0.016013 0.009245 0.000000 0.000000 0.018490 0.000000 0.000000 0.000000 0.009911 0.00000 0.00000 0.00000 Subramaniam, S. Henderson, R. http://mmcif.pdb.org/dictionaries/ascii/mmcif_pdbx.dic 3 90 90 120 62.45 62.45 100.9 C3 H7 N O2 89.093 y ALANINE L-peptide linking C6 H15 N4 O2 1 175.209 y ARGININE L-peptide linking C4 H8 N2 O3 132.118 y ASPARAGINE L-peptide linking C4 H7 N O4 133.103 y ASPARTIC ACID L-peptide linking C3 H7 N O2 S 121.158 y CYSTEINE L-peptide linking C5 H10 N2 O3 146.144 y GLUTAMINE L-peptide linking C5 H9 N O4 147.129 y GLUTAMIC ACID L-peptide linking C2 H5 N O2 75.067 y GLYCINE peptide linking C6 H13 N O2 131.173 y ISOLEUCINE L-peptide linking C6 H13 N O2 131.173 y LEUCINE L-peptide linking C6 H15 N2 O2 1 147.195 y LYSINE L-peptide linking C5 H11 N O2 S 149.211 y METHIONINE L-peptide linking C9 H11 N O2 165.189 y PHENYLALANINE L-peptide linking C5 H9 N O2 115.130 y PROLINE L-peptide linking C20 H28 O 284.436 RETINAL non-polymer C3 H7 N O3 105.093 y SERINE L-peptide linking C4 H9 N O3 119.119 y THREONINE L-peptide linking C11 H12 N2 O2 204.225 y TRYPTOPHAN L-peptide linking C9 H11 N O3 181.189 y TYROSINE L-peptide linking C5 H11 N O2 117.146 y VALINE L-peptide linking UK Nature NATUAS 0006 0028-0836 406 653 657 10.1038/35020614 10949309 Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. 2000 10.2210/pdb1fbk/pdb pdb_00001fbk 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 0.00000 0.00000 0.00000 93 1 CCD 1998-12-01 OTHER SINGLE WAVELENGTH M electron 1 .033 1.0 .033 ELECTRON MICROSCOPE OTHER 120 62.45 62.45 100.9 P 3 402 patterns merged (merging R 17.3%) to generate set of lattice lines covering ~87% of reciprocal space, with resolution of 3.2 A in-plane and 3.6 A vertically [primary citation] 1FBK 3.2 DIFFRACTION PATTERN/LAYERLINES glucose or trehalose 1 CYTOPLASMICALLY OPEN CONFORMATION OF BACTERIORHODOPSIN 0 RECOMBINANT NO MEGADALTONS .027 2242 Halobacterium salinarum 2D ARRAY 1 1 CRYSTALLOGRAPHY GENERIC CCD 1000 imaging date 1998-12-01 FLOOD BEAM FEI/PHILIPS CM12 DIFFRACTION 1 YES NO NO YES 26678.330 BACTERIORHODOPSIN D96G,F171C,F219L 1 nat polymer 284.436 RETINAL 1 syn non-polymer no no QAQITGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITTLVPAIAFTMYLSMLLGYGLTMVPFGGEQNPIYW ARYADWLFTTPLLLLGLALLVDADQGTILALVGADGIMIGTGLVGALTKVYSYRFVWWAISTAAMLYILYVLFFGFTSKA ESMRPEVASTCKVLRNVTVVLWSAYPVVWLIGSEGAGIVPLNIETLLFMVLDVSAKVGLGLILLRSRAIFGEAEAPEPSA GDGAAATS QAQITGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITTLVPAIAFTMYLSMLLGYGLTMVPFGGEQNPIYW ARYADWLFTTPLLLLGLALLVDADQGTILALVGADGIMIGTGLVGALTKVYSYRFVWWAISTAAMLYILYVLFFGFTSKA ESMRPEVASTCKVLRNVTVVLWSAYPVVWLIGSEGAGIVPLNIETLLFMVLDVSAKVGLGLILLRSRAIFGEAEAPEPSA