52
1:C:339:ARG:NH2	2:D:307:GLU:OE2	2.41	0.52
1:C:412:PRO:HB2	1:C:433:ILE:HD12	1.91	0.52
6:H:181:CYS:O	6:H:201:GLY:N	2.35	0.52
1:C:64:ARG:HB2	1:C:326:ILE:HD12	1.90	0.52
2:D:104:ALA:HB3	2:D:107:GLU:HG3	1.91	0.52
2:D:445:GLU:HG3	2:D:446:TYR:CD1	2.44	0.52
3:G:942:ARG:O	3:G:943:TYR:HB2	2.09	0.52
3:G:981:SER:HB3	3:G:1006:LEU:HG	1.92	0.52
3:G:983:TYR:HB3	3:G:1001:CYS:HB3	1.90	0.52
3:G:1013:ALA:O	3:G:1089:ARG:NH2	2.43	0.52
1:C:402:THR:HG23	1:C:405:TYR:H	1.74	0.52
1:C:416:LEU:HD13	1:C:433:ILE:HD11	1.91	0.52
1:E:255:ASP:O	1:E:259:MET:HG3	2.10	0.52
1:E:281:LYS:NZ	3:G:983:TYR:O	2.39	0.52
1:E:202:ARG:NH2	1:E:218:GLU:OE2	2.41	0.52
3:G:904:LEU:HD11	3:G:912:ARG:HA	1.92	0.52
3:G:1120:VAL:HG21	3:G:1192:ILE:HD12	1.90	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:I:113:HIS:NE2	8:M:123:ASP:OD1	2.36	0.52
8:I:121:PRO:O	8:I:125:GLN:HG2	2.09	0.52
12:Y:55:DT:H2"	12:Y:56:DC:H5'	1.91	0.52
6:H:476:LEU:O	6:H:484:GLN:NE2	2.43	0.52
8:I:125:GLN:O	8:I:134:ARG:NH2	2.42	0.52
11:X:-25:DG:H2"	11:X:-24:DC:C5	2.44	0.52
1:A:263:LEU:HD11	1:C:260:MET:SD	2.50	0.52
2:D:253:ARG:HD2	2:D:256:GLY:HA3	1.92	0.52
4:N:78:ARG:HB2	12:Y:27:DT:OP1	2.10	0.52
11:X:26:DG:H2"	11:X:27:DC:C6	2.44	0.52
9:K:73:ASN:O	9:K:74:LYS:HG3	2.10	0.52
9:O:112:GLN:HB2	9:O:115:LEU:HD13	1.92	0.52
2:D:250:ILE:HD11	3:G:1006:LEU:HD13	1.92	0.51
1:E:402:THR:HG23	1:E:405:TYR:H	1.75	0.51
1:C:2:LYS:N	3:G:760:GLU:O	2.44	0.51
2:D:207:ARG:HH21	2:D:224:PHE:HE1	1.57	0.51
3:G:1172:PHE:HE2	3:G:1174:LEU:HD21	1.74	0.51
11:X:-35:DA:H2"	11:X:-34:DC:C5	2.45	0.51
12:Y:15:DG:H2"	12:Y:16:DG:C8	2.45	0.51
6:H:243:GLU:O	6:H:247:HIS:ND1	2.42	0.51
11:X:-30:DC:H2"	11:X:-29:DG:H5"	1.92	0.51
1:C:16:ALA:O	1:C:378:ARG:NH2	2.44	0.51
1:C:341:THR:O	1:C:342:GLU:HG3	2.10	0.51
2:F:79:PRO:HG3	2:F:329:ASN:HD21	1.75	0.51
2:F:301:VAL:HG11	2:F:326:MET:HB3	1.92	0.51
5:R:314:CYS:SG	5:R:316:HIS:ND1	2.81	0.51
4:N:68:ASP:OD2	4:N:92:ARG:NE	2.43	0.51
11:X:-57:DA:H2"	11:X:-56:DG:N7	2.25	0.51
1:A:123:ARG:HB3	1:A:293:GLU:HG2	1.92	0.51
1:C:447:LEU:HG	1:C:454:TYR:HE2	1.75	0.51
2:D:446:TYR:HB3	2:D:449:ALA:HB3	1.91	0.51
1:E:97:VAL:HG22	1:E:100:GLU:HG2	1.93	0.51
9:O:79:ILE:HG12	9:O:82:HIS:CE1	2.46	0.51
1:E:146:PRO:HB3	1:E:152:LYS:CA	2.41	0.51
1:E:303:GLU:OE2	2:F:313:ASN:ND2	2.29	0.51
1:E:447:LEU:HD11	2:F:344:HIS:CE1	2.45	0.51
8:I:60:LEU:HD12	8:I:93:GLN:HG2	1.93	0.51
1:A:131:TYR:HE1	1:A:229:HIS:HD1	1.59	0.50
2:B:262:SER:OG	1:C:248:ALA:O	2.29	0.50
2:D:374:ARG:HG2	2:D:403:ILE:HG23	1.92	0.50
5:R:290:VAL:HG13	5:R:292:ALA:H	1.76	0.50

	• • • • •	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:L:102:LEU:HB2	10:L:107:ALA:HB2	1.93	0.50
12:Y:71:DC:H2'	12:Y:72:DG:H8	1.76	0.50
6:H:190:TYR:HD2	6:H:191:GLN:HG2	1.75	0.50
12:Y:-7:DT:H2"	12:Y:-6:DC:C5	2.47	0.50
8:M:86:SER:O	8:M:90:MET:HG2	2.12	0.50
2:B:18:ARG:NH2	1:C:288:ASP:OD1	2.42	0.50
3:G:1177:ARG:HG2	3:G:1177:ARG:HH11	1.77	0.50
2:D:175:GLY:N	2:D:178:MET:SD	2.85	0.50
2:F:182:LEU:HD22	2:F:187:VAL:HG21	1.92	0.50
6:H:126:GLY:O	6:H:127:CYS:HB3	2.12	0.50
1:E:90:LYS:O	1:E:123:ARG:NH2	2.44	0.50
2:F:403:ILE:O	2:F:406:ILE:HG12	2.12	0.50
3:G:1122:ILE:HB	3:G:1173:LEU:HD23	1.94	0.50
12:Y:-13:DG:H2"	12:Y:-12:DA:C8	2.47	0.50
5:R:8:LYS:NZ	12:Y:-16:DA:H62	2.09	0.50
8:M:62:ILE:HD12	8:M:62:ILE:H	1.77	0.50
12:Y:80:DC:H2"	12:Y:81:DA:C8	2.46	0.50
2:B:131:ILE:HD13	3:G:843:PHE:HB3	1.94	0.50
11:X:-47:DA:H1'	11:X:-46:DG:N9	2.27	0.50
11:X:-47:DA:H61	12:Y:47:DT:H3	1.58	0.50
11:X:42:DT:H2"	11:X:43:DA:C8	2.47	0.50
2:D:336:ARG:NH2	1:E:310:GLU:OE2	2.45	0.50
1:E:190:VAL:HG13	1:E:203:GLN:HB2	1.94	0.50
5:R:299:ARG:HH21	5:R:300:PRO:HG2	1.76	0.50
6:H:17:PRO:HG2	6:H:119:HIS:ND1	2.26	0.50
4:N:44:LYS:HD3	9:K:115:LEU:HD22	1.94	0.49
6:H:188:SER:HB2	6:H:497:ASN:HB2	1.94	0.49
12:Y:3:DG:H2"	12:Y:4:DG:C8	2.47	0.49
2:B:130:ARG:HB3	2:B:290:GLU:HG3	1.94	0.49
1:E:140:PRO:HD2	5:R:296:VAL:HG12	1.94	0.49
6:H:166:ASP:OD1	6:H:167:SER:N	2.45	0.49
11:X:15:DC:H2"	11:X:16:DT:C5	2.47	0.49
12:Y:71:DC:H2'	12:Y:72:DG:C8	2.46	0.49
1:A:366:TYR:OH	13:A:501:ADP:N7	2.38	0.49
2:B:40:ARG:HD2	2:B:43:SER:HB3	1.95	0.49
1:E:303:GLU:OE1	1:E:305:HIS:NE2	2.42	0.49
1:E:404:ARG:CZ	2:F:353:ARG:HE	2.25	0.49
3:G:545:MET:CG	14:G:1602:BEF:F1	2.51	0.49
4:N:75:HIS:CE1	10:P:93:GLU:HG3	2.47	0.49
6:H:34:VAL:HA	6:H:133:VAL:HG12	1.94	0.49
10:P:72:ARG:HB3	10:P:101:LEU:HD11	1.94	0.49

