

Full wwPDB X-ray Structure Validation Report (i)

Sep 10, 2025 – 06:14 PM JST

PDB ID : 5Z0G / pdb 00005z0g

Title : Crystal structure of copper-bound tyrosinase from Streptomyces castaneoglo-

bisporus in complex with the caddie protein obtained by soaking in the hydro

xylamine-containing solution for 20 min at 298 K

Authors: Matoba, Y.; Sugiyama, M.

Deposited on : 2017-12-19

Resolution : 1.32 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4-5-2 with Phenix2.0rc1

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 2.0rc1

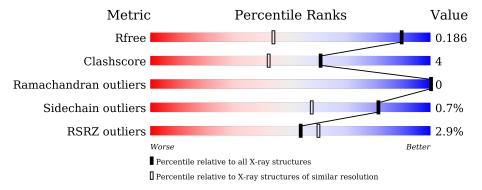
EDS : 3.0

Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)

CCP4 : 9.0.006 (Gargrove)

Density-Fitness : 1.0.12

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.45.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.32 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# \mathrm{Entries})$	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries},{\rm resolution\ range}({\rm \AA})) \end{array}$
R_{free}	164625	2202 (1.34-1.30)
Clashscore	180529	2378 (1.34-1.30)
Ramachandran outliers	177936	2325 (1.34-1.30)
Sidechain outliers	177891	2325 (1.34-1.30)
RSRZ outliers	164620	2199 (1.34-1.30)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality o	of chain			
1	A	281	2%	88%		99	% ••	
2	В	134	49%	69	%	46%		

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 3308 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Tyrosinase.

\mathbf{Mol}	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	A	276	Total 2270	C 1427	N 420	O 419	S 4	0	9	0

There are 9 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	123	SER	PHE	conflict	UNP Q83WS2
A	274	LEU	-	expression tag	UNP Q83WS2
A	275	GLU	-	expression tag	UNP Q83WS2
A	276	HIS	-	expression tag	UNP Q83WS2
A	277	HIS	-	expression tag	UNP Q83WS2
A	278	HIS	-	expression tag	UNP Q83WS2
A	279	HIS	-	expression tag	UNP Q83WS2
A	280	HIS	-	expression tag	UNP Q83WS2
A	281	HIS	-	expression tag	UNP Q83WS2

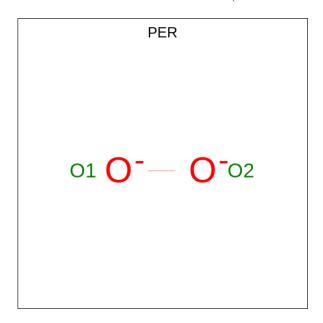
• Molecule 2 is a protein called MelC.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
2	В	73	Total 582	C 369	N 105	O 106	S 2	0	5	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	127	LEU	-	expression tag	UNP Q83WS1
В	128	GLU	-	expression tag	UNP Q83WS1
В	129	HIS	-	expression tag	UNP Q83WS1
В	130	HIS	-	expression tag	UNP Q83WS1
В	131	HIS	-	expression tag	UNP Q83WS1
В	132	HIS	-	expression tag	UNP Q83WS1
В	133	HIS	-	expression tag	UNP Q83WS1

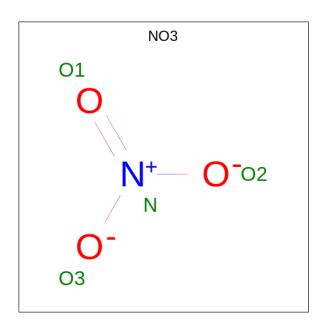
Continued on next page...


Continued from previous page...

Chair	n Residue	Modelled	Actual	Comment	Reference
В	134	HIS	-	expression tag	UNP Q83WS1

• Molecule 3 is COPPER (II) ION (CCD ID: CU) (formula: Cu).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	3	Total Cu 6 6	0	2
3	В	1	Total Cu 2 2	0	1


• Molecule 4 is PEROXIDE ION (CCD ID: PER) (formula: O_2).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	1	Total O 2 2	0	1

• Molecule 5 is NITRATE ION (CCD ID: NO3) (formula: NO₃).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	A	1	Total N O 4 1 3	0	0
5	A	1	Total N O 4 1 3	0	0
5	A	1	Total N O 4 1 3	0	0
5	В	1	Total N O 4 1 3	0	1
5	В	1	Total N O 4 1 3	0	0

• Molecule 6 is water.