GDGAAATS A polypeptide(L) n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n Halobacterium sample 2242 Halobacterium salinarum 402 naturally occurring in vivo 7 crystals are increased in size by fusion and annealing using detergents, pH 7, naturally occurring in vivo, temperature 37K 310.0 em_image_scans software exptl_crystal_grow database_2 struct_conn struct_ref_seq_dif struct_site repository Initial release Version format compliance Derived calculations Version format compliance Data collection Refinement description Experimental preparation Database references Derived calculations 1 0 2000-08-09 1 1 2008-04-27 1 2 2011-07-13 1 3 2017-10-04 1 4 2018-01-31 1 5 2021-11-03 _exptl_crystal_grow.pdbx_details _exptl_crystal_grow.temp _database_2.pdbx_DOI _database_2.pdbx_database_accession _struct_conn.pdbx_leaving_atom_flag _struct_conn.ptnr1_auth_comp_id _struct_conn.ptnr1_auth_seq_id _struct_conn.ptnr1_label_asym_id _struct_conn.ptnr1_label_atom_id _struct_conn.ptnr1_label_comp_id _struct_conn.ptnr1_label_seq_id _struct_conn.ptnr2_auth_comp_id _struct_conn.ptnr2_auth_seq_id _struct_conn.ptnr2_label_asym_id _struct_conn.ptnr2_label_atom_id _struct_conn.ptnr2_label_comp_id _struct_conn.ptnr2_label_seq_id _struct_ref_seq_dif.details _struct_site.pdbx_auth_asym_id _struct_site.pdbx_auth_comp_id _struct_site.pdbx_auth_seq_id Crystal Structure of Native conformation of Bacteriorhodopsin RCSB Y RCSB 2000-07-15 REL RET RETINAL LYR 216 2 RET RET 1216 A n 1 1 A n 2 2 A n 3 3 A ALA 4 n 4 ILE 4 A THR 5 n 5 THR 5 A GLY 6 n 6 GLY 6 A ARG 7 n 7 ARG 7 A PRO 8 n 8 PRO 8 A GLU 9 n 9 GLU 9 A TRP 10 n 10 TRP 10 A ILE 11 n 11 ILE 11 A TRP 12 n 12 TRP 12 A LEU 13 n 13 LEU 13 A ALA 14 n 14 ALA 14 A LEU 15 n 15 LEU 15 A GLY 16 n 16 GLY 16 A THR 17 n 17 THR 17 A ALA 18 n 18 ALA 18 A LEU 19 n 19 LEU 19 A MET 20 n 20 MET 20 A GLY 21 n 21 GLY 21 A LEU 22 n 22 LEU 22 A GLY 23 n 23 GLY 23 A THR 24 n 24 THR 24 A LEU 25 n 25 LEU 25 A TYR 26 n 26 TYR 26 A PHE 27 n 27 PHE 27 A LEU 28 n 28 LEU 28 A VAL 29 n 29 VAL 29 A LYS 30 n 30 LYS 30 A GLY 31 n 31 GLY 31 A MET 32 n 32 MET 32 A GLY 33 n 33 GLY 33 A VAL 34 n 34 VAL 34 A SER 35 n 35 SER 35 A ASP 36 n 36 ASP 36 A PRO 37 n 37 PRO 37 A ASP 38 n 38 ASP 38 A ALA 39 n 39 ALA 39 A LYS 40 n 40 LYS 40 A LYS 41 n 41 LYS 41 A PHE 42 n 42 PHE 42 A TYR 43 n 43 TYR 43 A ALA 44 n 44 ALA 44 A ILE 45 n 45 ILE 45 A THR 46 n 46 THR 46 A THR 47 n 47 THR 47 A LEU 48 n 48 LEU 48 A VAL 49 n 49 VAL 49 A PRO 50 n 50 PRO 50 A ALA 51 n 51 ALA 51 A ILE 52 n 52 ILE 52 A ALA 53 n 53 ALA 53 A PHE 54 n 54 PHE 54 A THR 55 n 55 THR 55 A MET 56 n 56 MET 56 A TYR 57 n 57 TYR 57 A LEU 58 n 58 LEU 