Atom 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:X:-66:DA:H2'	11:X:-65:DT:H71	1.94	0.49
12:Y:52:DC:H1'	12:Y:53:DT:H5'	1.93	0.49
2:D:328:THR:HG22	2:D:330:ARG:H	1.78	0.49
1:E:13:GLN:NE2	1:E:14:ARG:O	2.45	0.49
3:G:1182:GLY:HA2	14:G:1602:BEF:F2	2.03	0.49
9:K:85:LEU:O	9:K:89:ASN:ND2	2.39	0.49
11:X:70:DG:H2"	11:X:71:DA:C8	2.47	0.49
12:Y:-57:DA:H2"	12:Y:-56:DC:C5	2.47	0.49
2:D:221:GLN:H	1:E:196:ASN:HA	1.77	0.49
1:E:121:GLY:HA2	1:E:239:THR:HA	1.95	0.49
6:H:251:TYR:HA	6:H:500:TYR:HB3	1.92	0.49
10:L:33:ARG:HH21	11:X:49:DT:H5"	1.76	0.49
11:X:-32:DC:H2"	11:X:-31:DA:H8	1.78	0.49
6:H:260:LEU:HD11	7:Q:185:LEU:HG	1.95	0.49
8:M:129:ARG:HG3	8:M:135:ALA:HB3	1.93	0.49
1:E:41:GLY:O	1:E:46:ARG:NH1	2.45	0.49
2:F:31:LEU:H	2:F:93:ALA:HB2	1.78	0.49
2:F:250:ILE:HD13	3:G:894:ILE:HD11	1.95	0.49
3:G:1023:ASP:OD1	3:G:1024:SER:N	2.46	0.49
8:M:129:ARG:HH11	8:M:129:ARG:HG2	1.78	0.49
1:E:397:ILE:HA	1:E:400:LYS:HZ3	1.77	0.49
1:A:49:CYS:O	1:A:53:VAL:HG23	2.13	0.48
2:D:225:VAL:HG22	2:D:226:GLN:H	1.77	0.48
2:F:130:ARG:HG3	2:F:292:ILE:HD13	1.94	0.48
2:F:302:HIS:HB3	2:F:328:THR:HG23	1.95	0.48
4:N:63:GLU:OE2	8:M:74:ILE:HD13	2.13	0.48
8:M:76:GLN:NE2	8:M:77:ASP:OD1	2.45	0.48
11:X:-34:DC:H2"	11:X:-33:DG:C8	2.48	0.48
2:B:199:THR:O	3:G:1029:ARG:NH1	2.47	0.48
1:E:162:LYS:HB3	1:E:167:THR:HG23	1.95	0.48
1:E:192:TYR:CE1	1:E:201:LYS:HB2	2.48	0.48
2:D:226:GLN:HG3	2:D:227:CYS:H	1.78	0.48
5:R:308:ARG:NH2	5:R:315:PRO:O	2.46	0.48
8:M:116:ARG:NH1	8:M:118:THR:O	2.46	0.48
1:A:17:SER:O	13:A:501:ADP:O3'	2.31	0.48
1:C:378:ARG:HG2	1:C:407:VAL:HG13	1.95	0.48
10:P:33:ARG:O	10:P:34:LYS:C	2.51	0.48
2:B:147:ILE:HD12	2:B:179:ILE:HD12	1.95	0.48
1:A:447:LEU:HD11	2:B:344:HIS:CE1	2.49	0.48
1:E:127:THR:HG22	1:E:233:GLU:HG2	1.95	0.48
12:Y:73:DG:H5'	12:Y:73:DG:H8	1.78	0.48

	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:372:LYS:HB3	1:C:391:LEU:HD21	1.96	0.48
8:I:126:LEU:O	8:I:130:ILE:HG22	2.14	0.48
2:D:182:LEU:HD22	2:D:187:VAL:HG11	1.96	0.48
3:G:540:ILE:HG22	3:G:541:LEU:H	1.79	0.48
1:A:304:VAL:HG12	1:A:331:SER:HB2	1.96	0.47
1:C:27:ASP:OD1	1:C:31:LEU:N	2.47	0.47
2:D:132:LYS:HG2	2:D:239:VAL:HG12	1.96	0.47
1:E:209:TYR:OH	5:R:299:ARG:NH1	2.47	0.47
2:F:306:ILE:HG21	2:F:338:THR:HG23	1.96	0.47
2:B:21:ARG:HE	1:C:62:ALA:HB2	1.79	0.47
6:H:28:PRO:HB2	6:H:30:PRO:HD2	1.96	0.47
1:A:130:VAL:HB	1:A:230:LYS:HB2	1.97	0.47
2:D:435:ASP:OD1	2:D:436:GLU:N	2.47	0.47
6:H:188:SER:O	6:H:496:GLY:N	2.40	0.47
9:K:23:LEU:HD11	10:L:117:ALA:HB1	1.95	0.47
11:X:1:DA:H2"	11:X:2:DA:C8	2.50	0.47
12:Y:33:DC:H2"	12:Y:34:DG:C8	2.50	0.47
8:I:129:ARG:HD3	8:I:135:ALA:HB3	1.96	0.47
11:X:-32:DC:H2"	11:X:-31:DA:C8	2.49	0.47
1:C:21:VAL:HG13	1:C:39:LEU:HD11	1.96	0.47
7:Q:176:LYS:HB2	7:Q:178:TYR:CE1	2.49	0.47
9:K:74:LYS:HD2	9:K:74:LYS:O	2.15	0.47
9:O:55:LEU:HD22	10:P:66:VAL:HG23	1.97	0.47
1:A:299:LEU:HD23	1:A:327:VAL:HG13	1.96	0.47
1:E:393:HIS:HB2	1:E:427:LYS:HE2	1.95	0.47
8:I:113:HIS:CG	8:M:126:LEU:HD22	2.48	0.47
8:M:73:GLU:HA	8:M:76:GLN:HG3	1.96	0.47
12:Y:-69:DA:H2"	12:Y:-68:DA:C8	2.50	0.47
2:B:46:MET:CE	2:B:53:ARG:HD3	2.44	0.47
1:E:447:LEU:HD13	2:F:331:GLY:HA2	1.97	0.47
3:G:550:THR:HG22	3:G:582:TRP:CZ2	2.50	0.47
3:G:813:ARG:NH1	3:G:1198:TRP:HE1	2.13	0.47
3:G:1184:ASN:OD1	3:G:1212:ARG:NH1	2.48	0.47
4:N:75:HIS:HE1	10:P:93:GLU:HA	1.78	0.47
4:J:31:LYS:O	4:J:35:ARG:HG3	2.14	0.47
1:A:214:ASP:HB2	2:B:173:ASP:H	1.80	0.47
5:R:8:LYS:O	5:R:11:GLU:HG3	2.14	0.47
11:X:-43:DC:N4	12:Y:43:DG:O6	2.28	0.47
1:A:105:GLU:HG3	2:B:267:GLU:HG3	1.95	0.47
1:C:303:GLU:OE1	1:C:305:HIS:NE2	2.43	0.47
2:D:72:ALA:HB2	2:D:316:LEU:HD21	1.97	0.47