\mathbf{Mol}	Chain	Residues	Atoms	ZeroOcc	AltConf
6	A	330	Total O 330 330	0	3
6	В	96	Total O 96 96	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Tyrosinase

Chain A:

88%

9%

• Molecule 2: MelC

Chain B:

49%

6%

44%

6%

46%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 2	Depositor
Cell constants	65.20Å 97.79Å 55.10Å	Donositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	30.00 - 1.32	Depositor
Resolution (A)	30.00 - 1.32	EDS
% Data completeness	99.9 (30.00-1.32)	Depositor
(in resolution range)	99.9 (30.00-1.32)	EDS
R_{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	3.53 (at 1.32Å)	Xtriage
Refinement program	SHELXL-97	Depositor
D D.	0.140 , 0.187	Depositor
R, R_{free}	0.142 , 0.186	DCC
R_{free} test set	4160 reflections (4.99%)	wwPDB-VP
Wilson B-factor (Å ²)	10.9	Xtriage
Anisotropy	0.268	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.36, 52.2	EDS
L-test for twinning ²	$ < L > = 0.44, < L^2> = 0.26$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	3308	wwPDB-VP
Average B, all atoms (Å ²)	17.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.46% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

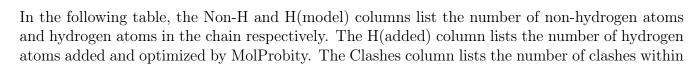
Bond lengths and bond angles in the following residue types are not validated in this section: NO3, CU, PER, DAH

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.72	0/2369	1.38	$19/3233 \ (0.6\%)$	
2	В	0.76	0/598	1.49	2/810 (0.2%)	
All	All	0.73	0/2967	1.40	21/4043 (0.5%)	

There are no bond length outliers.

All (21) bond angle outliers are listed below:


Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^o)$	$\mathbf{Ideal}(^o)$
2	В	105	ARG	CD-NE-CZ	16.73	147.83	124.40
1	A	277	HIS	CA-CB-CG	11.56	125.36	113.80
1	A	147	VAL	CA-C-N	-8.88	107.89	122.54
1	A	147	VAL	C-N-CA	-8.88	107.89	122.54
1	A	216	HIS	CA-CB-CG	-6.98	106.82	113.80
1	A	98	LEU	CA-C-O	6.74	127.69	120.55
1	A	16	ARG	NE-CZ-NH2	-6.34	113.50	119.20
1	A	41	PHE	CA-CB-CG	-6.00	107.80	113.80
1	A	275	GLU	CA-C-N	-5.77	110.43	122.03
1	A	275	GLU	C-N-CA	-5.77	110.43	122.03
1	A	276	HIS	CA-CB-CG	-5.77	108.03	113.80
1	A	47	ASP	CA-C-N	-5.72	113.68	122.60
1	A	47	ASP	C-N-CA	-5.72	113.68	122.60
1	A	272	ASP	CA-CB-CG	5.54	118.14	112.60
1	A	276	HIS	CA-C-O	-5.41	115.56	121.89
1	A	70	PHE	CA-CB-CG	-5.29	108.51	113.80
2	В	119	PRO	CA-C-O	5.26	127.34	121.34
1	A	101	PRO	CB-CA-C	-5.10	104.61	111.85
1	A	2	THR	CA-CB-OG1	-5.04	102.03	109.60
1	A	54[A]	HIS	CA-CB-CG	5.04	118.84	113.80
1	A	54[B]	HIS	CA-CB-CG	5.04	118.84	113.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	2270	0	2135	19	0
2	В	582	0	548	6	0
3	A	6	0	0	0	0
3	В	2	0	0	0	0
4	A	2	0	0	1	0
5	A	12	0	0	0	0
5	В	8	0	0	0	0
6	A	330	0	0	4	0
6	В	96	0	0	1	0
All	All	3308	0	2683	23	0

the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (23) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$egin{aligned} & & & & & & & & & & \\ & & & & & & & & $	Clash overlap (Å)
1:A:187[A]:VAL:HG11	6:A:761:HOH:O	1.90	0.70
4:A:304[A]:PER:O2	2:B:98[A]:DAH:OE2	2.11	0.69
1:A:275:GLU:HG3	1:A:276:HIS:O	1.95	0.66
1:A:228:ARG:HH11	1:A:276:HIS:HA	1.64	0.62
2:B:80:GLN:HB3	2:B:123:PHE:HE2	1.66	0.61
1:A:136[A]:ARG:HD2	1:A:138:TYR:OH	2.02	0.59
1:A:228:ARG:O	1:A:277:HIS:HB2	2.03	0.58
1:A:136[A]:ARG:NH1	6:A:502[A]:HOH:O	0.72	0.53
1:A:94:VAL:O	1:A:94:VAL:HG12	2.12	0.50
1:A:42:ILE:HG23	2:B:97[A]:HIS:CE1	2.47	0.49
1:A:275:GLU:HG3	1:A:276:HIS:N	2.28	0.49
1:A:173:ALA:HA	1:A:185:ARG:NH2	2.29	0.48
2:B:71:GLY:HA3	6:B:371:HOH:O	2.14	0.47
1:A:153:ARG:HH21	1:A:157:GLU:CD	2.22	0.47

Continued on next page...