58 A SER 59 n 59 SER 59 A MET 60 n 60 MET 60 A LEU 61 n 61 LEU 61 A LEU 62 n 62 LEU 62 A GLY 63 n 63 GLY 63 A TYR 64 n 64 TYR 64 A GLY 65 n 65 GLY 65 A LEU 66 n 66 LEU 66 A THR 67 n 67 THR 67 A MET 68 n 68 MET 68 A VAL 69 n 69 VAL 69 A PRO 70 n 70 PRO 70 A PHE 71 n 71 PHE 71 A GLY 72 n 72 GLY 72 A GLY 73 n 73 GLY 73 A GLU 74 n 74 GLU 74 A GLN 75 n 75 GLN 75 A ASN 76 n 76 ASN 76 A PRO 77 n 77 PRO 77 A ILE 78 n 78 ILE 78 A TYR 79 n 79 TYR 79 A TRP 80 n 80 TRP 80 A ALA 81 n 81 ALA 81 A ARG 82 n 82 ARG 82 A TYR 83 n 83 TYR 83 A ALA 84 n 84 ALA 84 A ASP 85 n 85 ASP 85 A TRP 86 n 86 TRP 86 A LEU 87 n 87 LEU 87 A PHE 88 n 88 PHE 88 A THR 89 n 89 THR 89 A THR 90 n 90 THR 90 A PRO 91 n 91 PRO 91 A LEU 92 n 92 LEU 92 A LEU 93 n 93 LEU 93 A LEU 94 n 94 LEU 94 A LEU 95 n 95 LEU 95 A GLY 96 n 96 GLY 96 A LEU 97 n 97 LEU 97 A ALA 98 n 98 ALA 98 A LEU 99 n 99 LEU 99 A LEU 100 n 100 LEU 100 A VAL 101 n 101 VAL 101 A ASP 102 n 102 ASP 102 A ALA 103 n 103 ALA 103 A ASP 104 n 104 ASP 104 A GLN 105 n 105 GLN 105 A GLY 106 n 106 GLY 106 A THR 107 n 107 THR 107 A ILE 108 n 108 ILE 108 A LEU 109 n 109 LEU 109 A ALA 110 n 110 ALA 110 A LEU 111 n 111 LEU 111 A VAL 112 n 112 VAL 112 A GLY 113 n 113 GLY 113 A ALA 114 n 114 ALA 114 A ASP 115 n 115 ASP 115 A GLY 116 n 116 GLY 116 A ILE 117 n 117 ILE 117 A MET 118 n 118 MET 118 A ILE 119 n 119 ILE 119 A GLY 120 n 120 GLY 120 A THR 121 n 121 THR 121 A GLY 122 n 122 GLY 122 A LEU 123 n 123 LEU 123 A VAL 124 n 124 VAL 124 A GLY 125 n 125 GLY 125 A ALA 126 n 126 ALA 126 A LEU 127 n 127 LEU 127 A THR 128 n 128 THR 128 A LYS 129 n 129 LYS 129 A VAL 130 n 130 VAL 130 A TYR 131 n 131 TYR 131 A SER 132 n 132 SER 132 A TYR 133 n 133 TYR 133 A ARG 134 n 134 ARG 134 A PHE 135 n 135 PHE 135 A VAL 136 n 136 VAL 136 A TRP 137 n 137 TRP 137 A TRP 138 n 138 TRP 138 A ALA 139 n 139 ALA 139 A ILE 140 n 140 ILE 140 A SER 141 n 141 SER 141 A THR 142 n 142 THR 142 A ALA 143 n 143 ALA 143 A ALA 144 n 144 ALA 144 A MET 145 n 145 MET 145 A LEU 146 n 146 LEU 146 A TYR 147 n 147 TYR 147 A ILE 148 n 148 ILE 148 A LEU 149 n 149 LEU 149 A TYR 150 n 150 TYR 150 A VAL 151 n 151 VAL 151 A LEU 152 n 152 LEU 152 A PHE 153 n 153 PHE 153 A PHE 154 n 154 PHE 154 A GLY 155 n 155 GLY 155 A PHE 156 n 156 PHE 156 A THR 157 n 157 THR 157 A SER 158 n 158 SER 158 A LYS 159 n 159 LYS 159 A ALA 160 n 160 ALA 160 A GLU 161 n 161 GLU 161 A SER 162 n 162 SER 162 A MET 163 n 163 MET 163 A ARG 164 n 164 ARG 164 A PRO 165 n 165 PRO 165 A GLU 166 n 166 GLU 166 A VAL 167 n 167 VAL 167 A ALA 168 n 168 ALA 168 A SER 169 n 169 SER 169 A THR 170 n 170 THR 170 A CYS 171 n 171 CYS 171 A LYS 172 n 172 LYS 172 A VAL 173 n 173 VAL 173 A LEU 174 n 174 