A 1 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:N:87:VAL:HG22	4:N:97:LEU:HD21	1.97	0.47
2:B:121:GLN:HG3	2:B:245:HIS:CD2	2.49	0.47
1:E:217:ALA:HB3	2:F:177:LYS:HB3	1.97	0.47
5:R:7:LEU:HA	5:R:10:GLU:CD	2.35	0.47
4:N:57:VAL:HA	4:N:60:VAL:HG12	1.97	0.46
8:M:37:LYS:HB3	8:M:38:PRO:HD3	1.97	0.46
9:O:87:ILE:HD13	9:O:97:LEU:HD22	1.97	0.46
1:E:132:GLU:OE1	3:G:928:GLN:NE2	2.48	0.46
1:A:156:HIS:CG	1:A:171:LYS:HE3	2.51	0.46
2:B:175:GLY:O	2:B:179:ILE:HG12	2.14	0.46
1:C:447:LEU:HG	1:C:454:TYR:CE2	2.50	0.46
2:F:180:GLU:O	2:F:184:LYS:HG2	2.14	0.46
11:X:-55:DA:H2"	11:X:-54:DC:C5	2.51	0.46
12:Y:54:DG:H2"	12:Y:55:DT:C6	2.50	0.46
1:E:404:ARG:NH2	13:E:501:ADP:O3B	2.48	0.46
6:H:188:SER:HA	6:H:193:THR:HG22	1.98	0.46
2:D:165:THR:HG23	2:D:232:LEU:HD13	1.98	0.46
1:E:447:LEU:HD12	2:F:343:PRO:HB3	1.98	0.46
3:G:1162:ASP:O	3:G:1166:ARG:CB	2.64	0.46
12:Y:-60:DA:H2"	12:Y:-59:DG:C8	2.51	0.46
3:G:692:TRP:CZ3	3:G:703:PHE:HB3	2.51	0.46
6:H:471:THR:O	6:H:475:ILE:HG23	2.15	0.46
11:X:-36:DA:H2"	11:X:-35:DA:C8	2.50	0.46
12:Y:-36:DC:H2"	12:Y:-35:DT:C5	2.51	0.46
2:D:123:PHE:HZ	2:D:312:LEU:HD23	1.79	0.46
1:E:237:ASP:OD1	1:E:237:ASP:N	2.46	0.46
3:G:640:TYR:OH	11:X:11:DC:OP1	2.25	0.46
8:M:59:GLU:HG2	8:M:60:LEU:N	2.30	0.46
1:C:443:SER:HA	1:C:446:ILE:HG12	1.98	0.46
2:D:149:ARG:HB2	3:G:1068:PHE:CE1	2.51	0.46
1:A:197:SER:HA	3:G:859:ARG:HD3	1.97	0.46
1:A:409:LEU:HD22	1:A:433:ILE:HG22	1.98	0.46
2:B:416:ARG:NE	2:B:425:ASP:OD2	2.43	0.46
1:E:161:LEU:HD12	1:E:170:LEU:HD12	1.98	0.46
3:G:1207:MET:HG2	3:G:1221:VAL:HG21	1.98	0.46
12:Y:14:DG:H2"	12:Y:15:DG:C8	2.51	0.46
1:A:265:LYS:HA	2:B:253:ARG:HH21	1.80	0.45
2:B:449:ALA:HB1	1:C:71:PRO:HB3	1.98	0.45
2:D:249:VAL:HG13	2:D:265:THR:HG21	1.98	0.45
1:E:412:PRO:HB2	1:E:433:ILE:HD12	1.97	0.45
1:A:271:ILE:HB	1:A:276:ARG:NH2	2.31	0.45

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:F:203:SER:HA	3:G:899:ALA:HB2	1.98	0.45
6:H:493:LEU:HD21	6:H:507:MET:HG2	1.99	0.45
2:B:443:MET:HG3	2:B:450:PHE:CE2	2.51	0.45
1:A:436:LEU:HG	2:B:55:ALA:HB2	1.98	0.45
2:D:71:ARG:HD2	2:D:71:ARG:HA	1.81	0.45
1:E:353:ASP:O	1:E:357:ARG:NH1	2.49	0.45
3:G:850:ILE:O	3:G:854:ASN:HB2	2.17	0.45
1:A:211:THR:HG23	7:Q:177:LYS:HE2	1.98	0.45
6:H:563:GLU:N	6:H:563:GLU:OE1	2.49	0.45
11:X:-78:DC:H2"	11:X:-77:DG:H8	1.81	0.45
6:H:276:MET:HB2	6:H:442:LEU:HB2	1.97	0.45
6:H:553:THR:HB	6:H:556:GLU:HG3	1.97	0.45
2:B:32:GLY:O	2:B:33:LEU:HD12	2.17	0.45
1:A:124:ILE:HG12	1:A:292:ALA:HB2	1.99	0.45
1:A:305:HIS:CD2	1:A:333:ARG:HD2	2.52	0.45
1:C:206:CYS:SG	1:C:207:ASP:N	2.90	0.45
1:E:135:VAL:HG12	1:E:189:ASP:O	2.17	0.45
3:G:540:ILE:HG22	3:G:541:LEU:N	2.32	0.45
3:G:546:GLY:H	13:G:1601:ADP:PB	2.40	0.45
3:G:1225:ILE:HG22	3:G:1226:CYS:N	2.32	0.45
6:H:505:ALA:HA	6:H:508:GLU:HG2	1.98	0.45
8:I:126:LEU:HD22	8:M:113:HIS:CG	2.52	0.45
12:Y:46:DC:H2"	12:Y:47:DT:C4	2.52	0.45
1:E:137:GLU:OE1	1:E:139:THR:OG1	2.23	0.45
2:F:190:GLY:HA3	2:F:211:ARG:HG2	1.99	0.45
6:H:158:ILE:H	6:H:158:ILE:HD12	1.81	0.45
4:J:36:ARG:NH2	12:Y:-13:DG:OP1	2.36	0.45
11:X:-51:DC:C6	11:X:-50:DT:H72	2.51	0.45
11:X:68:DT:H2"	11:X:69:DT:H5"	1.98	0.45
1:A:313:THR:HA	1:A:316:HIS:HD1	1.82	0.44
1:A:452:ASP:N	1:A:452:ASP:OD1	2.50	0.44
2:D:32:GLY:O	2:D:53:ARG:NH2	2.50	0.44
1:E:428:GLU:O	1:E:431:GLU:HG3	2.17	0.44
1:C:243:LEU:HD23	3:G:1017:VAL:HG21	1.99	0.44
1:E:398:GLY:HA3	1:E:406:SER:HB3	1.98	0.44
2:F:28:ILE:HD11	2:F:88:MET:HB2	2.00	0.44
2:F:136:GLU:OE2	2:F:198:ALA:N	2.50	0.44
3:G:584:GLN:O	3:G:588:ARG:HG2	2.17	0.44
6:H:8:PHE:CE1	6:H:276:MET:HB3	2.52	0.44
8:I:59:GLU:N	8:I:59:GLU:OE1	2.50	0.44
11:X:-56:DG:H2"	11:X:-55:DA:C8	2.51	0.44

