1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 0.00000 0.00000 0.00000 Clore, G.M. Gronenborn, A.M. http://mmcif.pdb.org/dictionaries/ascii/mmcif_pdbx.dic 1 90.00 90.00 90.00 1.000 1.000 1.000 C3 H7 N O2 89.093 y ALANINE L-peptide linking C6 H15 N4 O2 1 175.209 y ARGININE L-peptide linking C4 H8 N2 O3 132.118 y ASPARAGINE L-peptide linking C4 H7 N O4 133.103 y ASPARTIC ACID L-peptide linking C3 H7 N O2 S 121.158 y CYSTEINE L-peptide linking C5 H10 N2 O3 146.144 y GLUTAMINE L-peptide linking C5 H9 N O4 147.129 y GLUTAMIC ACID L-peptide linking C2 H5 N O2 75.067 y GLYCINE peptide linking C6 H10 N3 O2 1 156.162 y HISTIDINE L-peptide linking C6 H13 N O2 131.173 y ISOLEUCINE L-peptide linking C6 H13 N O2 131.173 y LEUCINE L-peptide linking C6 H15 N2 O2 1 147.195 y LYSINE L-peptide linking C9 H11 N O2 165.189 y PHENYLALANINE L-peptide linking C5 H9 N O2 115.130 y PROLINE L-peptide linking C3 H7 N O3 105.093 y SERINE L-peptide linking C4 H9 N O3 119.119 y THREONINE L-peptide linking C11 H12 N2 O2 204.225 y TRYPTOPHAN L-peptide linking C9 H11 N O3 181.189 y TYROSINE L-peptide linking C5 H11 N O2 117.146 y VALINE L-peptide linking US Biochemistry BICHAW 0033 0006-2960 29 1689 1696 10.1021/bi00459a004 2184886 Three-dimensional structure of interleukin 8 in solution. 1990 US J.Biol.Chem. JBCHA3 0071 0021-9258 264 18907 Determination of the Secondary Structure of Interleukin-8 by Nuclear Magnetic Resonance Spectroscopy 1989 10.2210/pdb1il8/pdb pdb_00001il8 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 0.00000 0.00000 0.00000 8401.807 INTERLEUKIN-8 2 man polymer no no SAKELRCQCIKTYSKPFHPKFIKELRVIESGPHCANTEIIVKLSDGRELCLDPKENWVQRVVEKFLKRAENS SAKELRCQCIKTYSKPFHPKFIKELRVIESGPHCANTEIIVKLSDGRELCLDPKENWVQRVVEKFLKRAENS A,B polypeptide(L) n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n human Homo sample POTENTIAL 9606 Homo sapiens database_2 pdbx_database_status pdbx_struct_assembly pdbx_struct_oper_list repository Initial release Version format compliance Version format compliance Database references Derived calculations Other 1 0 1991-01-15 1 1 2008-03-24 1 2 2011-07-13 1 3 2022-02-23 _database_2.pdbx_DOI _database_2.pdbx_database_accession _pdbx_database_status.process_site Y BNL 1990-03-08 REL 1 STRUCTURE