

Full wwPDB X-ray Structure Validation Report (i)

Jun 19, 2024 – 12:18 PM EDT

PDB ID	:	3ZX3
Title	:	Crystal Structure and Domain Rotation of NTPDase1 CD39
Authors	:	Zebisch, M.; Schaefer, P.; Straeter, N.
Deposited on	:	2011-08-04
Resolution	:	1.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#$ Entries)	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries,\ resolution\ range(Å)}) \end{array}$
R _{free}	130704	4298 (1.70-1.70)
Clashscore	141614	4695 (1.70-1.70)
Ramachandran outliers	138981	4610 (1.70-1.70)
Sidechain outliers	138945	4610 (1.70-1.70)
RSRZ outliers	127900	4222 (1.70-1.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	452	4% 73%	13%	•	12%
1	В	452	3% 73%	14%		12%
1	С	452	5%	13%	•	13%
1	D	452	3% 75%	12%		12%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard

residues in prot	ein, DNA,	RNA chain	s that are	outliers for	geometric or	electron-density-fit	crite-
ria:							

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	ACY	А	511	-	-	Х	-
3	ACY	В	512	-	-	Х	-

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 13625 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called ECTONUCLEOSIDE TRIPHOSPHATE DIPHOSPHOHY-DROLASE 1.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace	
1	Λ	300	Total	С	Ν	0	\mathbf{S}	0	10	0	
	Л	099	3201	2070	515	596	20	0	10	0	
1	В	400	Total	С	Ν	0	S	0	8	0	
	D		3209	2073	517	598	21	0	8	0	
1	С	393	Total	С	Ν	0	S	0	и	0	
	C		3137	2031	503	583	20	0	5	0	
1	1 D	207	Total	С	Ν	0	S	0	19	0	
		397	3196	2072	516	587	21	U	12	U	

There are 132 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Actual Comment	
A	15	MET	-	expression tag	UNP P97687
A	16	ALA	-	expression tag	UNP P97687
А	17	HIS	-	expression tag	UNP P97687
А	18	HIS	-	expression tag	UNP P97687
A	19	HIS	-	expression tag	UNP P97687
A	20	HIS	-	expression tag	UNP P97687
A	21	HIS	-	expression tag	UNP P97687
A	22	HIS	-	expression tag	UNP P97687
А	23	VAL	-	expression tag	UNP P97687
A	24	GLY	-	expression tag	UNP P97687
A	25	THR	-	expression tag	UNP P97687
А	26	GLY	-	expression tag	UNP P97687
A	27	SER	-	expression tag	UNP P97687
А	28	ASN	-	expression tag	UNP P97687
A	29	ASP	-	expression tag	UNP P97687
А	30	ASP	-	expression tag	UNP P97687
A	31	ASP	-	expression tag	UNP P97687
A	32	ASP	-	expression tag	UNP P97687
А	33	LYS	-	expression tag	UNP P97687
A	34	SER	-	expression tag	UNP P97687

Chain	Residue	Modelled	Actual	Comment	Reference
А	35	PRO	-	expression tag	UNP P97687
А	36	ASP	-	expression tag	UNP P97687
А	37	PRO	-	expression tag	UNP P97687
А	80	GLN	LEU	SEE REMARK 999	UNP P97687
А	190	LYS	-	linker	UNP P97687
А	191	THR	-	linker	UNP P97687
А	192	PRO	-	linker	UNP P97687
А	204	GLY	-	linker	UNP P97687
А	205	GLY	-	linker	UNP P97687
А	206	SER	-	linker	UNP P97687
А	220	ILE	VAL	SEE REMARK 999	UNP P97687
А	227	SER	GLN	SEE REMARK 999	UNP P97687
А	331	ILE	PHE	conflict	UNP P97687
В	15	MET	-	expression tag	UNP P97687
В	16	ALA	-	expression tag	UNP P97687
В	17	HIS	_	expression tag	UNP P97687
В	18	HIS	-	expression tag	UNP P97687
В	19	HIS	-	expression tag	UNP P97687
В	20	HIS	-	expression tag	UNP P97687
В	21	HIS	-	expression tag	UNP P97687
В	22	HIS	-	expression tag	UNP P97687
В	23	VAL	-	expression tag	UNP P97687
В	24	GLY	-	expression tag	UNP P97687
В	25	THR	-	expression tag	UNP P97687
В	26	GLY	-	expression tag	UNP P97687
В	27	SER	-	expression tag	UNP P97687
В	28	ASN	-	expression tag	UNP P97687
В	29	ASP	-	expression tag	UNP P97687
В	30	ASP	-	expression tag	UNP P97687
В	31	ASP	-	expression tag	UNP P97687
В	32	ASP	-	expression tag	UNP P97687
В	33	LYS	-	expression tag	UNP P97687
В	34	SER	-	expression tag	UNP P97687
В	35	PRO	-	expression tag	UNP P97687
В	36	ASP	-	expression tag	UNP P97687
В	37	PRO	-	expression tag	UNP P97687
В	80	GLN	LEU	SEE REMARK 999	UNP P97687
В	190	LYS	-	linker	UNP P97687
В	191	THR	-	linker	UNP P97687
В	192	PRO	-	linker	UNP P97687
В	204	GLY	-	linker	UNP P97687
В	205	GLY	-	linker	UNP P97687