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
12:Y:8:DA:H2"	12:Y:9:DA:C8	2.52	0.44
12:Y:57:DT:H2"	12:Y:58:DA:C8	2.51	0.44
1:A:156:HIS:CD2	1:A:171:LYS:HE3	2.51	0.44
1:A:371:MET:O	1:A:375:ILE:HG12	2.17	0.44
2:B:170:THR:HG23	7:Q:189:THR:H	1.82	0.44
2:D:121:GLN:OE1	2:D:245:HIS:NE2	2.51	0.44
3:G:1200:PRO:HG3	3:G:1238:ALA:HA	1.98	0.44
5:R:330:CYS:SG	5:R:331:SER:N	2.90	0.44
1:C:259:MET:HB2	1:C:259:MET:HE3	1.80	0.44
2:F:193:ILE:HG22	2:F:204:LYS:HG2	1.99	0.44
3:G:632:GLN:O	3:G:636:GLN:HG3	2.18	0.44
1:A:272:THR:HG23	1:A:275:LEU:H	1.83	0.44
2:B:49:GLN:HB3	2:B:52:ALA:HB3	2.00	0.44
3:G:605:ARG:HG3	3:G:606:LYS:N	2.32	0.44
3:G:817:ASN:OD1	3:G:1194:TYR:HE1	2.01	0.44
6:H:488:VAL:HG11	6:H:515:ARG:HD2	1.98	0.44
8:I:108:ASN:O	8:I:112:ILE:HG12	2.17	0.44
1:A:284:ASN:HB3	2:F:18:ARG:HH21	1.82	0.44
6:H:173:HIS:HB2	6:H:536:GLY:HA2	2.00	0.44
8:I:79:LYS:HG2	8:I:82:LEU:HD21	1.99	0.44
1:C:405:TYR:HE1	1:C:409:LEU:HD11	1.82	0.44
1:E:164:ALA:HB3	1:E:225:LYS:HA	2.00	0.44
3:G:1212:ARG:HB2	3:G:1213:LEU:H	1.58	0.44
6:H:188:SER:OG	6:H:498:THR:HG23	2.18	0.44
6:H:451:ALA:HB3	6:H:452:PRO:HD3	1.99	0.44
7:Q:148:LEU:HD11	7:Q:163:TYR:HD2	1.83	0.44
1:C:76:LYS:HZ1	1:C:332:ASN:HB3	1.82	0.44
2:F:193:ILE:HD12	2:F:195:ILE:HD11	2.00	0.44
3:G:596:LEU:HD13	3:G:624:PHE:HA	2.00	0.44
6:H:152:LEU:HG	6:H:158:ILE:HD13	2.00	0.44
11:X:55:DT:H2"	11:X:56:DG:N7	2.32	0.44
11:X:66:DT:H2"	11:X:67:DA:H8	1.83	0.44
12:Y:-48:DG:H2"	12:Y:-47:DG:C8	2.53	0.44
1:C:408:GLN:O	2:D:71:ARG:NH2	2.51	0.44
2:D:207:ARG:HH22	2:D:222:THR:H	1.66	0.44
1:E:106:ILE:HD11	1:E:110:GLU:HG2	2.00	0.44
3:G:638:VAL:O	3:G:642:GLN:HG3	2.18	0.43
3:G:1000:ARG:HG3	3:G:1001:CYS:H	1.83	0.43
11:X:-14:DC:H2"	11:X:-13:DG:H8	1.83	0.43
1:A:135:VAL:HG22	1:A:159:ILE:HD11	2.00	0.43
2:D:78:GLN:HB2	2:D:81:THR:HG21	1.99	0.43