DETERMINATION. THE METHOD USED TO DETERMINE AND REFINE THE STRUCTURE IS THE HYBRID DISTANCE GEOMETRY-SIMULATED ANNEALING METHOD (M. NILGES, G.M. CLORE, A.M. GRONENBORN, FEBS LETT. 229, 317, (1988)) USING THE PROGRAMS *DISGEO* (T.F. HAVEL, QCPE NO. 507, INDIANA UNIVERSITY) AND *XPLOR* (A.T. BRUNGER, YALE UNIVERSITY, NEW HAVEN, CT 06511). STRUCTURAL STATISTICS - RMS DEVIATION FROM EXPERIMENTAL RESTRAINTS *(1)* RESTRAINT TYPE NUMBER OF RESTRAINTS RMS (ANGSTROMS) ALL 1880 0.029 INTRASUBUNIT SHORT RANGE 784 0.020 INTERRESIDUE LONG RANGE 370 0.026 INTRARESIDUE 540 0.042 HBOND *(2)* 104 0.028 INTERSUBUNIT INTERPROTON 70 0.014 HBOND 12 0.000 POTENTIAL ENERGY TERMS TYPE ENERGY (KCAL/MOL) F(NOE) *(3)* 48. F(TOR) *(4)* 0.98 F(REPEL) *(5)* 37. F(SYM) *(6)* 424. LENNARD-JONES VAN DER WAALS ENERGY (E(L-J)) CALCULATED USING THE *CHARMM* EMPIRICAL ENERGY FUNCTION IS -474 KCAL/MOL. IT IS NOT INCLUDED INTO THE TARGET FUNCTION FOR SIMULATED ANNEALING. DEVIATIONS FROM IDEALIZED GEOMETRY *(7)* TYPE TOTAL NUMBER RMS DEVIATION BONDS 2392 0.011 (ANGSTROMS) ANGLES 4362 2.458 (DEGREES) IMPROPERS 882 0.485 (DEGREES) NOTES. *(1)* THE RMS DEVIATION FROM THE EXPERIMENTAL RESTRAINTS IS CALCULATED WITH RESPECT TO THE UPPER AND LOWER LIMITS OF THE DISTANCE RESTRAINTS. NONE OF THE STRUCTURES EXHIBITED VIOLATIONS GREATER THAN 0.3 ANGSTROMS. *(2)* FOR EACH BACKBONE HYDROGEN BOND THERE ARE TWO RESTRAINTS - R(NH-O) 1.7 TO 2.3 ANGSTROMS AND R(N-O) 2.4 TO 3.3 ANGSTROMS. *(3)* THE VALUES OF THE SQUARE-WELL NOE POTENTIAL 50 KCAL/MOL/ANGSTROM**2. *(4)* THE VALUES OF F(PHI) ARE CALCULATED WITH A FORCE CONSTANT OF 200 KCAL/MOL/RAD**2. F(PHI) IS A SQUARE-WELL DIHEDRAL POTENTIAL WHICH IS USED TO RESTRICT THE RANGES OF TORSION ANGLES. *(5)* THE VALUE OF THE VAN DER WAALS REPULSION TERM F(REPEL) IS CALCULATED WITH A FORCE CONSTANT OF 4 KCAL/MOL/ANGSTROM**4 WITH THE HARD SPHERE VAN DER WAALS RADII SET TO 0.8 TIMES THE STANDARD VALUES USED IN THE *CHARMM* EMPIRICAL ENERGY FUNCTION. *(6)* F(SYM) IS AN EFFECTIVE HARMONIC POTENTIAL USED TO MAINTAIN SYMMETRY BETWEEN THE TWO SUBUNITS WITH A FORCE CONSTANT SET TO 300.0 KCAL/MOL/ANGSTROMS**2 *(7)* THE IMPROPER TERMS SERVE TO MAINTAIN PLANARITY AND APPROPRIATE CHIRALITY. THEY ALSO MAINTAIN THE PEPTIDE BONDS OF ALL RESIDUES (WITH