Chain	Residue	Modelled	Actual	Comment	Reference
В	206	SER	-	linker	UNP P97687
В	220	ILE	VAL	SEE REMARK 999	UNP P97687
В	227	SER	GLN	SEE REMARK 999	UNP P97687
В	331	ILE	PHE	conflict	UNP P97687
С	15	MET	-	expression tag	UNP P97687
С	16	ALA	-	expression tag	UNP P97687
С	17	HIS	-	expression tag	UNP P97687
С	18	HIS	-	expression tag	UNP P97687
С	19	HIS	-	expression tag	UNP P97687
С	20	HIS	-	expression tag	UNP P97687
С	21	HIS	-	expression tag	UNP P97687
С	22	HIS	-	expression tag	UNP P97687
С	23	VAL	-	expression tag	UNP P97687
С	24	GLY	-	expression tag	UNP P97687
С	25	THR	-	expression tag	UNP P97687
С	26	GLY	-	expression tag	UNP P97687
С	27	SER	-	expression tag	UNP P97687
С	28	ASN	-	expression tag	UNP P97687
С	29	ASP	-	expression tag	UNP P97687
С	30	ASP	-	expression tag	UNP P97687
С	31	ASP	-	expression tag	UNP P97687
С	32	ASP	-	expression tag	UNP P97687
С	33	LYS	-	expression tag	UNP P97687
С	34	SER	-	expression tag	UNP P97687
С	35	PRO	-	expression tag	UNP P97687
С	36	ASP	-	expression tag	UNP P97687
C	37	PRO	-	expression tag	UNP P97687
C	80	GLN	LEU	SEE REMARK 999	UNP P97687
C	190	LYS	-	linker	UNP P97687
C	191	THR	-	linker	UNP P97687
C	192	PRO	-	linker	UNP P97687
C	204	GLY	-	linker	UNP P97687
C	205	GLY	-	linker	UNP P97687
C	206	SER	-	linker	UNP P97687
C	220	ILE	VAL	SEE REMARK 999	UNP P97687
C	227	SER	GLN	SEE REMARK 999	UNP P97687
С	331	ILE	PHE	conflict	UNP P97687
D	15	MET	-	expression tag	UNP P97687
D	16	ALA	-	expression tag	UNP P97687
D	17	HIS	-	expression tag	UNP P97687
D	18	HIS	-	expression tag	UNP P97687
D	19	HIS	-	expression tag	UNP P97687

Chain	Residue	Modelled	Actual Comment		Reference
D	20	HIS	-	expression tag	UNP P97687
D	21	HIS	- expression tag		UNP P97687
D	22	HIS	-	expression tag	UNP P97687
D	23	VAL	-	expression tag	UNP P97687
D	24	GLY	-	expression tag	UNP P97687
D	25	THR	-	expression tag	UNP P97687
D	26	GLY	-	expression tag	UNP P97687
D	27	SER	-	expression tag	UNP P97687
D	28	ASN	-	expression tag	UNP P97687
D	29	ASP	-	expression tag	UNP P97687
D	30	ASP	-	expression tag	UNP P97687
D	31	ASP	-	expression tag	UNP P97687
D	32	ASP	-	expression tag	UNP P97687
D	33	LYS	-	expression tag	UNP P97687
D	34	SER	-	expression tag	UNP P97687
D	35	PRO	-	expression tag	UNP P97687
D	36	ASP	-	expression tag	UNP P97687
D	37	PRO	-	expression tag	UNP P97687
D	80	GLN	LEU	SEE REMARK 999	UNP P97687
D	190	LYS	-	linker	UNP P97687
D	191	THR	-	linker	UNP P97687
D	192	PRO	-	linker	UNP P97687
D	204	GLY	-	linker	UNP P97687
D	205	GLY	-	linker	UNP P97687
D	206	SER	-	- linker	
D	220	ILE	VAL	SEE REMARK 999	UNP P97687
D	227	SER	GLN	SEE REMARK 999	UNP P97687
D	331	ILE	PHE	conflict	UNP P97687

• Molecule 2 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	6	Total Cl 6 6	0	0
2	В	6	Total Cl 6 6	0	0
2	С	6	Total Cl 6 6	0	0
2	D	9	Total Cl 9 9	0	0

• Molecule 3 is ACETIC ACID (three-letter code: ACY) (formula: $C_2H_4O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

• Molecule 4 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	Total Na 1 1	0	0
4	С	2	Total Na 2 2	0	0
4	D	2	Total Na 2 2	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	207	Total O 210 210	0	3
5	В	159	Total O 161 161	0	2
5	С	205	Total O 206 206	0	1
5	D	245	Total O 245 245	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ECTONUCLEOSIDE TRIPHOSPHATE DIPHOSPHOHYDROLASE 1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	163.13Å 81.14Å 165.47Å	Deperitor
a, b, c, α , β , γ	90.00° 117.61° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	146.62 - 1.70	Depositor
Resolution (A)	41.43 - 1.70	EDS
% Data completeness	72.6 (146.62-1.70)	Depositor
(in resolution range)	72.6 (41.43-1.70)	EDS
R_{merge}	0.06	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.30 (at 1.70Å)	Xtriage
Refinement program	REFMAC 5.6.0117	Depositor
P. P.	0.176 , 0.233	Depositor
Π, Π_{free}	0.170 , 0.226	DCC
R_{free} test set	1139 reflections (0.75%)	wwPDB-VP
Wilson B-factor $(Å^2)$	33.1	Xtriage
Anisotropy	0.226	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.36 , 56.9	EDS
L-test for $twinning^2$	$< L >=0.49, < L^2>=0.33$	Xtriage
Estimated twinning fraction	0.009 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	13625	wwPDB-VP
Average B, all atoms $(Å^2)$	45.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.50% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CL, NA, ACY

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.03	0/3316	1.01	8/4482~(0.2%)	
1	В	0.99	2/3314~(0.1%)	1.00	2/4479~(0.0%)	
1	С	1.01	3/3235~(0.1%)	1.01	4/4374~(0.1%)	
1	D	1.05	1/3316~(0.0%)	1.04	9/4482~(0.2%)	
All	All	1.02	6/13181~(0.0%)	1.02	23/17817~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	D	0	1

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	С	235	SER	CB-OG	-6.92	1.33	1.42
1	В	262	TRP	CD2-CE2	6.84	1.49	1.41
1	С	179	TRP	CD2-CE2	5.85	1.48	1.41
1	В	140	GLU	CG-CD	5.78	1.60	1.51
1	D	99	ASP	CB-CG	5.65	1.63	1.51
1	С	392	SER	CB-OG	-5.32	1.35	1.42

All (23) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	D	135	ARG	NE-CZ-NH2	-9.62	115.49	120.30
1	С	320	ASP	CB-CG-OD1	8.18	125.66	118.30
1	D	99	ASP	CB-CG-OD1	7.47	125.03	118.30