	AL O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:F:221:GLN:HG2	2:F:221:GLN:O	2.18	0.43
2:F:408:ALA:O	2:F:412:VAL:HG23	2.18	0.43
12:Y:-37:DT:H2"	12:Y:-36:DC:C5	2.52	0.43
12:Y:2:DC:H2"	12:Y:3:DG:C8	2.53	0.43
1:C:42:GLN:HG2	1:C:366:TYR:HE1	1.83	0.43
2:D:97:ASP:OD1	2:D:97:ASP:N	2.46	0.43
1:E:219:GLU:HB3	2:F:199:THR:HA	2.00	0.43
1:E:338:ILE:HD13	1:E:351:PRO:HG3	1.99	0.43
6:H:41:GLN:HG3	6:H:43:ARG:HH11	1.83	0.43
9:O:67:GLY:HA2	9:O:78:ILE:HD11	2.00	0.43
1:C:407:VAL:HA	1:C:410:LEU:HD12	1.99	0.43
7:Q:132:ALA:HB3	7:Q:139:ARG:HA	2.01	0.43
9:O:25:PHE:N	9:O:56:GLU:OE1	2.52	0.43
11:X:20:DC:H4'	11:X:21:DT:OP1	2.18	0.43
1:A:32:ALA:HB1	1:A:46:ARG:HE	1.83	0.43
2:B:105:GLY:N	2:B:299:ASP:O	2.48	0.43
2:D:68:ILE:HD13	2:D:71:ARG:HH11	1.84	0.43
1:E:128:LYS:O	1:E:231:LYS:HA	2.19	0.43
2:F:244:LEU:HD12	2:F:247:ILE:HD12	1.99	0.43
2:F:409:ALA:HA	2:F:429:VAL:HG21	1.99	0.43
3:G:973:PHE:HB2	3:G:1003:LEU:HD11	2.00	0.43
6:H:456:PHE:HA	6:H:468:ILE:HG22	2.00	0.43
10:L:38:SER:HA	10:L:59:MET:HE1	2.01	0.43
1:A:401:THR:OG1	1:A:402:THR:N	2.52	0.43
6:H:168:LEU:HD23	6:H:570:ALA:HA	2.00	0.43
12:Y:-70:DC:H2"	12:Y:-69:DA:C8	2.54	0.43
1:A:20:HIS:NE2	13:A:501:ADP:O2'	2.39	0.43
1:A:24:LEU:HD23	1:A:86:GLU:HG3	2.01	0.43
2:B:117:GLU:OE2	2:B:273:ARG:NH2	2.51	0.43
2:F:140:GLY:HA2	2:F:228:PRO:HG2	2.01	0.43
3:G:842:LYS:HD2	3:G:1028:ASP:HB3	2.00	0.43
3:G:1029:ARG:HD2	3:G:1029:ARG:HA	1.85	0.43
3:G:1052:ASN:HA	3:G:1075:GLY:HA3	2.01	0.43
4:N:90:LEU:HB3	4:N:95:ARG:O	2.19	0.43
8:I:51:ILE:HD11	4:J:43:VAL:O	2.18	0.43
11:X:3:DG:H2"	11:X:4:DG:H8	1.84	0.43
2:B:160:LYS:HD3	2:B:173:ASP:OD1	2.19	0.43
1:E:146:PRO:HB3	1:E:152:LYS:HA	2.00	0.43
3:G:631:TYR:OH	3:G:652:ASP:O	2.33	0.43
5:R:11:GLU:O	5:R:14:ARG:HG3	2.18	0.43
2:B:162:THR:HG22	2:B:171:ILE:HG13	2.00	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:103:ILE:HG23	2:D:107:GLU:HB2	2.01	0.43
1:A:49:CYS:HB3	1:A:83:ILE:HD11	2.01	0.43
1:A:394:LEU:HA	1:A:397:ILE:HG22	2.01	0.43
2:B:446:TYR:HE2	1:C:365:LEU:HD12	1.83	0.43
1:C:238:VAL:HG22	1:C:239:THR:H	1.84	0.43
6:H:40:PHE:O	6:H:62:ARG:NH1	2.48	0.43
8:I:48:LEU:HD21	8:I:52:ARG:HE	1.84	0.43
1:A:424:SER:OG	1:A:425:ILE:N	2.52	0.42
6:H:446:THR:HG21	7:Q:183:GLY:HA3	2.01	0.42
1:A:386:ILE:HG13	1:A:425:ILE:HB	2.01	0.42
2:D:390:LEU:HD12	2:D:390:LEU:HA	1.90	0.42
3:G:540:ILE:HG12	3:G:678:LEU:HD12	2.01	0.42
3:G:859:ARG:O	3:G:863:VAL:HG23	2.20	0.42
9:O:26:PRO:HG2	9:O:29:ARG:HB3	2.01	0.42
2:B:167:GLU:HB3	7:Q:200:ILE:HD11	2.00	0.42
2:D:23:GLY:N	2:D:26:SER:OG	2.45	0.42
2:D:86:ILE:O	2:D:90:MET:HG2	2.18	0.42
2:F:281:ALA:O	2:F:284:ARG:HG2	2.19	0.42
4:N:68:ASP:OD2	4:N:92:ARG:NH2	2.49	0.42
11:X:-25:DG:H2"	11:X:-24:DC:C6	2.54	0.42
11:X:46:DT:H2"	11:X:47:DC:C5	2.54	0.42
1:A:129:GLU:HB3	1:A:195:ALA:HB3	2.00	0.42
2:B:301:VAL:HG11	2:B:326:MET:HE1	2.01	0.42
9:K:26:PRO:HG2	9:K:29:ARG:HB3	2.01	0.42
10:P:98:VAL:HG13	10:P:102:LEU:HD12	2.01	0.42
2:B:72:ALA:HB2	2:B:324:LEU:HD21	2.01	0.42
2:D:117:GLU:O	2:D:121:GLN:HG3	2.20	0.42
2:F:131:ILE:HD13	3:G:944:LEU:CD1	2.48	0.42
3:G:1119:ARG:HB2	3:G:1188:ALA:HA	2.00	0.42
6:H:221:TYR:CE1	7:Q:220:LEU:HD21	2.54	0.42
11:X:-76:DA:H2"	11:X:-75:DG:C8	2.55	0.42
1:E:20:HIS:HB3	1:E:381:THR:HG21	2.01	0.42
6:H:142:LEU:HD23	6:H:142:LEU:HA	1.88	0.42
2:B:443:MET:HG3	2:B:450:PHE:CD2	2.55	0.42
1:E:194:GLU:HB2	1:E:197:SER:HB3	2.02	0.42
2:F:59:VAL:HG21	2:F:73:VAL:HG21	2.02	0.42
2:F:97:ASP:HB3	2:F:130:ARG:NH2	2.34	0.42
6:H:126:GLY:HA2	7:Q:122:PRO:HA	2.00	0.42
11:X:-48:DT:H1'	11:X:-47:DA:C8	2.55	0.42
11:X:2:DA:H2"	11:X:3:DG:C8	2.54	0.42
1:A:316:HIS:CE1	1:A:354:LEU:HB2	2.55	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:443:SER:O	1:E:447:LEU:HG	2.19	0.42
3:G:778:LEU:HD13	3:G:812:PHE:CD1	2.54	0.42
3:G:862:ARG:NH1	3:G:862:ARG:HB2	2.34	0.42
3:G:876:LEU:HD21	3:G:892:ARG:HD3	2.01	0.42
3:G:1140:ARG:HG3	3:G:1140:ARG:HH11	1.84	0.42
8:M:46:VAL:HG21	12:Y:9:DA:H3'	2.02	0.42
8:M:106:ASP:OD2	8:M:131:ARG:NH1	2.53	0.42
11:X:71:DA:H2"	11:X:72:DT:H5"	2.02	0.42
1:A:393:HIS:HB2	1:A:427:LYS:HE2	2.02	0.42
1:C:371:MET:SD	1:C:403:LEU:HB3	2.60	0.42
2:D:149:ARG:HG2	2:D:150:PRO:HD2	2.01	0.42
9:K:91:GLU:HG2	9:K:92:GLU:N	2.35	0.42
12:Y:48:DA:C8	12:Y:48:DA:H5'	2.54	0.42
1:E:76:LYS:NZ	13:E:501:ADP:O2B	2.35	0.42
2:F:334:ARG:NH1	2:F:338:THR:O	2.53	0.42
7:Q:205:TYR:HE1	7:Q:209:LEU:HD11	1.84	0.42
11:X:-75:DG:H2"	11:X:-74:DG:H8	1.85	0.42
12:Y:-14:DG:H2"	12:Y:-13:DG:C8	2.55	0.42
1:C:119:ALA:HB3	1:C:325:PRO:HG3	2.01	0.41
1:C:403:LEU:HD23	1:C:403:LEU:H	1.84	0.41
1:C:238:VAL:HG22	1:C:239:THR:N	2.35	0.41
1:C:366:TYR:OH	13:C:501:ADP:N7	2.48	0.41
2:F:211:ARG:HD2	2:F:211:ARG:HA	1.86	0.41
2:F:240:HIS:HD2	3:G:879:ARG:HH22	1.68	0.41
12:Y:-52:DC:H2"	12:Y:-51:DA:C8	2.55	0.41
2:D:258:LEU:HD21	3:G:976:HIS:HA	2.02	0.41
2:D:435:ASP:HB3	2:D:438:ARG:HD3	2.02	0.41
6:H:193:THR:OG1	6:H:211:ILE:HB	2.19	0.41
11:X:-83:DG:H2"	11:X:-82:DG:C8	2.56	0.41
1:A:18:HIS:NE2	2:B:317:GLU:OE1	2.52	0.41
