1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 0.00000 0.00000 0.00000 Papavoine, C.H.M. Christiaans, B.E.C. Folmer, R.H.A. Konings, R.N.H. Hilbers, C.W. http://mmcif.pdb.org/dictionaries/ascii/mmcif_pdbx.dic 1 90.00 90.00 90.00 1.000 1.000 1.000 C3 H7 N O2 89.093 y ALANINE L-peptide linking C4 H8 N2 O3 132.118 y ASPARAGINE L-peptide linking C4 H7 N O4 133.103 y ASPARTIC ACID L-peptide linking C5 H10 N2 O3 146.144 y GLUTAMINE L-peptide linking C5 H9 N O4 147.129 y GLUTAMIC ACID L-peptide linking C2 H5 N O2 75.067 y GLYCINE peptide linking C6 H13 N O2 131.173 y ISOLEUCINE L-peptide linking C6 H13 N O2 131.173 y LEUCINE L-peptide linking C6 H15 N2 O2 1 147.195 y LYSINE L-peptide linking C5 H11 N O2 S 149.211 y METHIONINE L-peptide linking C9 H11 N O2 165.189 y PHENYLALANINE L-peptide linking C5 H9 N O2 115.130 y PROLINE L-peptide linking C3 H7 N O3 105.093 y SERINE L-peptide linking C4 H9 N O3 119.119 y THREONINE L-peptide linking C11 H12 N2 O2 204.225 y TRYPTOPHAN L-peptide linking C9 H11 N O3 181.189 y TYROSINE L-peptide linking C5 H11 N O2 117.146 y VALINE L-peptide linking UK J.Mol.Biol. JMOBAK 0070 0022-2836 282 401 419 10.1006/jmbi.1998.1860 9735296 Solution structure of the M13 major coat protein in detergent micelles: a basis for a model of phage assembly involving specific residues. 1998 US Biochemistry BICHAW 0033 0006-2960 36 4015 Backbone Dynamics of the Major Coat Protein of Bacteriophage M13 in Detergent Micelles by 15N Nuclear Magnetic Resonance Relaxation Measurements Using the Model-Free Approach and Reduced Spectral Density Mapping 1997 IX Eur.J.Biochem. EJBCAI 0262 0014-2956 232 490 NMR Studies of the Major Coat Protein of Bacteriophage M13. Structural Information of Gviiip in Dodecylphosphocholine Micelles 1995 US Biochemistry BICHAW 0033 0006-2960 33 12990 Location of M13 Coat Protein in Sodium Dodecyl Sulfate Micelles as Determined by NMR 1994 US Biochemistry BICHAW 0033 0006-2960 32 8322 Assignment of 1H, 15N, and Backbone 13C Resonances in Detergent-Solubilized M13 Coat Protein Via Multinuclear Multidimensional NMR: A Model for the Coat Protein Monomer 1993 10.2210/pdb2cps/pdb pdb_00002cps 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 0.00000 0.00000 0.00000 5243.014 M13 MAJOR COAT PROTEIN 1 man polymer M13 GENE-VIII-PROTEIN OR M13 GVIIIP no no AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKAS AEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKAS A polypeptide(L) n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n Inovirus Escherichia sample 10870 Enterobacteria phage M13 562 Escherichia coli M13 database_2 pdbx_database_status pdbx_struct_assembly pdbx_struct_oper_list repository Initial release Version format compliance Version format compliance Database references Derived calculations Other 1 0 1998-11-11 1 1 2008-03-24 1 2 2011-07-13 1 3 2022-03-09 _database_2.pdbx_DOI _database_2.pdbx_database_accession _pdbx_database_status.process_site Y BNL 1998-04-16 REL REL THE STRUCTURE WAS DETERMINED USING TRIPLE-RESONANCE NMR SPECTROSCOPY ON 13C, 15N -LABELED M13 COAT PROTEIN SOLUBILIZED IN DEUTERATED