Mol	Chain	\mathbf{Res}	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
1	D	406	LYS	CD-CE-NZ	-7.13	95.31	111.70
1	D	462	MET	CB-CG-SD	6.89	133.08	112.40
1	А	154	ARG	NE-CZ-NH2	-6.53	117.03	120.30
1	А	258	ASP	CB-CG-OD1	6.38	124.04	118.30
1	D	225	LEU	CB-CG-CD2	-6.14	100.56	111.00
1	D	352	LEU	CB-CG-CD1	-6.08	100.66	111.00
1	D	54	ASP	CB-CG-OD1	5.89	123.60	118.30
1	А	154	ARG	NE-CZ-NH1	5.84	123.22	120.30
1	А	135	ARG	NE-CZ-NH2	-5.84	117.38	120.30
1	А	441	MET	CG-SD-CE	5.82	109.51	100.20
1	D	456	MET	CG-SD-CE	5.72	109.35	100.20
1	А	162	ASP	CB-CG-OD2	-5.68	113.19	118.30
1	С	258	ASP	CB-CG-OD2	5.64	123.37	118.30
1	D	320	ASP	CB-CG-OD1	5.63	123.37	118.30
1	В	76	GLY	N-CA-C	5.61	127.12	113.10
1	С	225	LEU	CA-CB-CG	5.26	127.40	115.30
1	А	303	ARG	NE-CZ-NH1	-5.24	117.68	120.30
1	А	364	PHE	CB-CA-C	5.20	120.80	110.40
1	В	140	GLU	OE1-CD-OE2	-5.14	117.13	123.30
1	С	370	LYS	CD-CE-NZ	-5.07	100.05	111.70

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	D	274	GLY	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3201	0	3110	53	0
1	В	3209	0	3131	49	0
1	С	3137	0	3060	40	0
1	D	3196	0	3145	36	0
2	А	6	0	0	0	0
2	В	6	0	0	1	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	С	6	0	0	0	0
2	D	9	0	0	3	0
3	А	4	0	3	5	0
3	В	8	0	6	2	0
3	С	8	0	6	0	0
3	D	8	0	6	0	0
4	В	1	0	0	0	0
4	С	2	0	0	0	0
4	D	2	0	0	0	0
5	А	210	0	0	3	0
5	В	161	0	0	4	0
5	C	206	0	0	4	0
5	D	245	0	0	4	0
All	All	13625	0	12467	170	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (170) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:A:366:MET:CE	3:A:511:ACY:H1	1.63	1.28
1:D:52:VAL:HG23	1:D:456:MET:HE3	1.36	1.06
1:D:52:VAL:HG23	1:D:456:MET:CE	1.88	1.03
1:A:366:MET:HE2	3:A:511:ACY:H1	1.06	1.03
1:A:229:LEU:CB	1:B:139:MET:CE	2.37	1.01
1:B:66:LYS:HD2	1:B:81:LEU:HD13	1.51	0.92
1:C:262[B]:TRP:HE3	1:C:295:LEU:HD12	1.35	0.91
1:A:366:MET:HE2	3:A:511:ACY:CH3	1.99	0.89
1:A:229:LEU:CB	1:B:139:MET:HE1	2.05	0.87
1:A:229:LEU:CB	1:B:139:MET:HE3	2.05	0.85
1:B:50:GLY:HA3	1:B:456[A]:MET:CE	2.09	0.83
1:B:50:GLY:HA3	1:B:456[A]:MET:HE1	1.62	0.82
1:D:52:VAL:CG2	1:D:456:MET:CE	2.58	0.81
1:A:366:MET:HE1	3:A:511:ACY:H1	1.61	0.81
1:A:228:THR:HG21	1:B:302:LYS:HZ3	1.45	0.79
1:C:239:ARG:HG2	1:C:465:ALA:HB1	1.66	0.77
1:A:228:THR:HG21	1:B:302:LYS:NZ	1.98	0.77
1:A:456:MET:O	1:A:460:THR:HG23	1.85	0.77
1:C:185:LEU:O	1:C:445:LYS:HE3	1.87	0.74
1:A:271:VAL:HG13	1:A:309:PRO:HD3	1.68	0.73