THE EXCEPTION OF PROLINES) IN THE TRANS CONFORMATION. IN THE DYNAMICAL SIMULATED ANNEALING CALCULATIONS. A TOTAL OF 30 STRUCTURES CONSISTENT WITH THE NMR DATA WERE CALCULATED. THIS ENTRY REPRESENTS THE COORDINATES OBTAINED BY AVERAGING THE COORDINATES OF THE 29 INDIVIDUAL STRUCTURES AND SUBJECTING THE RESULTING COORDINATES TO FURTHER RESTRAINED MINIMIZATION. THE COORDINATES OF THE 30 STRUCTURES ARE GIVEN IN THE PROTEIN DATA BANK ENTRY *2IL8*. THE 3D STRUCTURE OF THE INTERLEUKIN-8 DIMER IN SOLUTION DERIVED FROM NMR EXPERIMENTS IS BASED ON 1880 EXPERIMENTAL DISTANCE RESTRAINTS (OF WHICH 82 ARE INTERSUBUNIT) AND 362 TORSION ANGLE RESTRAINTS DERIVED FROM NOE AND COUPLING CONSTANT MEASUREMENTS. A COMPLETE LIST OF EXPERIMENTAL RESTRAINTS HAS BEEN DEPOSITED WITH THE BROOKHAVEN PROTEIN DATA BANK AND IS LOCATED IN ENTRY R1IL8MR. THE THERMAL PARAMETERS GIVEN IN THIS ENTRY REPRESENT THE AVERAGE RMS DIFFERENCE BETWEEN THE INDIVIDUAL STRUCTURES AND THE MEAN COORDINATE POSITIONS. THE FIVE N-TERMINAL RESIDUES ARE ILL-DEFINED. THE CYS 9 - CYS 50 DISULFIDE BRIDGE IS LEFT-HANDED. HAVEL refinement DISGEO BRUNGER refinement X-PLOR n 1 1 A ALA 2 n 2 ALA 2 A LYS 3 n 3 LYS 3 A GLU 4 n 4 GLU 4 A LEU 5 n 5 LEU 5 A ARG 6 n 6 ARG 6 A CYS 7 n 7 CYS 7 A GLN 8 n 8 GLN 8 A CYS 9 n 9 CYS 9 A ILE 10 n 10 ILE 10 A LYS 11 n 11 LYS 11 A THR 12 n 12 THR 12 A TYR 13 n 13 TYR 13 A SER 14 n 14 SER 14 A LYS 15 n 15 LYS 15 A PRO 16 n 16 PRO 16 A PHE 17 n 17 PHE 17 A HIS 18 n 18 HIS 18 A PRO 19 n 19 PRO 19 A LYS 20 n 20 LYS 20 A PHE 21 n 21 PHE 21 A ILE 22 n 22 ILE 22 A LYS 23 n 23 LYS 23 A GLU 24 n 24 GLU 24 A LEU 25 n 25 LEU 25 A ARG 26 n 26 ARG 26 A VAL 27 n 27 VAL 27 A ILE 28 n 28 ILE 28 A GLU 29 n 29 GLU 29 A SER 30 n 30 SER 30 A GLY 31 n 31 GLY 31 A PRO 32 n 32 PRO 32 A HIS 33 n 33 HIS 33 A CYS 34 n 34 CYS 34 A ALA 35 n 35 ALA 35 A ASN 36 n 36 ASN 36 A THR 37 n 37 THR 37 A GLU 38 n 38 GLU 38 A ILE 39 n 39 ILE 39 A ILE 40 n 40 ILE 40 A VAL 41 n 41 VAL 41 A LYS 42 n 42 LYS 42 A LEU 43 n 43 LEU 43 A SER 44 n 44 SER 44 A ASP 45 n 45 ASP 45 A GLY 46 n 46 GLY 46 A ARG 47 n 47 ARG 47 A GLU 48 n 48 GLU 48 A LEU 49 n 49 LEU 49 A CYS 50 n 50 CYS 50 A LEU 51 n 51 LEU 51 A ASP 52 n 52 ASP 52 A PRO 53 n 53 PRO 53 A LYS 54 n 54 LYS 54 A GLU 55 n 55 GLU 55 A ASN 