# Integrative Structure Validation Report • February 27, 2025 - 12:16 PM PST

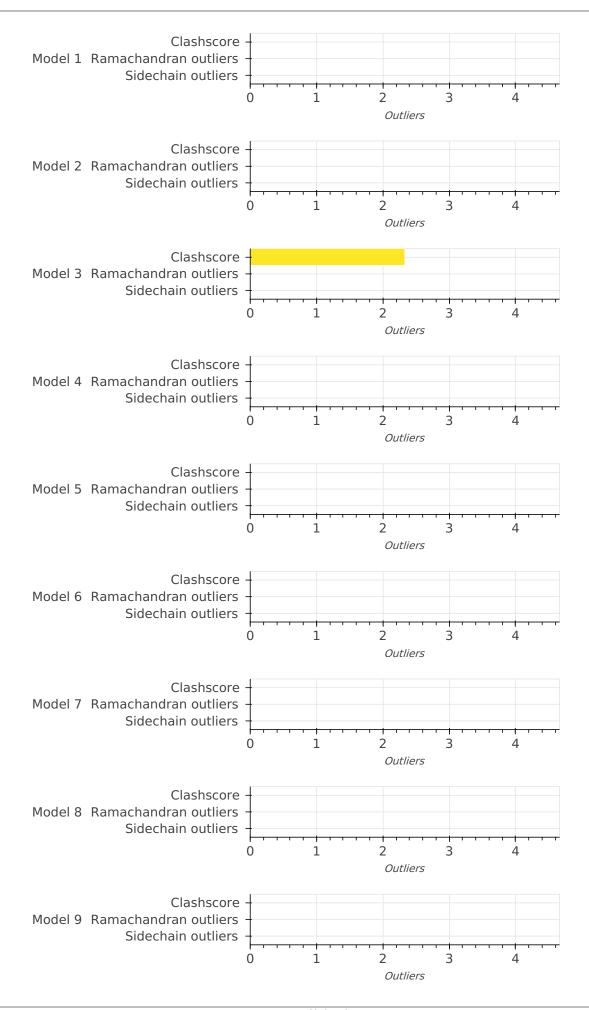
The following software was used in the production of this report:

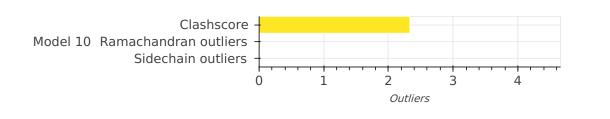
Integrative Modeling Validation Version 2.0
Python-IHM Version 1.8
MolProbity Version 4.5.2

| PDB ID            | 9A1D                                                                                                                     |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PDB-Dev ID        | PDBDEV_00000085                                                                                                          |  |  |  |  |
| Structure Title   | CS-Rosetta structure of engineered IgG-binding domain of protein G (GB) - model B4                                       |  |  |  |  |
| Structure Authors | He Y; Chen Y; Ruan B; Choi EJ; Chen Y; Motabar D; Solomon T; Simmerman R;<br>Kauffman T; Gallagher DT; Bryan PN; Orban J |  |  |  |  |
| Deposited on      | 2021-04-21                                                                                                               |  |  |  |  |

This is a PDB-IHM IM Structure Validation Report for a publicly released PDB-IHM entry.

We welcome your comments at helpdesk@pdb-ihm.org


A user guide is available at https://pdb-ihm.org/validation\_help.html with specific help available everywhere you see the ? symbol.


List of references used to build this report is available here.

### Overall quality •

This validation report contains model quality assessments for all structures, data quality and fit to model assessments for SAS and crosslinking-MS datasets. Data quality and fit to model assessments for other datasets and model uncertainty are under development. Number of plots is limited to 256.

Model Quality: MolProbity Analysis





#### Ensemble information

This entry consists of 0 distinct ensemble(s).

#### **Summary** ?

This entry consists of 10 model(s). A total of 1 datasets were used to build this entry.

#### Representation ?

This entry has 1 representation(s).

| ID | Model(s) | Entity<br>ID | Molecule<br>name                         | Chain(s)<br>[auth] |    | Rigid<br>segments | Flexible<br>segments | Model<br>coverage/<br>Starting<br>model<br>coverage<br>(%) | Scale  |
|----|----------|--------------|------------------------------------------|--------------------|----|-------------------|----------------------|------------------------------------------------------------|--------|
| 1  | 1-10     | 1            | Immunoglobulin<br>G-binding<br>protein G | А                  | 56 | -                 | 1-56                 | 100.00 / 0.00                                              | Atomic |

## Datasets used for modeling ?

There is 1 unique dataset used to build the models in this entry.

| ID | Dataset type | Database name | Data access code |
|----|--------------|---------------|------------------|
| 1  | NMR data     | BMRB          | 50909            |

# Methodology and software

This entry is a result of 1 distinct protocol(s).

| Step   | Protocol | Method                 | Method | Method      | Number of computed models | Multi state | Multi scale |
|--------|----------|------------------------|--------|-------------|---------------------------|-------------|-------------|
| number | ID       | name                   | type   | description |                           | modeling    | modeling    |
| 1      | 1        | CS-Rosetta<br>modeling | -      | _           | _                         | False       | False       |

There is 1 software package reported in this entry.

| ID | Software name | Software version | Software classification | Software location                                  |
|----|---------------|------------------|-------------------------|----------------------------------------------------|
| 1  | CS-Rosetta    | Not<br>available | model building          | https://spin.niddk.nih.gov/bax/software/CSROSETTA/ |

# Data quality NMR

Validation for this section is under development.