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:238:PHE:HE1	1:A:240:LEU:HD11	1.54	0.72
1:A:437[A]:GLN:OE1	5:A:2170:HOH:O	2.07	0.72
1:D:373:ALA:O	1:D:374:ASN:HB2	1.90	0.72
1:C:407:GLU:O	1:C:411[A]:SER:HB2	1.90	0.71
1:B:138[B]:ARG:HH11	1:B:138[B]:ARG:HG2	1.54	0.71
1:A:226:ASN:C	1:A:226:ASN:HD22	1.94	0.71
1:C:325[B]:HIS:HD2	5:C:2128:HOH:O	1.73	0.71
1:D:87:LYS:HE2	5:D:2070:HOH:O	1.90	0.70
1:A:262[B]:TRP:HE3	1:A:295:LEU:HD12	1.56	0.70
1:C:136:LEU:O	1:C:140:GLU:HG3	1.92	0.69
1:B:241:TYR:CE1	1:B:464:PRO:HD2	2.28	0.68
1:D:52:VAL:CG2	1:D:456:MET:HE2	2.25	0.67
1:D:373:ALA:HB2	1:D:386:ILE:HD13	1.76	0.66
1:B:240:LEU:HD22	1:B:463:ILE:HG21	1.78	0.66
1:A:262[B]:TRP:HE3	1:A:295:LEU:CD1	2.09	0.66
1:A:237:GLN:HA	1:A:245:TYR:O	1.95	0.65
1:C:455:TYR:CZ	1:C:459:LEU:HD11	2.32	0.64
1:A:455:TYR:C	1:A:455:TYR:CD1	2.70	0.63
1:B:224:PRO:HG3	1:B:229:LEU:HD21	1.80	0.63
1:A:238:PHE:CE1	1:A:240:LEU:HD11	2.34	0.62
1:C:253:LEU:O	1:C:254:CYS:HB2	2.00	0.62
1:D:373:ALA:HB2	1:D:386:ILE:CD1	2.31	0.61
1:B:50:GLY:HA3	1:B:456[B]:MET:HE1	1.84	0.60
1:D:262[B]:TRP:HE3	1:D:295:LEU:HD12	1.67	0.60
1:A:262[B]:TRP:CE3	1:A:295:LEU:HD12	2.36	0.59
1:B:434:SER:O	1:B:437:GLN:HG2	2.02	0.59
1:A:366:MET:CE	3:A:511:ACY:CH3	2.58	0.58
1:B:225:LEU:HD12	5:B:2074:HOH:O	2.03	0.58
1:D:367:ASP:O	1:D:371[B]:LYS:HG2	2.03	0.58
1:C:262[B]:TRP:CE3	1:C:295:LEU:HA	2.38	0.58
1:C:242:GLY:H	1:C:465:ALA:HA	1.66	0.58
1:C:460:THR:OG1	1:C:462:MET:HG3	2.05	0.57
1:C:49:TYR:CZ	1:C:117:PRO:HD2	2.39	0.56
1:D:66:LYS:HE3	1:D:81:LEU:HD13	1.86	0.56
1:B:407:GLU:HG3	2:B:504:CL:CL	2.42	0.56
1:D:81:LEU:HD11	1:D:115[A]:ARG:NH2	2.21	0.56
1:D:437[A]:GLN:OE1	5:D:2216:HOH:O	2.18	0.56
1:B:50:GLY:HA3	1:B:456[A]:MET:HE2	1.86	0.56
1:B:125:PRO:HA	1:B:162:ASP:HB3	1.87	0.55
5:C:2144:HOH:O	1:D:333:ASN:HB3	2.05	0.55
1:D:97:LYS:HD2	1:D:100:GLU:OE1	2.06	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:242:GLY:N	1:B:465:ALA:O	2.34	0.55
1:B:224:PRO:CG	1:B:229:LEU:HD21	2.37	0.54
1:D:87:LYS:CE	5:D:2070:HOH:O	2.53	0.54
1:B:138[B]:ARG:HH11	1:B:138[B]:ARG:CG	2.19	0.53
1:D:437[A]:GLN:CD	5:D:2216:HOH:O	2.46	0.53
1:C:262[B]:TRP:CE3	1:C:295:LEU:HD12	2.27	0.53
1:A:67:TRP:HB3	1:A:78:VAL:HA	1.90	0.53
1:A:226:ASN:HD22	1:A:227:SER:N	2.06	0.53
1:B:157:LYS:HG3	1:B:163:PHE:CG	2.45	0.52
1:A:366:MET:HG3	1:A:370:LYS:HE2	1.92	0.52
1:A:445:LYS:O	1:A:446:ASP:HB2	2.08	0.52
1:B:275:GLY:O	1:B:276:ILE:HD13	2.10	0.52
1:B:128:LEU:HD13	1:B:152:VAL:HG11	1.93	0.51
1:D:321:TYR:HB3	1:D:388:LYS:HG3	1.93	0.51
1:B:232:PRO:HA	1:B:235:SER:HB3	1.93	0.51
1:B:373:ALA:HB2	1:B:386:ILE:CD1	2.41	0.51
1:D:365:VAL:HG11	1:D:420[A]:ILE:HD12	1.93	0.51
1:A:226:ASN:C	1:A:226:ASN:ND2	2.62	0.51
1:A:253:LEU:O	1:A:254:CYS:HB2	2.11	0.51
1:A:284:PRO:HD3	1:A:319:GLY:HA3	1.93	0.50
1:B:461:ASN:HA	5:B:2159:HOH:O	2.10	0.50
1:B:269:ILE:O	1:B:306:LYS:HE2	2.11	0.50
1:C:139:MET:O	1:D:227:SER:HA	2.11	0.50
1:D:434:SER:HA	1:D:437[A]:GLN:OE1	2.11	0.50
1:D:262[B]:TRP:HE3	1:D:295:LEU:CD1	2.24	0.50
1:C:321:TYR:HB2	1:C:388:LYS:HA	1.94	0.50
1:C:48:LYS:N	1:C:67:TRP:O	2.40	0.49
1:D:373:ALA:O	1:D:374:ASN:CB	2.61	0.49
1:A:230:GLU:OE2	1:A:340:SER:OG	2.28	0.48
1:B:253:LEU:O	1:B:254:CYS:HB2	2.13	0.48
1:A:228:THR:CG2	1:B:302:LYS:NZ	2.73	0.48
1:A:52:VAL:HG23	1:A:456:MET:CE	2.43	0.48
1:C:126:VAL:HG23	1:C:161:PHE:HB3	1.94	0.48
1:B:287[A]:LYS:HG3	5:B:2096:HOH:O	2.13	0.48
1:D:368:PHE:CE2	1:D:372:MET:HE3	2.49	0.47
1:A:89:PRO:HB2	1:A:93:LYS:HG3	1.96	0.47
1:C:262[B]:TRP:CZ3	1:C:295:LEU:HA	2.49	0.47
1:C:325[B]:HIS:HE1	5:C:2134:HOH:O	1.98	0.47
1:D:123:GLN:NE2	1:D:123:GLN:HA	2.29	0.47
1:D:262[B]:TRP:CE3	1:D:295:LEU:HA	2.50	0.47
1:D:241:TYR:CD1	1:D:241:TYR:N	2.83	0.47