LEU 174 A ARG 175 n 175 ARG 175 A ASN 176 n 176 ASN 176 A VAL 177 n 177 VAL 177 A THR 178 n 178 THR 178 A VAL 179 n 179 VAL 179 A VAL 180 n 180 VAL 180 A LEU 181 n 181 LEU 181 A TRP 182 n 182 TRP 182 A SER 183 n 183 SER 183 A ALA 184 n 184 ALA 184 A TYR 185 n 185 TYR 185 A PRO 186 n 186 PRO 186 A VAL 187 n 187 VAL 187 A VAL 188 n 188 VAL 188 A TRP 189 n 189 TRP 189 A LEU 190 n 190 LEU 190 A ILE 191 n 191 ILE 191 A GLY 192 n 192 GLY 192 A SER 193 n 193 SER 193 A GLU 194 n 194 GLU 194 A GLY 195 n 195 GLY 195 A ALA 196 n 196 ALA 196 A GLY 197 n 197 GLY 197 A ILE 198 n 198 ILE 198 A VAL 199 n 199 VAL 199 A PRO 200 n 200 PRO 200 A LEU 201 n 201 LEU 201 A ASN 202 n 202 ASN 202 A ILE 203 n 203 ILE 203 A GLU 204 n 204 GLU 204 A THR 205 n 205 THR 205 A LEU 206 n 206 LEU 206 A LEU 207 n 207 LEU 207 A PHE 208 n 208 PHE 208 A MET 209 n 209 MET 209 A VAL 210 n 210 VAL 210 A LEU 211 n 211 LEU 211 A ASP 212 n 212 ASP 212 A VAL 213 n 213 VAL 213 A SER 214 n 214 SER 214 A ALA 215 n 215 ALA 215 A LYR 216 n 216 LYS 216 A VAL 217 n 217 VAL 217 A GLY 218 n 218 GLY 218 A LEU 219 n 219 LEU 219 A GLY 220 n 220 GLY 220 A LEU 221 n 221 LEU 221 A ILE 222 n 222 ILE 222 A LEU 223 n 223 LEU 223 A LEU 224 n 224 LEU 224 A ARG 225 n 225 ARG 225 A SER 226 n 226 SER 226 A ARG 227 n 227 ARG 227 A ALA 228 n 228 ALA 228 A n 229 229 A n 230 230 A n 231 231 A n 232 232 A n 233 233 A n 234 234 A n 235 235 A n 236 236 A n 237 237 A n 238 238 A n 239 239 A n 240 240 A n 241 241 A n 242 242 A n 243 243 A n 244 244 A n 245 245 A n 246 246 A n 247 247 A n 248 248 A author_and_software_defined_assembly PISA,PQS 3 trimeric 6470 -51 27970 1.0000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 1_555 x,y,z identity operation 0.0000000000 0.0000000000 0.0000000000 -0.5000000000 -0.8660254038 0.0000000000 0.8660254038 -0.5000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 2_555 -y,x-y,z crystal symmetry operation 0.0000000000 0.0000000000 0.0000000000 -0.5000000000 0.8660254038 0.0000000000 -0.8660254038 -0.5000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 3_555 -x+y,-x,z crystal symmetry operation 0.0000000000 0.0000000000 0.0000000000 A N PHE 71 A N PHE 71 A O GLU 74 A O GLU 74 1 A CG1 ILE 4 A CG1 ILE 4 1 Y 1 A CG2 ILE 4 A CG2 ILE 4 1 Y 1 A CD1 ILE 4 A CD1 ILE 4 1 Y 1 A GLN 1 A GLN 1 1 Y 1 A ALA 2 A ALA 2 1 Y 1 A GLN 3 A GLN 3 1 Y 1 A ILE 229 A ILE 229 1 Y 1 A PHE 230 A PHE 230 1 Y 1 A GLY 231 A GLY 231 1 Y 1 A GLU 232 A GLU 232 1 Y 1 A ALA 233 A ALA 233 1 Y 1 A GLU 234 A GLU 234 1 Y 1 A ALA 235 A ALA 235 1 Y 1 A PRO 236 A PRO 236 1 Y 1 A GLU 237 A GLU 237 1 Y 1 A PRO 238 A PRO 238 1 Y 1 A SER 239 A SER 239 1 Y 1 A ALA 240 A ALA 240 1 Y 1 