56 n 56 ASN 56 A TRP 57 n 57 TRP 57 A VAL 58 n 58 VAL 58 A GLN 59 n 59 GLN 59 A ARG 60 n 60 ARG 60 A VAL 61 n 61 VAL 61 A VAL 62 n 62 VAL 62 A GLU 63 n 63 GLU 63 A LYS 64 n 64 LYS 64 A PHE 65 n 65 PHE 65 A LEU 66 n 66 LEU 66 A LYS 67 n 67 LYS 67 A ARG 68 n 68 ARG 68 A ALA 69 n 69 ALA 69 A GLU 70 n 70 GLU 70 A ASN 71 n 71 ASN 71 A SER 72 n 72 SER 72 A n 1 1 B ALA 2 n 2 ALA 2 B LYS 3 n 3 LYS 3 B GLU 4 n 4 GLU 4 B LEU 5 n 5 LEU 5 B ARG 6 n 6 ARG 6 B CYS 7 n 7 CYS 7 B GLN 8 n 8 GLN 8 B CYS 9 n 9 CYS 9 B ILE 10 n 10 ILE 10 B LYS 11 n 11 LYS 11 B THR 12 n 12 THR 12 B TYR 13 n 13 TYR 13 B SER 14 n 14 SER 14 B LYS 15 n 15 LYS 15 B PRO 16 n 16 PRO 16 B PHE 17 n 17 PHE 17 B HIS 18 n 18 HIS 18 B PRO 19 n 19 PRO 19 B LYS 20 n 20 LYS 20 B PHE 21 n 21 PHE 21 B ILE 22 n 22 ILE 22 B LYS 23 n 23 LYS 23 B GLU 24 n 24 GLU 24 B LEU 25 n 25 LEU 25 B ARG 26 n 26 ARG 26 B VAL 27 n 27 VAL 27 B ILE 28 n 28 ILE 28 B GLU 29 n 29 GLU 29 B SER 30 n 30 SER 30 B GLY 31 n 31 GLY 31 B PRO 32 n 32 PRO 32 B HIS 33 n 33 HIS 33 B CYS 34 n 34 CYS 34 B ALA 35 n 35 ALA 35 B ASN 36 n 36 ASN 36 B THR 37 n 37 THR 37 B GLU 38 n 38 GLU 38 B ILE 39 n 39 ILE 39 B ILE 40 n 40 ILE 40 B VAL 41 n 41 VAL 41 B LYS 42 n 42 LYS 42 B LEU 43 n 43 LEU 43 B SER 44 n 44 SER 44 B ASP 45 n 45 ASP 45 B GLY 46 n 46 GLY 46 B ARG 47 n 47 ARG 47 B GLU 48 n 48 GLU 48 B LEU 49 n 49 LEU 49 B CYS 50 n 50 CYS 50 B LEU 51 n 51 LEU 51 B ASP 52 n 52 ASP 52 B PRO 53 n 53 PRO 53 B LYS 54 n 54 LYS 54 B GLU 55 n 55 GLU 55 B ASN 56 n 56 ASN 56 B TRP 57 n 57 TRP 57 B VAL 58 n 58 VAL 58 B GLN 59 n 59 GLN 59 B ARG 60 n 60 ARG 60 B VAL 61 n 61 VAL 61 B VAL 62 n 62 VAL 62 B GLU 63 n 63 GLU 63 B LYS 64 n 64 LYS 64 B PHE 65 n 65 PHE 65 B LEU 66 n 66 LEU 66 B LYS 67 n 67 LYS 67 B ARG 68 n 68 ARG 68 B ALA 69 n 69 ALA 69 B GLU 70 n 70 GLU 70 B ASN 71 n 71 ASN 71 B SER 72 n 72 SER 72 B author_defined_assembly 2 dimeric 1.0000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 1_555 x,y,z identity operation 0.0000000000 0.0000000000 0.0000000000 A N LEU 51 A N LEU 51 A O ILE 39 A O ILE 39 A O LYS 42 A O LYS 42 A N LYS 23 A N LYS 23 A O VAL 27 A O VAL 27 B N LEU 25 B N LEU 25 B N ILE 28 B N ILE 28 B O GLU 38 B O GLU 38 B N LEU 43 B N LEU 43 B O ARG 47 B O ARG 47 1 A SER 1 A SER 1 1 Y 1 B SER 1 B SER 1 1 Y 