A + a 1	At any 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:71:LYS:NZ	5:A:2027[A]:HOH:O	2.48	0.47
1:A:91:ILE:HG21	1:A:91:ILE:HD13	1.59	0.47
1:A:321:TYR:HB2	1:A:388:LYS:HA	1.98	0.46
1:A:239:ARG:HA	1:A:243:THR:O	2.15	0.46
1:C:455:TYR:CE1	1:C:459:LEU:HD11	2.51	0.46
1:C:49:TYR:OH	1:C:117:PRO:CD	2.64	0.46
1:B:321:TYR:HB3	1:B:388:LYS:HG3	1.97	0.46
1:C:49:TYR:CE2	1:C:117:PRO:HD2	2.51	0.45
1:C:283:TYR:HB3	1:C:393:LYS:O	2.17	0.45
1:A:121:GLN:HG2	1:A:161:PHE:CE1	2.52	0.45
1:C:123:GLN:H	1:C:123:GLN:HG3	1.57	0.45
1:B:76:GLY:HA2	1:B:184:TYR:CE1	2.52	0.45
1:A:336:HIS:O	1:A:346:GLY:HA2	2.17	0.45
1:C:47:VAL:HA	1:C:68:PRO:HA	1.99	0.45
1:B:321:TYR:HB2	1:B:388:LYS:HA	1.99	0.45
1:A:243:THR:HG22	1:A:244:ASP:O	2.16	0.45
1:C:117:PRO:O	1:C:120:LYS:HB2	2.17	0.44
1:A:154:ARG:NH2	5:A:2044:HOH:O	2.50	0.44
1:D:221:THR:HG23	1:D:249:THR:HB	1.99	0.44
1:D:283:TYR:HB3	1:D:393:LYS:O	2.18	0.44
1:A:441:MET:SD	1:A:444:ILE:HD11	2.58	0.44
1:B:240:LEU:HD22	1:B:463:ILE:CG2	2.47	0.44
1:B:341:GLN:HG2	1:B:349:LEU:O	2.17	0.44
1:D:325:HIS:HD2	1:D:422:SER:OG	1.99	0.44
1:B:332:PHE:CD1	3:B:512:ACY:H3	2.53	0.44
1:D:374:ASN:O	1:D:375:ASP:HB3	2.18	0.44
1:B:54:ASP:HB2	1:B:452:THR:HG21	2.00	0.44
1:A:228:THR:CG2	1:B:302:LYS:HZ2	2.31	0.43
1:C:239:ARG:HG2	1:C:465:ALA:CB	2.43	0.43
1:D:444:ILE:O	1:D:445:LYS:HB2	2.19	0.43
1:A:187:GLY:O	1:A:190:LYS:HE2	2.18	0.43
1:A:132:ALA:HB3	1:A:216:ALA:HB3	2.00	0.43
1:B:157:LYS:HG3	1:B:163:PHE:CD2	2.53	0.43
1:A:237:GLN:CG	1:A:246:THR:OG1	2.67	0.43
1:B:47:VAL:O	1:B:120:LYS:NZ	2.45	0.43
1:B:389:ASN:ND2	5:B:2137[B]:HOH:O	2.50	0.43
1:C:102:ALA:HB3	5:C:2029:HOH:O	2.18	0.43
1:C:153:SER:O	1:C:157:LYS:HG3	2.19	0.43
1:A:52:VAL:HG23	1:A:456:MET:HE3	2.01	0.43
1:B:177:TYR:CE2	1:B:455:TYR:HD1	2.35	0.43
1:B:257:LYS:HE2	1:B:364[B]:PHE:CZ	2.55	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-1 Atom-2		overlap (Å)
1:A:52:VAL:CG2	1:A:456:MET:HE2	2.49	0.42
1:C:110:LYS:O	1:C:114:GLU:HG2	2.20	0.42
1:C:368:PHE:CE2	1:C:372:MET:CE	3.03	0.42
1:C:371:LYS:HD2	1:C:371:LYS:HA	1.58	0.42
1:C:361:ALA:HA	1:C:364:PHE:CD2	2.54	0.42
1:C:49:TYR:OH	1:C:117:PRO:HD2	2.19	0.42
1:A:302:LYS:HB3	1:A:302:LYS:HE2	1.63	0.42
1:B:167:LYS:HE2	1:B:169:ILE:HG22	2.02	0.42
1:D:287:LYS:HA	1:D:315:VAL:O	2.19	0.42
1:A:264[A]:LYS:HD2	1:A:327[A]:SER:OG	2.20	0.42
1:C:128:LEU:HD13	1:C:152:VAL:HG11	2.02	0.42
1:D:57:SER:HA	2:D:503:CL:CL	2.57	0.42
1:A:307:LYS:HG2	1:A:308:LEU:N	2.35	0.41
1:D:402:TYR:HA	2:D:505:CL:CL	2.57	0.41
1:A:237:GLN:HG2	1:A:246:THR:OG1	2.21	0.41
1:C:154:ARG:HE	1:C:154:ARG:HB2	1.39	0.41
1:A:437[B]:GLN:HA	1:A:437[B]:GLN:NE2	2.35	0.41
1:B:332:PHE:CE1	3:B:512:ACY:H3	2.55	0.41
1:C:271:VAL:HG13	1:C:309:PRO:HD3	2.02	0.41
1:C:77:VAL:HG23	1:C:78:VAL:N	2.36	0.41
1:D:396:GLU:HG2	2:D:508:CL:CL	2.57	0.41
1:C:308:LEU:HA	1:C:309:PRO:HD3	1.85	0.40
1:A:143:GLN:NE2	1:A:147:GLU:OE2	2.54	0.40
1:B:248:TYR:CE2	1:B:350:PRO:HD3	2.56	0.40
1:B:48:LYS:HB3	1:B:48:LYS:HE3	1.57	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	403/452~(89%)	389~(96%)	14 (4%)	0	100 100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles	$\overline{\mathbf{s}}$
1	В	402/452~(89%)	384 (96%)	15 (4%)	3 (1%)	22	8	
1	С	390/452~(86%)	375~(96%)	15 (4%)	0	100	100	
1	D	403/452~(89%)	382~(95%)	20~(5%)	1 (0%)	47	30	
All	All	1598/1808~(88%)	1530 (96%)	64 (4%)	4 (0%)	41	24	

Continued from previous page...

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	119	SER
1	В	319	GLY
1	В	461	ASN
1	D	343	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	345/389~(89%)	329~(95%)	16~(5%)	27 10
1	В	349/389~(90%)	336~(96%)	13~(4%)	34 15
1	С	340/389~(87%)	326~(96%)	14 (4%)	30 12
1	D	348/389~(90%)	337~(97%)	11 (3%)	39 20
All	All	1382/1556~(89%)	1328 (96%)	54 (4%)	32 13

All (54) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	48	LYS
1	А	74	ASP
1	А	143	GLN
1	А	190	LYS
1	А	226	ASN
1	А	227	SER
1	А	240	LEU