A GLY 241 A GLY 241 1 Y 1 A ASP 242 A ASP 242 1 Y 1 A GLY 243 A GLY 243 1 Y 1 A ALA 244 A ALA 244 1 Y 1 A ALA 245 A ALA 245 1 Y 1 A ALA 246 A ALA 246 1 Y 1 A THR 247 A THR 247 1 Y 1 A SER 248 A SER 248 1 Y 1 A ARG 7 -139.68 -73.49 1 A VAL 29 -102.38 58.15 1 A LYS 30 -177.16 12.94 1 A VAL 34 64.57 135.22 1 A SER 35 -114.55 -74.71 1 A ASP 102 25.81 96.32 1 A ALA 126 -48.37 -19.26 1 A TYR 131 -31.07 -75.08 1 A ILE 148 -53.95 -74.03 1 A PHE 153 -59.53 -96.18 1 A PHE 154 -52.04 80.38 1 A PHE 156 -76.33 29.29 1 A THR 157 -132.92 -64.70 1 A SER 158 -67.04 -76.51 1 A LYS 159 -55.14 -1.76 1 A GLU 161 -144.78 -55.09 1 A SER 162 -61.66 65.63 1 A MET 163 -153.62 -113.57 1 A VAL 167 -32.19 -70.04 1 A SER 169 -72.39 -83.89 1 A VAL 173 -81.00 -75.93 1 A ARG 175 -58.17 -75.14 1 A SER 183 -49.16 -11.39 1 A GLU 194 -58.33 -7.48 1 A ALA 196 -77.18 -144.89 1 A ASP 212 -65.26 -76.94 1 A VAL 213 -28.06 -42.74 1 A LYS 216 -52.28 -81.61 1 A LEU 221 -49.45 -76.33 Each diffraction pattern was automatically indexed, and the spot intensities were integrated either using a raster (for patterns recorded at specimen tilts less than 30 degrees) or using profile fitting (for patterns recorded at specimen tilts at or greater than 30 degrees, which represented about 80% of the total data set). Each pattern was then compared to the curves recorded for wild-type bacteriorhodopsin in glucose at -100 degrees C [Ceska and Henderson J. Mol. Biol. 213: 539-560 (1990)], and the relative proportions of the four different twins determined. This exercise was carried out with all four theoretically possible orientations of the crystal axes relative to the previous reference curves to ensure that the data were merged correctly. From the initial set of 486 patterns chosen, 286 minimally twinned diffraction patterns were selected in which the major twin proportion was greater than 0.8. These 286 patterns were merged using the wild-type lattice lines as a reference and lattice lines were fitted to the data to obtain an initial approximately merged set of lattice lines (merge #1) describing the structure of the triple mutant. The original set of 486 patterns was then merged against the new lattice curves to redetermine the twin proportions more accurately. The merging parameters for each crystal were inspected carefully again, and 84 crystals for which the major twin proportion was less than 0.70 were excluded from the data set. The remaining 402 substantially untwinned diffraction patterns were used to generate a new set of curves and the procedure repeated to create a stable set of lattice lines. The merged data were further improved by using an estimate