1:A:216:GLU:HG3	1:A:218:GLU:H	1.84	0.41
1:A:357:ARG:O	2:F:404:GLN:NE2	2.47	0.41
2:F:246:GLU:HA	2:F:260:LEU:HD21	2.02	0.41
3:G:809:VAL:O	3:G:813:ARG:HG3	2.20	0.41
6:H:221:TYR:HE1	7:Q:220:LEU:HD21	1.85	0.41
4:J:39:ARG:HG3	4:J:39:ARG:HH11	1.85	0.41
1:A:355:LEU:HD12	1:A:355:LEU:HA	1.89	0.41
1:A:429:HIS:O	1:A:433:ILE:HG12	2.20	0.41
2:B:199:THR:HG23	3:G:1032:GLU:HG3	2.03	0.41
2:F:405:LEU:HD23	2:F:405:LEU:HA	1.91	0.41
4:N:31:LYS:O	4:N:35:ARG:HG3	2.21	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:H:42:VAL:HG23	6:H:63:ALA:HB2	2.01	0.41
6:H:515:ARG:HD3	6:H:516:PRO:HD2	2.03	0.41
1:A:301:VAL:HB	1:A:329:PHE:HD1	1.86	0.41
2:B:74:LEU:HA	2:B:326:MET:O	2.21	0.41
2:D:149:ARG:HG3	2:D:157:LYS:NZ	2.36	0.41
1:E:14:ARG:HE	2:F:69:ALA:HB2	1.86	0.41
1:E:24:LEU:N	1:E:86:GLU:OE2	2.46	0.41
2:F:201:LYS:HD3	3:G:897:SER:HB2	2.03	0.41
3:G:540:ILE:HD11	3:G:698:ILE:HD11	2.03	0.41
6:H:159:PRO:O	6:H:554:ARG:N	2.52	0.41
8:I:118:THR:HA	4:J:45:ARG:HB2	2.02	0.41
8:M:73:GLU:O	8:M:76:GLN:HG3	2.20	0.41
10:P:31:ARG:HD3	10:P:31:ARG:HA	1.88	0.41
1:A:136:THR:OG1	1:A:137:GLU:OE1	2.24	0.41
2:B:141:GLU:OE2	2:B:190:GLY:HA2	2.20	0.41
2:B:415:LYS:NZ	1:C:28:GLU:O	2.53	0.41
1:E:163:THR:HG23	1:E:228:VAL:HG22	2.01	0.41
2:F:226:GLN:H	2:F:226:GLN:HG2	1.74	0.41
6:H:134:LEU:HD23	6:H:163:TYR:HE1	1.86	0.41
6:H:259:GLU:HA	6:H:262:LYS:HG2	2.03	0.41
1:E:214:ASP:HB3	2:F:172:TYR:HD2	1.86	0.41
2:F:110:SER:OG	2:F:111:LEU:N	2.52	0.41
2:F:279:LYS:HE3	3:G:951:LEU:HD22	2.03	0.41
2:F:333:THR:HG22	2:F:334:ARG:N	2.35	0.41
4:N:31:LYS:HZ2	4:N:35:ARG:HD2	1.85	0.41
1:C:215:LEU:HD23	2:D:178:MET:HE2	2.02	0.41
1:C:409:LEU:HD22	1:C:433:ILE:HG22	2.03	0.41
2:D:20:GLU:O	2:D:20:GLU:HG2	2.21	0.41
2:D:21:ARG:HE	1:E:62:ALA:HB2	1.86	0.41
2:D:389:VAL:HG13	2:D:392:ARG:HH22	1.86	0.41
2:F:319:ASP:OD1	2:F:319:ASP:N	2.52	0.41
3:G:1093:LYS:HE2	3:G:1093:LYS:HB2	1.78	0.41
3:G:1128:ARG:HG3	3:G:1128:ARG:HH11	1.86	0.41
4:J:44:LYS:HD2	9:O:115:LEU:HB3	2.02	0.41
9:O:63:LEU:HD23	9:O:63:LEU:HA	1.94	0.41
11:X:-82:DG:C8	11:X:-81:DT:H72	2.56	0.41
11:X:-41:DG:C8	11:X:-41:DG:H5'	2.55	0.41
11:X:-20:DG:C8	11:X:-19:DT:H72	2.55	0.41
1:A:118:ARG:NH1	2:B:270:SER:OG	2.53	0.41
2:D:351:LEU:HD12	2:D:351:LEU:HA	1.92	0.41
1:E:76:LYS:H	1:E:76:LYS:HG2	1.70	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:101:VAL:HG23	1:E:102:TYR:CD1	2.56	0.41
1:E:106:ILE:HG13	1:E:270:GLU:HG2	2.01	0.41
2:F:333:THR:HG22	2:F:334:ARG:H	1.86	0.41
3:G:1232:GLU:HA	3:G:1235:LEU:HG	2.03	0.41
6:H:559:GLU:OE2	6:H:560:LYS:HG2	2.21	0.41
1:E:53:VAL:HG22	1:E:83:ILE:HG23	2.02	0.40
1:E:313:THR:O	1:E:316:HIS:HB2	2.21	0.40
3:G:1105:ALA:O	3:G:1108:VAL:HG22	2.20	0.40
4:J:45:ARG:HH12	11:X:7:DA:H4'	1.86	0.40
12:Y:-5:DC:H2"	12:Y:-4:DC:C6	2.55	0.40
1:A:139:THR:OG1	1:A:158:ILE:HB	2.22	0.40
2:B:119:LEU:HD23	2:B:119:LEU:HA	1.89	0.40
2:B:413:CYS:SG	2:B:421:VAL:HA	2.60	0.40
1:C:294:LEU:HG	1:C:296:PRO:HD3	2.03	0.40
1:C:395:GLY:O	1:C:399:THR:HG23	2.21	0.40
1:E:425:ILE:HG23	1:E:429:HIS:HB2	2.03	0.40
6:H:480:PRO:HB2	6:H:482:ASP:OD1	2.21	0.40
11:X:-59:DG:H2"	11:X:-58:DT:H71	2.03	0.40
12:Y:-45:DT:H2"	12:Y:-44:DG:C8	2.55	0.40
3:G:549:LYS:CB	13:G:1601:ADP:O1B	2.53	0.40
3:G:891:LEU:HD21	3:G:901:MET:HG3	2.03	0.40
3:G:1103:LEU:HD23	3:G:1103:LEU:HA	1.84	0.40
4:N:64:ASN:O	4:N:67:ARG:HB2	2.21	0.40
6:H:131:PRO:HB2	6:H:551:TRP:CZ3	2.56	0.40
11:X:-49:DC:H2'	11:X:-48:DT:C5	2.56	0.40
11:X:3:DG:H2"	11:X:4:DG:C8	2.57	0.40
11:X:29:DC:H2"	11:X:30:DG:C8	2.56	0.40
1:A:164:ALA:HB3	1:A:225:LYS:HD3	2.04	0.40
2:B:134:GLU:OE1	2:B:235:ARG:HD3	2.22	0.40
1:E:134:GLU:O	1:E:161:LEU:HA	2.21	0.40
1:E:396:GLU:OE1	1:E:400:LYS:NZ	2.54	0.40
2:F:75:ILE:HG22	2:F:83:LYS:HG2	2.03	0.40
6:H:8:PHE:HE1	6:H:276:MET:HB3	1.86	0.40
6:H:197:PRO:HG3	6:H:475:ILE:HD12	2.03	0.40
4:J:31:LYS:HG3	4:J:51:TYR:CE2	2.56	0.40
11:X:-59:DG:H2"	11:X:-58:DT:C7	2.52	0.40
11:X:36:DG:H2"	11:X:37:DA:N7	2.37	0.40
3:G:755:LEU:HD13	3:G:755:LEU:HA	1.85	0.40
4:N:74:GLU:OE2	4:N:74:GLU:HA	2.22	0.40
12:Y:6:DT:H2"	12:Y:7:DA:H5"	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	430/456~(94%)	411 (96%)	18 (4%)	1 (0%)	47 79
1	С	443/456~(97%)	432 (98%)	11 (2%)	0	100 100
1	Е	441/456~(97%)	424 (96%)	16 (4%)	1 (0%)	47 79
2	В	420/463~(91%)	404 (96%)	16 (4%)	0	100 100
2	D	437/463~(94%)	416 (95%)	21 (5%)	0	100 100
2	F	430/463~(93%)	413 (96%)	17 (4%)	0	100 100
3	G	674/1556~(43%)	613 (91%)	58 (9%)	3 (0%)	34 69
4	J	80/103~(78%)	79~(99%)	1 (1%)	0	100 100
4	Ν	77/103~(75%)	74 (96%)	3 (4%)	0	100 100
5	R	97/356~(27%)	91 (94%)	6 (6%)	0	100 100
6	Н	406/607~(67%)	363~(89%)	40 (10%)	3 (1%)	22 61
7	Q	105/192~(55%)	99 (94%)	6 (6%)	0	100 100
8	Ι	91/136~(67%)	87 (96%)	4 (4%)	0	100 100
8	М	97/136~(71%)	92~(95%)	4 (4%)	1 (1%)	15 54
9	K	104/130~(80%)	102 (98%)	2 (2%)	0	100 100
9	Ο	109/130 (84%)	109 (100%)	0	0	100 100
10	L	94/126~(75%)	93 (99%)	1 (1%)	0	100 100
10	Р	91/126 (72%)	85 (93%)	5 (6%)	1 (1%)	14 51
All	All	4626/6458~(72%)	4387 (95%)	229 (5%)	10 (0%)	50 79