1 A $264[A]$ LYS 1 A $264[B]$ LYS 1 A 272 SER 1 A 293 SER 1 A 293 SER 1 A 293 SER 1 A 364 PHE 1 A 364 PHE 1 A 446 ASP 1 A 462 MET 1 B 48 LYS 1 B 48 LYS 1 B 10 LYS 1 B 98 THR 1 B 110 LYS 1 B 110 LYS 1 B 110 LYS 1 B 110 LYS 1 B 167 LYS 1 B 306 LYS 1 B 353 GLN 1 B 353 GLN<	Mol	Chain	Res	Type
1 A 264[B] LYS 1 A 272 SER 1 A 293 SER 1 A 293 SER 1 A 293 SER 1 A 364 PHE 1 A 364 PAR 1 A 446 ASP 1 A 458 ASN 1 A 462 MET 1 B 48 LYS 1 B 68 PRO 1 B 10 LYS 1 B 110 LYS 1 B 110 LYS 1 B 139 MET 1 B 139 MET 1 B 306 LYS 1 B 353 GLN 1 B 353 GLN 1 C 123 </th <th>1</th> <th>А</th> <th>264[A]</th> <th>LYS</th>	1	А	264[A]	LYS
1 A 272 SER 1 A 293 SER 1 A 364 PHE 1 A 364 PHE 1 A 364 PHE 1 A 446 ASP 1 A 446 ASP 1 A 462 MET 1 B 48 LYS 1 B 68 PRO 1 B 98 THR 1 B 110 LYS 1 B 110 LYS 1 B 110 LYS 1 B 139 MET 1 B 167 LYS 1 B 306 LYS 1 B 306 LYS 1 B 353 GLN 1 B 353 GLN 1 C 123	1	А	264[B]	LYS
1 A 293 SER 1 A 364 PHE 1 A 388 LYS 1 A 446 ASP 1 A 458 ASN 1 A 462 MET 1 B 48 LYS 1 B 68 PRO 1 B 10 LYS 1 B 110 LYS 1 B 110 LYS 1 B 110 LYS 1 B 110 LYS 1 B 139 MET 1 B 139 MET 1 B 306 LYS 1 B 306 LYS 1 B 306 LYS 1 C 77 VAL 1 C 123 GLN 1 C 123	1	А	272	SER
1 A 364 PHE 1 A 388 LYS 1 A 446 ASP 1 A 458 ASN 1 A 458 ASN 1 A 462 MET 1 B 48 LYS 1 B 68 PRO 1 B 10 LYS 1 B 110 LYS 1 B 110 LYS 1 B 110 LYS 1 B 139 MET 1 B 167 LYS 1 B 188 ARG 1 B 306 LYS 1 B 306 LYS 1 C 77 VAL 1 C 123 GLN 1 C 123 GLN 1 C 167	1	A	293	SER
1 A 388 LYS 1 A 446 ASP 1 A 458 ASN 1 A 462 MET 1 B 48 LYS 1 B 68 PRO 1 B 98 THR 1 B 110 LYS 1 B 110 LYS 1 B 110 LYS 1 B 119 SER 1 B 139 MET 1 B 139 MET 1 B 139 MET 1 B 167 LYS 1 B 306 LYS 1 B 353 GLN 1 B 353 GLN 1 C 77 VAL 1 C 123 GLN 1 C 142 LYS 1 C 158 SER 1 <td< th=""><th>1</th><th>A</th><th>364</th><th>PHE</th></td<>	1	A	364	PHE
1 A 446 ASP 1 A 458 ASN 1 A 462 MET 1 B 48 LYS 1 B 68 PRO 1 B 98 THR 1 B 110 LYS 1 B 110 LYS 1 B 115 ARG 1 B 119 SER 1 B 139 MET 1 B 167 LYS 1 B 167 LYS 1 B 306 LYS 1 B 306 LYS 1 B 306 LYS 1 C 77 VAL 1 C 123 GLN 1 C 123 GLN 1 C 158 SER 1 C 167 LYS 1 C 167 LYS 1 <td< th=""><th>1</th><th>А</th><th>388</th><th>LYS</th></td<>	1	А	388	LYS
1 A 458 ASN 1 A 462 MET 1 B 48 LYS 1 B 68 PRO 1 B 98 THR 1 B 110 LYS 1 B 110 LYS 1 B 110 LYS 1 B 119 SER 1 B 139 MET 1 B 139 MET 1 B 139 MET 1 B 139 MET 1 B 306 LYS 1 B 306 LYS 1 B 353 GLN 1 C 77 VAL 1 C 123 GLN 1 C 142 LYS 1 C 158 SER 1 C 167 LYS 1 C 364 PHE 1 <td< th=""><th>1</th><th>А</th><th>446</th><th>ASP</th></td<>	1	А	446	ASP
1 A 462 MET 1 B 48 LYS 1 B 68 PRO 1 B 98 THR 1 B 110 LYS 1 B 110 LYS 1 B 115 ARG 1 B 119 SER 1 B 139 MET 1 B 167 LYS 1 B 167 LYS 1 B 306 LYS 1 B 306 LYS 1 B 306 LYS 1 B 306 LYS 1 C 77 VAL 1 C 123 GLN 1 C 142 LYS 1 C 158 SER 1 C 167 LYS 1 C 364 PHE 1 C 364 PHE 1 <td< th=""><th>1</th><th>А</th><th>458</th><th>ASN</th></td<>	1	А	458	ASN
1 B 48 LYS 1 B 68 PRO 1 B 98 THR 1 B 110 LYS 1 B 115 ARG 1 B 119 SER 1 B 139 MET 1 B 167 LYS 1 B 167 LYS 1 B 306 LYS 1 B 306 LYS 1 B 306 LYS 1 B 306 LYS 1 B 353 GLN 1 C 77 VAL 1 C 123 GLN 1 C 142 LYS 1 C 158 SER 1 C 167 LYS 1 C 206 SER 1 C 364 PHE 1 C 364 PHE 1 <td< th=""><th>1</th><th>А</th><th>462</th><th>MET</th></td<>	1	А	462	MET
1 B 68 PRO 1 B 98 THR 1 B 110 LYS 1 B 110 LYS 1 B 119 SER 1 B 139 MET 1 B 306 LYS 1 B 306 LYS 1 B 353 GLN 1 B 446 ASP 1 C 77 VAL 1 C 123 GLN 1 C 142 LYS 1 C 142 LYS 1 C 167 LYS 1 C 238 PHE 1 C 364 PHE 1 C 364 PHE	1	В	48	LYS
1 B 98 THR 1 B 110 LYS 1 B 115 ARG 1 B 119 SER 1 B 139 MET 1 B 139 MET 1 B 139 MET 1 B 167 LYS 1 B 306 LYS 1 B 306 LYS 1 B 353 GLN 1 B 446 ASP 1 C 77 VAL 1 C 123 GLN 1 C 142 LYS 1 C 142 LYS 1 C 158 SER 1 C 158 SER 1 C 167 LYS 1 C 206 SER 1 C 364 PHE 1 C 371 LYS 1 <	1	В	68	PRO
1 B 110 LYS 1 B 115 ARG 1 B 119 SER 1 B 139 MET 1 B 167 LYS 1 B 167 LYS 1 B 206 SER 1 B 206 SER 1 B 306 LYS 1 B 353 GLN 1 B 353 GLN 1 C 77 VAL 1 C 93 LYS 1 C 123 GLN 1 C 142 LYS 1 C 158 SER 1 C 167 LYS 1 C 167 LYS 1 C 364 PHE 1 C 364 PHE 1 C 364 PHE 1 C 463 ILE 1 <t< th=""><th>1</th><th>В</th><th>98</th><th>THR</th></t<>	1	В	98	THR
1 B 115 ARG 1 B 119 SER 1 B 139 MET 1 B 167 LYS 1 B 167 LYS 1 B 206 SER 1 B 306 LYS 1 B 306 LYS 1 B 353 GLN 1 B 446 ASP 1 C 77 VAL 1 C 93 LYS 1 C 123 GLN 1 C 142 LYS 1 C 158 SER 1 C 167 LYS 1 C 167 LYS 1 C 364 PHE 1 C 364 PHE 1 C 371 LYS 1 C 411[A] SER 1 C 463 ILE 1	1	В	110	LYS
1 B 119 SER 1 B 139 MET 1 B 167 LYS 1 B 188 ARG 1 B 206 SER 1 B 306 LYS 1 B 306 LYS 1 B 353 GLN 1 B 446 ASP 1 C 77 VAL 1 C 93 LYS 1 C 123 GLN 1 C 142 LYS 1 C 142 LYS 1 C 167 LYS 1 C 206 SER 1 C 364 PHE 1 C 371 LYS 1 C 411[A] SER 1 C 463 ILE 1 D 104<	1	В	115	ARG
1 B 139 MET 1 B 167 LYS 1 B 188 ARG 1 B 206 SER 1 B 306 LYS 1 B 306 LYS 1 B 353 GLN 1 B 446 ASP 1 C 77 VAL 1 C 93 LYS 1 C 123 GLN 1 C 142 LYS 1 C 142 LYS 1 C 158 SER 1 C 167 LYS 1 C 167 LYS 1 C 364 PHE 1 C 364 PHE 1 C 371 LYS 1 C 411[A] SER 1 C 463 ILE 1 D 104 TYR 1	1	В	119	SER
1B 167 LYS1B 188 ARG1B 206 SER1B 306 LYS1B 353 GLN1B 446 ASP1C 77 VAL1C93LYS1C123GLN1C142LYS1C158SER1C167LYS1C206SER1C364PHE1C371LYS1C411[A]SER1C456MET1C463ILE1D87LYS1D104TYR1D206SER1D225LEU1D227SER1D227SER	1	В	139	MET
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	167	LYS
1 B 206 SER 1 B 306 LYS 1 B 353 GLN 1 B 446 ASP 1 C 77 VAL 1 C 93 LYS 1 C 123 GLN 1 C 123 GLN 1 C 142 LYS 1 C 158 SER 1 C 167 LYS 1 C 206 SER 1 C 238 PHE 1 C 364 PHE 1 C 371 LYS 1 C 371 LYS 1 C 411[A] SER 1 C 463 ILE 1 D 87 LYS 1 D 104 TYR 1 D 206 SER 1 D 225 LEU 1	1	В	188	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	206	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	306	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	353	GLN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	446	ASP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	77	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	93	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	123	GLN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	142	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	158	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	167	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	206	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	238	PHE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	364	PHE
1 C 411[A] SER 1 C 411[B] SER 1 C 456 MET 1 C 463 ILE 1 D 87 LYS 1 D 104 TYR 1 D 206 SER 1 D 225 LEU 1 D 227 SER	1	С	371	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	411[A]	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	411[B]	SER
1 C 463 ILE 1 D 87 LYS 1 D 104 TYR 1 D 206 SER 1 D 225 LEU 1 D 227 SER 1 D 241 TYP	1	С	456	MET
1 D 87 LYS 1 D 104 TYR 1 D 206 SER 1 D 225 LEU 1 D 227 SER 1 D 227 SER	1	С	463	ILE
1 D 104 TYR 1 D 206 SER 1 D 225 LEU 1 D 227 SER 1 D 227 SER	1	D	87	LYS
1 D 206 SER 1 D 225 LEU 1 D 227 SER 1 D 227 SER	1	D	104	TYR
1 D 225 LEU 1 D 227 SER 1 D 241 TMP	1	D	206	SER
1 D 227 SER	1	D	225	LEU
	1	D	227	SER
$1 \mid D \mid 241 \mid TYR \mid$	1	D	241	TYR