1 A ARG 6 0.319 SIDE CHAIN 1 A ARG 26 0.221 SIDE CHAIN 1 A ARG 47 0.307 SIDE CHAIN 1 A ARG 60 0.212 SIDE CHAIN 1 B ARG 6 0.319 SIDE CHAIN 1 B ARG 26 0.221 SIDE CHAIN 1 B ARG 47 0.307 SIDE CHAIN 1 B ARG 60 0.211 SIDE CHAIN 1 -6.27 1.00 110.10 103.83 A A A CG CD1 NE1 TRP TRP TRP 57 57 57 N 1 5.45 0.90 109.00 114.45 A A A CD1 NE1 CE2 TRP TRP TRP 57 57 57 N 1 8.90 1.10 130.40 139.30 A A A NE1 CE2 CZ2 TRP TRP TRP 57 57 57 N 1 -6.94 1.00 107.30 100.36 A A A NE1 CE2 CD2 TRP TRP TRP 57 57 57 N 1 -6.36 1.00 110.10 103.74 B B B CG CD1 NE1 TRP TRP TRP 57 57 57 N 1 5.54 0.90 109.00 114.54 B B B CD1 NE1 CE2 TRP TRP TRP 57 57 57 N 1 8.96 1.10 130.40 139.36 B B B NE1 CE2 CZ2 TRP TRP TRP 57 57 57 N 1 -6.99 1.00 107.30 100.31 B B B NE1 CE2 CD2 TRP TRP TRP 57 57 57 N 1 A A NE2 CD2 HIS HIS 18 18 -0.077 0.011 1.373 1.296 N 1 A A CG CD2 TRP TRP 57 57 -0.108 0.017 1.432 1.324 N 1 B B NE2 CD2 HIS HIS 18 18 -0.076 0.011 1.373 1.297 N 1 B B CG CD2 TRP TRP 57 57 -0.109 0.017 1.432 1.323 N 1 A LYS 3 -130.83 -66.47 1 A SER 14 -99.09 37.77 1 A ASN 36 -140.28 -149.48 1 A ASP 45 -59.09 -6.30 1 A PRO 53 -59.25 -2.53 1 B LYS 3 -130.81 -66.54 1 B SER 14 -98.99 37.73 1 B ASN 36 -140.28 -149.44 1 B ASP 45 -59.16 -6.24 1 B PRO 53 -59.35 -2.52 THREE-DIMENSIONAL STRUCTURE OF INTERLEUKIN 8 IN SOLUTION 1 N N 1 N N A HIS 18 A HIS 18 HELX_P A LYS 20 A LYS 20 5 1 3 A GLU 55 A GLU 55 HELX_P A SER 72 A SER 72 1 2 18 B HIS 18 B HIS 18 HELX_P B LYS 20 B LYS 20 5 3 3 B GLU 55 B GLU 55 HELX_P B SER 72 B SER 72 1 4 18 disulf 2.020 A CYS 7 A SG CYS 7 1_555 A CYS 34 A SG CYS 34 1_555 disulf 2.018 A CYS 9 A SG CYS 9 1_555 A CYS 50 A SG CYS 50 1_555 disulf 2.018 B CYS 7 B SG CYS 7 1_555 B CYS 34 B SG CYS 34 1_555 disulf 2.019 B CYS 9 B SG CYS 9 1_555 B CYS 50 B SG CYS 50 1_555 CYTOKINE CYTOKINE IL8_HUMAN UNP 1 1 P10145 MTSKLAVALLAAFLISAALCEGAVLPRSAKELRCQCIKTYSKPFHPKFIKELRVIESGPHCANTEIIVKLSDGRELCLDP KENWVQRVVEKFLKRAENS 28 99 1IL8 1 72 P10145 A 1 1 72 28 99 1IL8 1 72 P10145 B 1 1 72 6 anti-parallel anti-parallel anti-parallel anti-parallel anti-parallel A ARG 47 A ARG 47 A LEU 51 A LEU 51 A GLU 38 A GLU 38 A LEU 43 A LEU 43 A ILE 22 A ILE 22 A ILE 28 A ILE 28 B ILE 22 B ILE 22 B ILE 28 B ILE 28 B GLU 38 B GLU 38 B LEU 43 B LEU 43 B ARG 47 B ARG 47 B LEU 51 B LEU 51 1 P 1