$\alpha \cdots$, r	•	
Continued	trom	mromonie	maaa
-	110116	DICULUUS	Duuc
	J	1	1

Atom-1	Atom-2	Interatomic	Clash
		distance (Å)	overlap (Å)
1:A:42:ILE:HD12	2:B:97[A]:HIS:CD2	2.50	0.47
1:A:157:GLU:OE1	1:A:229:ARG:NH2	2.49	0.46
1:A:136[B]:ARG:HB3	6:A:570:HOH:O	2.16	0.44
2:B:80:GLN:HB3	2:B:123:PHE:CE2	2.50	0.43
1:A:95:ARG:H	1:A:95:ARG:HG2	1.70	0.43
1:A:228:ARG:NH1	1:A:276:HIS:HA	2.31	0.42
1:A:47:ASP:OD1	1:A:171:ASN:HB2	2.20	0.41
1:A:94:VAL:HG12	6:A:509:HOH:O	2.20	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percen	tiles
1	A	283/281 (101%)	272 (96%)	11 (4%)	0	100	100
2	В	72/134 (54%)	70 (97%)	2 (3%)	0	100	100
All	All	355/415 (86%)	342 (96%)	13 (4%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Chain Analysed Rotameric		Outliers	Percentiles		
1	A	244/240 (102%)	243 (100%)	1 (0%)		89	74

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	В	60/93 (64%)	59 (98%)	1 (2%)	56	21
All	All	304/333 (91%)	302 (99%)	2 (1%)	81	57

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	276	HIS
2	В	92	ILE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
1	A	39	ASN
1	A	180	HIS
2	В	80	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 14 ligands modelled in this entry, 8 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Mol Type Chain Res		$\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}$		Bond lengths			Bond angles				
MIOI	туре	Chain	nes	ries	nes	Res Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
5	NO3	A	307	-	1,3,3	0.61	0	0,3,3	-	-		
4	PER	A	304[A]	3	0,1,1	-	-	-				
5	NO3	A	305	-	1,3,3	0.02	0	0,3,3	-	-		
5	NO3	A	306	-	1,3,3	0.21	0	0,3,3	-	-		
5	NO3	В	202[A]	-	1,3,3	0.43	0	0,3,3	_	-		
5	NO3	В	203	-	1,3,3	0.56	0	0,3,3	-	-		

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	A	304[A]	PER	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\#\mathrm{RSRZ}{>}2$	$OWAB(A^2)$	Q<0.9
1	A	$276/281\ (98\%)$	-0.26	6 (2%) 62 68	7, 14, 27, 57	9 (3%)
2	В	72/134 (53%)	-0.10	4 (5%) 31 36	8, 14, 26, 49	4 (5%)
All	All	348/415 (83%)	-0.23	10 (2%) 54 60	7, 14, 27, 57	13 (3%)

All (10) RSRZ outliers are listed below:

Mol	Chain	Chain Res Type		RSRZ	
1	A	276	HIS	6.2	
2	В	123	PHE	5.8	
1	A	148	ALA	3.8	
2	В	122	PRO	3.5	
1	A	277	HIS	3.5	
1	A	274	LEU	2.6	
2	В	40	ALA	2.5	
2	В	59	ALA	2.4	
1	A	94	VAL	2.2	
1	A	2	THR	2.0	

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
2	DAH	В	98[A]	13/14	0.97	0.05	13,14,16,16	1

6.3 Carbohydrates (i)

There are no oligosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\operatorname{B-factors}(\mathring{\mathbf{A}}^2)$	Q < 0.9
5	NO3	В	202[A]	4/4	0.92	0.12	17,17,17,22	4
4	PER	A	304[A]	2/2	0.94	0.11	13,13,13,14	2
5	NO3	A	307	4/4	0.95	0.07	24,26,30,34	0
5	NO3	A	306	4/4	0.96	0.11	16,19,21,21	0
5	NO3	В	203	4/4	0.96	0.12	23,24,25,27	0
3	CU	A	303	1/1	0.97	0.23	40,40,40,40	1
3	CU	В	201[A]	1/1	0.99	0.17	29,29,29,29	1
5	NO3	A	305	4/4	0.99	0.08	19,20,21,28	0
3	CU	В	201[B]	1/1	0.99	0.17	17,17,17,17	1
3	CU	A	302[B]	1/1	1.00	0.10	11,11,11,11	1
3	CU	A	301[A]	1/1	1.00	0.09	14,14,14,14	1
3	CU	A	301[B]	1/1	1.00	0.09	13,13,13,13	1
3	CU	A	301[C]	1/1	1.00	0.09	14,14,14,14	1
3	CU	A	302[A]	1/1	1.00	0.10	11,11,11,11	1

6.5 Other polymers (i)

There are no such residues in this entry.