Continued from previous page...

Mol	Chain	Res	Type
1	D	278	LYS
1	D	293	SER
1	D	312	GLN
1	D	407	GLU
1	D	458	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (22) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	143	GLN
1	А	226	ASN
1	А	323	GLN
1	В	61	ASN
1	В	85	GLN
1	В	334	ASN
1	В	439	HIS
1	В	458	ASN
1	С	123	GLN
1	С	314	GLN
1	С	316	GLN
1	С	333	ASN
1	С	334	ASN
1	С	353	GLN
1	С	458	ASN
1	С	461	ASN
1	D	123	GLN
1	D	323	GLN
1	D	325	HIS
1	D	334	ASN
1	D	336	HIS
1	D	458	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 39 ligands modelled in this entry, 32 are monoatomic - leaving 7 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tiple	B	ond leng	gths	E	Bond ang	gles
	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	ACY	D	511	-	3,3,3	0.86	0	3,3,3	1.14	0
3	ACY	В	511	-	3,3,3	0.70	0	3,3,3	1.86	1 (33%)
3	ACY	С	512	-	3,3,3	0.90	0	3,3,3	1.05	0
3	ACY	А	511	-	3,3,3	1.30	0	3,3,3	2.08	2 (66%)
3	ACY	D	512	-	3,3,3	1.28	1 (33%)	3,3,3	0.71	0
3	ACY	В	512	-	3,3,3	1.10	0	3,3,3	1.59	1 (33%)
3	ACY	С	511	-	3,3,3	0.97	0	3,3,3	0.53	0

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	D	512	ACY	OXT-C	-2.07	1.21	1.30

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
3	А	511	ACY	OXT-C-CH3	2.78	126.70	115.05
3	В	511	ACY	OXT-C-CH3	2.60	125.95	115.05
3	В	512	ACY	OXT-C-CH3	2.22	124.38	115.05
3	А	511	ACY	OXT-C-O	-2.15	114.05	122.03