All (10) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	256	ILE
1	Е	145	ASN
3	G	747	ILE
3	G	943	TYR

Continued from previous page...

		1	1 0
Mol	Chain	\mathbf{Res}	Type
6	Н	23	PRO
6	Н	127	CYS
3	G	684	ILE
6	Н	125	GLN
10	Р	36	SER
8	М	134	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	361/387~(93%)	361~(100%)	0	100 100
1	С	361/387~(93%)	361 (100%)	0	100 100
1	Ε	369/387~(95%)	369~(100%)	0	100 100
2	В	347/390~(89%)	347 (100%)	0	100 100
2	D	357/390~(92%)	357 (100%)	0	100 100
2	F	357/390~(92%)	356 (100%)	1 (0%)	92 96
3	G	423/1359 (31%)	420 (99%)	3 (1%)	84 94
4	J	65/79~(82%)	65 (100%)	0	100 100
4	Ν	63/79~(80%)	63 (100%)	0	100 100
5	R	80/288~(28%)	80 (100%)	0	100 100
6	Н	304/520~(58%)	303 (100%)	1 (0%)	92 96
7	Q	61/158~(39%)	61 (100%)	0	100 100
8	Ι	79/111 (71%)	78~(99%)	1 (1%)	69 87
8	М	85/111 (77%)	85 (100%)	0	100 100
9	К	84/100 (84%)	83~(99%)	1 (1%)	71 88
9	Ο	83/100 (83%)	83 (100%)	0	100 100
10	L	80/105~(76%)	80 (100%)	0	100 100
10	Р	79/105~(75%)	76 (96%)	3 (4%)	33 67
All	All	3638/5446 (67%)	3628 (100%)	10 (0%)	92 96

Mol	Chain	Res	Type
2	F	368	LYS
3	G	549	LYS
3	G	755	LEU
3	G	1212	ARG
6	Н	509	LYS
8	Ι	69	ARG
9	Κ	74	LYS
10	Р	33	ARG
10	Р	35	GLU
10	Р	36	SER

All (10) residues with a non-rotameric sidechain are listed below:

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 1 is monoatomic - leaving 9 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Dec	Timle	Bo	ond leng	ths	B	ond ang	les
NIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
13	ADP	В	501	-	24,29,29	0.96	1 (4%)	29,45,45	1.46	4 (13%)
13	ADP	С	501	-	24,29,29	0.96	1 (4%)	29,45,45	1.43	4 (13%)
13	ADP	Н	701	-	24,29,29	0.97	1 (4%)	29,45,45	1.49	4 (13%)
13	ADP	А	501	-	24,29,29	0.95	1 (4%)	29,45,45	1.44	4 (13%)
13	ADP	F	501	-	24,29,29	0.95	1 (4%)	29,45,45	1.46	4 (13%)
13	ADP	D	501	-	24,29,29	0.95	1 (4%)	29,45,45	1.46	4 (13%)
13	ADP	G	1601	14	24,29,29	0.93	1 (4%)	29,45,45	1.48	4 (13%)
13	ADP	Е	501	-	24,29,29	0.93	1 (4%)	29,45,45	1.44	4 (13%)
14	BEF	G	1602	13	$0,\!3,\!3$	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	ADP	В	501	-	-	4/12/32/32	0/3/3/3
13	ADP	С	501	-	-	5/12/32/32	0/3/3/3
13	ADP	Н	701	-	-	2/12/32/32	0/3/3/3
13	ADP	А	501	-	-	5/12/32/32	0/3/3/3
13	ADP	F	501	-	-	3/12/32/32	0/3/3/3
13	ADP	D	501	-	-	2/12/32/32	0/3/3/3
13	ADP	G	1601	14	-	1/12/32/32	0/3/3/3
13	ADP	Е	501	-	-	5/12/32/32	0/3/3/3