### Model quality ?

For models with atomic structures, MolProbity analysis is performed. For models with coarse-grained or multi-scale structures, excluded volume analysis is performed.

Standard geometry: bond outliers ?

There are no bond length outliers.

Standard geometry: angle outliers ?

There are no bond angle outliers.

#### Too-close contacts ?

The following all-atom clashscore is based on a MolProbity analysis. All-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The table below contains clashscores for all atomic models in this entry.

| Model ID | Clash score | Number of clashes |
|----------|-------------|-------------------|
| 1        | 0.00        | 0                 |
| 2        | 0.00        | 0                 |
| 3        | 2.33        | 2                 |
| 4        | 0.00        | 0                 |
| 5        | 0.00        | 0                 |
| 6        | 0.00        | 0                 |
| 7        | 0.00        | 0                 |
| 8        | 0.00        | 0                 |

| Model ID | Clash score | Number of clashes |
|----------|-------------|-------------------|
| 9        | 0.00        |                   |
| 10       | 2.33        | 2                 |

There are 4 clashes. The table below contains the detailed list of all clashes based on a MolProbity analysis. Bad clashes are >= 0.4 Angstrom.

| Atom 1       | Atom 2       | Clash(Å) | Model ID (Worst) | Models (Total) |
|--------------|--------------|----------|------------------|----------------|
| A:43:TRP:HD1 | A:43:TRP:O   | 0.56     | 10               | 1              |
| A:43:TRP:C   | A:43:TRP:CD1 | 0.47     | 10               | 1              |
| A:55:THR:O   | A:56:ALA:O   | 0.47     | 3                | 1              |
| A:9:LEU:N    | A:9:LEU:HD22 | 0.44     | 3                | 1              |

#### Torsion angles: Protein backbone ?

In the following table, Ramachandran outliers are listed. The Analysed column shows the number of residues for which the backbone conformation was analysed.

| Model ID | Analysed | Favored | Allowed | Outliers |
|----------|----------|---------|---------|----------|
| 1        | 54       | 53      | 1       | 0        |
| 2        | 54       | 53      | 1       | 0        |
| 3        | 54       | 52      | 2       | 0        |
| 4        | 54       | 53      | 1       | 0        |
| 5        | 54       | 53      | 1       | 0        |
| 6        | 54       | 54      | 0       | 0        |
| 7        | 54       | 53      | 1       | 0        |
| 8        | 54       | 53      | 1       | 0        |
| 9        | 54       | 53      | 1       | 0        |
| 10       | 54       | 52      | 2       | 0        |

#### <u>Torsion angles</u>: <u>Protein sidechains</u>

In the following table, sidechain rotameric outliers are listed. The Analysed column shows the number of residues for which the sidechain conformation was analysed.

| Model ID | Analysed | Favored | Allowed | Outliers |
|----------|----------|---------|---------|----------|
| 1        | 45       | 45      | 0       | 0        |
| 2        | 45       | 44      | 1       | 0        |
| 3        | 45       | 44      | 1       | 0        |
| 4        | 45       | 45      | 0       | 0        |
| 5        | 45       | 45      | 0       | 0        |
| 6        | 45       | 45      | 0       | 0        |
| 7        | 45       | 45      | 0       | 0        |

| Model ID | Analysed | Favored | Allowed | Outliers |
|----------|----------|---------|---------|----------|
| 8        | 45       | 45      | 0       | 0        |
| 9        | 45       | 45      | 0       | 0        |
| 10       | 45       | 44      | 1       | 0        |

# Fit of model to data used for modeling NMR

Validation for this section is under development.

#### Fit of model to data used for validation ?

Validation for this section is under development.

#### Acknowledgments

The development of integrative model validation metrics, implementation of a model validation pipeline, and creation of a validation report for integrative structures are funded by NSF awards to the PDB-IHM team (DBI-1756248, DBI-2112966, DBI-2112967, DBI-2112968, and DBI-1756250) and awards from NSF, NIH, and DOE to the RCSB PDB (DBI-2321666, R01GM157729, and DE-SC0019749). The PDB-IHM team and members of the Sali lab contributed model validation metrics and software packages.

Dr. Jill Trewhella, Dr. Dina Schneidman, and members of the SASBDB repository are acknowledged for their advice and support in implementing SAS validation methods. Team members from the labs of Dr. Juri Rappsilber, Dr. Alexander Leitner, Dr. Andrea Graziadei, and members of PRIDE database are acknowledged for their advice and support in implementing crosslinking-MS validation methods. We are grateful to Dr. Shruthi Viswanath for discussions about uncertainty assessment of integrative structural models.

Members of the wwPDB Integrative/Hybrid Methods Task Force provided recommendations and community support for the project.