of sigma values for each reflection, and by the inclusion of an individual weighting factor for each diffraction pattern using procedures described by Grigorieff and Henderson [Ultramicroscopy 60: 295-309 (1995)]. Two cycles of this refinement were carried out to obtain a final set of merged curves. The curves were sampled at 1/100 Angstroms (approximately twice the thickness of the membrane) to obtain a set of intensities at H,K,L values so that the data could be further processed with standard X-ray crystallographic programs. For the tilt angles used, the maximal possible theoretical completeness of the data set is ~87%. The completeness of our data is close to this limit up to 3.5 Angstroms. The completeness drops to 77.7 % when all of the data to 3.2 Angstroms is included. 0.3210000 0.2720000 3.2 200 610 7298 5668 77.7 RANDOM 1 Engh & Huber 3.2 200 0 1746 20 0 1726 .009 1.4 3.2 200 1FBK 7298 5668 0.0 0.1730000 1 77.7 refinement CNS 0.9 CRYSTAL STRUCTURE OF CYTOPLASMICALLY OPEN CONFORMATION OF BACTERIORHODOPSIN 1 N N 2 N N Trimer is present in vivo. The crystals contain trimers related by crystal symmetry P3. A GLU 9 A GLU 9 HELX_P A VAL 29 A VAL 29 1 1 21 A ASP 36 A ASP 36 HELX_P A GLY 63 A GLY 63 1 2 28 A TYR 79 A TYR 79 HELX_P A VAL 101 A VAL 101 1 3 23 A ASP 104 A ASP 104 HELX_P A THR 128 A THR 128 1 4 25 A VAL 130 A VAL 130 HELX_P A PHE 153 A PHE 153 1 5 24 A GLU 166 A GLU 166 HELX_P A GLY 192 A GLY 192 1 6 27 A PRO 200 A PRO 200 HELX_P A SER 226 A SER 226 1 7 27 covale 1.334 one A LYS 216 A NZ LYS 216 1_555 A RET 1216 B C15 RET 1_555 PROTON TRANSPORT PROTON PUMP, MEMBRANE PROTEIN, RETINAL PROTEIN, TWO-DIMENSIONAL CRYSTAL ELECTRON DIFFRACTION, SINGLE CRYSTAL, PROTON TRANSPORT BACR_HALN1 UNP 1 14 P02945 QAQITGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITTLVPAIAFTMYLSMLLGYGLTMVPFGGEQNPIYW ARYADWLFTTPLLLLDLALLVDADQGTILALVGADGIMIGTGLVGALTKVYSYRFVWWAISTAAMLYILYVLFFGFTSKA ESMRPEVASTFKVLRNVTVVLWSAYPVVWLIGSEGAGIVPLNIETLLFMVLDVSAKVGFGLILLRSRAIFGEAEAPEPSA GDGAAATS 14 261 1FBK 1 248 P02945 A 1 1 248 1 ASP engineered mutation GLY 96 1FBK A P02945 UNP 109 96 1 PHE engineered mutation CYS 171 1FBK A P02945 UNP 184 171 1 PHE engineered mutation LEU 219 1FBK A P02945 UNP 232 219 2 anti-parallel A THR 67 A THR 67 A PHE 71 A PHE 71 A GLU 74 A GLU 74 A ILE 78 A ILE 78 BINDING SITE FOR RESIDUE RET A 1216 A RET 1216 Software 10 A TRP 86 A TRP 86 10 2_555 A THR 89 A THR 89 10 2_555 A THR 90 A THR 90 10 2_555 A LEU 93 A LEU 93 10 2_555 A MET 118 A MET 118 10 2_555 A SER 141 A SER 141 10 2_555 A TYR 185 A TYR 185 10 2_555 A PRO 186 A PRO 186 10 2_555 A TRP 189 A TRP 189 10 2_555 A LYS 216 A LYS 216 10 2_555 143 P 3