All (8) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
13	Н	701	ADP	C5-C4	2.48	1.47	1.40
13	В	501	ADP	C5-C4	2.48	1.47	1.40
13	С	501	ADP	C5-C4	2.47	1.47	1.40
13	F	501	ADP	C5-C4	2.47	1.47	1.40
13	А	501	ADP	C5-C4	2.44	1.47	1.40
13	D	501	ADP	C5-C4	2.44	1.47	1.40
13	Е	501	ADP	C5-C4	2.41	1.47	1.40
13	G	1601	ADP	C5-C4	2.32	1.47	1.40

All (32) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	D	501	ADP	PA-O3A-PB	-3.68	120.20	132.83
13	В	501	ADP	PA-O3A-PB	-3.67	120.25	132.83
13	Н	701	ADP	PA-O3A-PB	-3.65	120.31	132.83
13	G	1601	ADP	PA-O3A-PB	-3.61	120.45	132.83
13	F	501	ADP	PA-O3A-PB	-3.58	120.53	132.83
13	G	1601	ADP	N3-C2-N1	-3.46	123.27	128.68
13	А	501	ADP	PA-O3A-PB	-3.44	121.00	132.83
13	Е	501	ADP	PA-O3A-PB	-3.43	121.06	132.83
13	С	501	ADP	PA-O3A-PB	-3.42	121.08	132.83
13	Н	701	ADP	C3'-C2'-C1'	3.25	105.86	100.98
13	F	501	ADP	N3-C2-N1	-3.22	123.65	128.68
13	Н	701	ADP	N3-C2-N1	-3.21	123.66	128.68
13	С	501	ADP	N3-C2-N1	-3.19	123.69	128.68
13	А	501	ADP	N3-C2-N1	-3.19	123.70	128.68
13	Е	501	ADP	N3-C2-N1	-3.16	123.74	128.68
13	D	501	ADP	N3-C2-N1	-3.14	123.78	128.68
13	В	501	ADP	C3'-C2'-C1'	3.12	105.68	100.98
13	D	501	ADP	C3'-C2'-C1'	3.07	105.60	100.98
13	В	501	ADP	N3-C2-N1	-3.02	123.95	128.68
13	G	1601	ADP	C3'-C2'-C1'	2.99	105.48	100.98
13	А	501	ADP	C3'-C2'-C1'	2.88	105.31	100.98
13	С	501	ADP	C3'-C2'-C1'	2.86	105.29	100.98
13	Е	501	ADP	C3'-C2'-C1'	2.84	105.26	100.98
13	F	501	ADP	C3'-C2'-C1'	2.83	105.24	100.98
13	А	501	ADP	C4-C5-N7	-2.76	106.53	109.40
13	В	501	ADP	C4-C5-N7	-2.70	106.58	109.40
13	С	501	ADP	C4-C5-N7	-2.68	106.61	109.40
13	Е	501	ADP	C4-C5-N7	-2.68	106.61	109.40
13	F	501	ADP	C4-C5-N7	-2.68	106.61	109.40
13	D	501	ADP	C4-C5-N7	-2.67	106.62	109.40
13	Н	701	ADP	C4-C5-N7	-2.66	106.63	109.40
13	G	1601	ADP	C4-C5-N7	-2.12	107.19	109.40

There are no chirality outliers.

All (27) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
13	А	501	ADP	C5'-O5'-PA-O1A
13	В	501	ADP	C5'-O5'-PA-O3A
13	В	501	ADP	O4'-C4'-C5'-O5'
13	В	501	ADP	C3'-C4'-C5'-O5'
13	С	501	ADP	C5'-O5'-PA-O1A
13	С	501	ADP	C5'-O5'-PA-O2A

EMD-14737, 7Z	I4
---------------	----

Mol	Chain	Res	Type	Atoms
13	D	501	ADP	C5'-O5'-PA-O3A
13	Е	501	ADP	C5'-O5'-PA-O1A
13	F	501	ADP	C5'-O5'-PA-O1A
13	G	1601	ADP	C5'-O5'-PA-O1A
13	Н	701	ADP	C5'-O5'-PA-O2A
13	Н	701	ADP	C5'-O5'-PA-O3A
13	А	501	ADP	O4'-C4'-C5'-O5'
13	С	501	ADP	C5'-O5'-PA-O3A
13	А	501	ADP	C5'-O5'-PA-O2A
13	В	501	ADP	C5'-O5'-PA-O1A
13	D	501	ADP	C5'-O5'-PA-O1A
13	Е	501	ADP	C5'-O5'-PA-O2A
13	F	501	ADP	C5'-O5'-PA-O2A
13	С	501	ADP	PB-O3A-PA-O2A
13	Е	501	ADP	O4'-C4'-C5'-O5'
13	А	501	ADP	C3'-C4'-C5'-O5'
13	А	501	ADP	C5'-O5'-PA-O3A
13	Е	501	ADP	C5'-O5'-PA-O3A
13	F	501	ADP	C5'-O5'-PA-O3A
13	Е	501	ADP	C3'-C4'-C5'-O5'
13	С	501	ADP	C4'-C5'-O5'-PA

Continued from previous page...

There are no ring outliers.

7 monomers are involved in 18 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
13	В	501	ADP	3	0
13	С	501	ADP	1	0
13	А	501	ADP	3	0
13	F	501	ADP	1	0
13	G	1601	ADP	5	0
13	Е	501	ADP	3	0
14	G	1602	BEF	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the

average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-14737. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 184

Y Index: 184

Z Index: 184

6.2.2 Raw map

X Index: 184

Y Index: 184

Z Index: 184

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

Z Index: 128

6.3.2 Raw map

X Index: 183

Y Index: 170

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 4.5. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 515 nm^3 ; this corresponds to an approximate mass of 465 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	ation	criterion (FSC cut-off)
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.20	-	-
Author-provided FSC curve	3.19	3.70	3.25
Unmasked-calculated*	3.84	6.26	3.92

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.84 differs from the reported value 3.2 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-14737 and PDB model 7ZI4. Per-residue inclusion information can be found in section 3 on page 8.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 4.5 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (4.5).

9.4 Atom inclusion (i)

At the recommended contour level, 97% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (4.5) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9410	0.4620
А	0.9480	0.5010
В	0.9410	0.4930
С	0.9480	0.5000
D	0.9450	0.4890
Е	0.9520	0.4960
F	0.9400	0.4990
G	0.9450	0.4310
Н	0.9050	0.4200
Ι	0.9610	0.4990
J	0.9500	0.4950
K	0.9600	0.5020
L	0.9640	0.4860
М	0.9440	0.4840
N	0.9730	0.4990
0	0.9400	0.4840
Р	0.9610	0.4910
Q	0.9290	0.4410
R	0.8350	0.3790
Х	0.9420	0.3850
Y	0.9340	0.3860