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	А	511	ACY	5	0
3	В	512	ACY	2	0

2 monomers are involved in 7 short contacts:

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	399/452~(88%)	-0.19	16 (4%) 38 42	27, 41, 74, 119	0
1	В	400/452~(88%)	-0.17	12 (3%) 50 54	28, 45, 75, 103	0
1	С	393/452~(86%)	0.21	23 (5%) 22 24	25, 44, 80, 108	0
1	D	397/452~(87%)	-0.05	12 (3%) 50 54	25, 38, 69, 99	0
All	All	1589/1808~(87%)	-0.05	63 (3%) 38 42	25, 42, 76, 119	0

All (63) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	С	271	VAL	6.9
1	D	463	ILE	6.1
1	D	241	TYR	5.5
1	А	47	VAL	5.2
1	С	465	ALA	5.0
1	С	310	PHE	4.9
1	В	364[A]	PHE	4.8
1	D	69	ALA	4.7
1	А	75	THR	4.5
1	С	307	LYS	4.5
1	С	273	SER	4.1
1	С	47	VAL	4.0
1	С	163	PHE	4.0
1	В	463	ILE	4.0
1	С	126	VAL	3.9
1	C	276	ILE	3.8
1	В	465	ALA	3.8
1	В	464	PRO	3.8
1	А	122[A]	HIS	3.7
1	В	241	TYR	3.7
1	С	122	HIS	3.4

Mol	Chain	Res	Type	RSRZ
1	С	118	ALA	3.3
1	В	47	VAL	3.3
1	А	461	ASN	3.3
1	А	118	ALA	3.2
1	С	161	PHE	3.1
1	С	309	PRO	3.0
1	А	70	GLU	2.9
1	С	274	GLY	2.9
1	D	46	ASN	2.8
1	А	241	TYR	2.7
1	С	49	TYR	2.7
1	D	205	GLY	2.7
1	А	69	ALA	2.7
1	D	276	ILE	2.6
1	С	241	TYR	2.6
1	А	117	PRO	2.6
1	С	270	GLN	2.6
1	С	67	TRP	2.6
1	D	47	VAL	2.5
1	В	67	TRP	2.5
1	В	76	GLY	2.5
1	D	243	THR	2.4
1	В	461	ASN	2.4
1	В	244	ASP	2.4
1	С	124	THR	2.4
1	А	462	MET	2.4
1	С	464	PRO	2.3
1	D	253	LEU	2.3
1	А	119	SER	2.3
1	А	76	GLY	2.2
1	С	157	LYS	2.2
1	А	242	GLY	2.2
1	А	160	PRO	2.2
1	А	46	ASN	2.2
1	D	461	ASN	2.2
1	В	276	ILE	2.2
1	С	205	GLY	2.1
1	D	405	VAL	2.1
1	D	460	THR	2.1
1	А	163	PHE	2.1
1	С	248	TYR	2.0
1	В	274	GLY	2.0

Continued from previous page...

3ZX3

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
3	ACY	А	511	4/4	0.86	0.14	36,46,48,48	0
4	NA	С	521	1/1	0.88	0.12	52,52,52,52	0
3	ACY	В	512	4/4	0.90	0.24	47,50,57,58	0
2	CL	D	508	1/1	0.94	0.06	50,50,50,50	0
4	NA	В	521	1/1	0.95	0.07	$51,\!51,\!51,\!51$	0
2	CL	В	504	1/1	0.95	0.06	56, 56, 56, 56	0
2	CL	С	504	1/1	0.96	0.04	$55,\!55,\!55,\!55$	0
2	CL	А	506	1/1	0.96	0.06	62,62,62,62	0
2	CL	С	503	1/1	0.97	0.07	42,42,42,42	0
3	ACY	С	512	4/4	0.97	0.06	28,32,33,34	0
2	CL	D	504	1/1	0.97	0.06	53,53,53,53	0
3	ACY	В	511	4/4	0.97	0.09	37,42,43,43	0
2	CL	В	505	1/1	0.98	0.07	46,46,46,46	0
2	CL	D	509	1/1	0.98	0.07	42,42,42,42	1
2	CL	В	506	1/1	0.98	0.08	$53,\!53,\!53,\!53$	0
2	CL	С	502	1/1	0.98	0.05	44,44,44,44	0
2	CL	А	502	1/1	0.98	0.04	42,42,42,42	0
3	ACY	С	511	4/4	0.98	0.06	30,32,33,34	0
2	CL	В	503	1/1	0.98	0.04	44,44,44,44	0
2	CL	А	504	1/1	0.98	0.06	46,46,46,46	0
2	CL	D	507	1/1	0.98	0.08	40,40,40,40	0
4	NA	D	522	1/1	0.98	0.11	52,52,52,52	0
4	NA	D	521	1/1	0.98	0.05	$35,\!35,\!35,\!35$	0
2	CL	С	506	1/1	0.99	0.14	34,34,34,34	0
2	CL	D	503	1/1	0.99	0.06	36,36,36,36	0
2	CL	С	501	1/1	0.99	0.09	36,36,36,36	0
2	CL	D	505	1/1	0.99	0.06	43,43,43,43	0

27Y2	
JUAJ	

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
3	ACY	D	511	4/4	0.99	0.05	36,39,39,40	0
3	ACY	D	512	4/4	0.99	0.10	31,33,35,42	0
2	CL	А	501	1/1	0.99	0.06	34,34,34,34	0
2	CL	В	502	1/1	0.99	0.06	43,43,43,43	0
4	NA	С	522	1/1	0.99	0.11	29,29,29,29	0
2	CL	А	505	1/1	0.99	0.08	41,41,41,41	0
2	CL	С	505	1/1	0.99	0.07	44,44,44,44	0
2	CL	D	502	1/1	1.00	0.05	38,38,38,38	0
2	CL	В	501	1/1	1.00	0.08	$35,\!35,\!35,\!35$	0
2	CL	А	503	1/1	1.00	0.06	35,35,35,35	0
2	CL	D	501	1/1	1.00	0.12	31,31,31,31	0
2	CL	D	506	1/1	1.00	0.07	43,43,43,43	0

6.5 Other polymers (i)

There are no such residues in this entry.