SODIUM DODECYL SULPHATE MICELLES (CONCENTRATION COAT PROTEIN/SDS = 1:250) LOWEST ENERGY, DISTANCE RESTRAINTS SMALLER THAN 0.5 A, DIHEDRAL VIOLATIONS SMALLER THAN 5 DEGREES 80 25 DQF-COSY TOCSY NOESY NOESY-HMQC (15N AND 13C) TOCSY-HMQC (15N) HCCH-TOCSY ROESY-GHSQC HMQC-NOESY-GHSQC HMQC-J HNHA HACACB-COSY HNHB HSQC(3J CGN) HSQC(3JCGC') 4.9 311 K RESTRAINED MOLECULAR DYNAMICS, SIMULATED ANNEALING, THIS VERSION OF X-PLOR WAS EXTENDED FOR FLOATING CHIRALITY H2O BRUNGER refinement X-PLOR 3.1 structure solution X-PLOR 3.1 400 Varian UNITY 500 Bruker AM 600 Bruker AMX ALA 1 n 1 ALA 1 A GLU 2 n 2 GLU 2 A GLY 3 n 3 GLY 3 A ASP 4 n 4 ASP 4 A ASP 5 n 5 ASP 5 A PRO 6 n 6 PRO 6 A ALA 7 n 7 ALA 7 A LYS 8 n 8 LYS 8 A ALA 9 n 9 ALA 9 A ALA 10 n 10 ALA 10 A PHE 11 n 11 PHE 11 A ASN 12 n 12 ASN 12 A SER 13 n 13 SER 13 A LEU 14 n 14 LEU 14 A GLN 15 n 15 GLN 15 A ALA 16 n 16 ALA 16 A SER 17 n 17 SER 17 A ALA 18 n 18 ALA 18 A THR 19 n 19 THR 19 A GLU 20 n 20 GLU 20 A TYR 21 n 21 TYR 21 A ILE 22 n 22 ILE 22 A GLY 23 n 23 GLY 23 A TYR 24 n 24 TYR 24 A ALA 25 n 25 ALA 25 A TRP 26 n 26 TRP 26 A ALA 27 n 27 ALA 27 A MET 28 n 28 MET 28 A VAL 29 n 29 VAL 29 A VAL 30 n 30 VAL 30 A VAL 31 n 31 VAL 31 A ILE 32 n 32 ILE 32 A VAL 33 n 33 VAL 33 A GLY 34 n 34 GLY 34 A ALA 35 n 35 ALA 35 A THR 36 n 36 THR 36 A ILE 37 n 37 ILE 37 A GLY 38 n 38 GLY 38 A ILE 39 n 39 ILE 39 A LYS 40 n 40 LYS 40 A LEU 41 n 41 LEU 41 A PHE 42 n 42 PHE 42 A LYS 43 n 43 LYS 43 A LYS 44 n 44 LYS 44 A PHE 45 n 45 PHE 45 A THR 46 n 46 THR 46 A SER 47 n 47 SER 47 A LYS 48 n 48 LYS 48 A ALA 49 n 49 ALA 49 A SER 50 n 50 SER 50 A author_defined_assembly 1 monomeric 1.0000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 1_555 x,y,z identity operation 0.0000000000 0.0000000000 0.0000000000 3 A A O HG1 LYS THR 43 46 1.60 4 A A O H ALA SER 9 13 1.60 11 A A O H PHE THR 42 46 1.57 15 A A O H ILE ALA 22 25 1.60 19 A A O H ALA SER 9 13 1.60 20 A A O H THR LYS 36 40 1.59 21 A A O H ALA TYR 18 21 1.55 25 A A O H VAL VAL 29 33 1.57 1 A GLU 2 -67.91 63.64 1 A ASP 5 47.83 94.18 1 A ALA 7 -86.75 -85.91 1 A SER 17 -93.24 42.38 1 A ALA 18 -100.36 69.62 2 A ASP 4 -158.77 -67.70 2 A ASP 5 -179.65 79.51 2 A ALA 18 -93.17 47.89 2 A ALA 49 -39.47 111.13 3 A GLU 2 174.34 50.80 3 A ASP 4 -103.93 -62.70 3 A SER 17 -151.43 27.11 3 A THR 19 -97.63 30.57 3 A ALA 49 68.27 124.72 4 A GLU 2 67.39 119.32 4 A ASP 5 -46.37 101.92 4 A SER 17 -136.08 -54.41 4 A ALA 18 -100.66 63.81 5 A ASP 5 63.20 140.11 5 A ALA 18 -96.18 49.92 6 A GLU 2 176.01 130.45 6 A ASP 4 -107.86 44.05 6 A ASP 5 -176.35 79.48 6 A ALA 7 85.96 -48.98 6 A ALA 18 -100.47 64.50 6 A ALA 49 70.70 174.26 7 A GLU 2 174.76 46.74 7 A ASP 4 -130.35 -68.01 7 A ASP 5 -169.77 116.29 7 A THR 19 -94.83 37.73 7 A SER 47 -159.23 40.01 7 A ALA 49 53.63 87.89 8 A GLU 2 66.76 99.18 8 A ASP 5 -42.62 99.47 8 A ALA 18 -100.34 66.39 8 A SER 47 -105.67 52.44 9 A ASP 4 -108.49 -73.80 9 A ASP 5 62.10 120.93 9 A LYS 8 33.82 74.59 9 A ALA 9 -64.35 -73.44 10 A ASP 4 -68.50 63.50 10 A ALA 9 -38.23 -78.65 10 A THR 19 -98.99 34.33 10 A SER 47 49.03 24.85 10 A ALA 49 -43.54 156.23 11 A GLU 2 177.94 42.51 11 A ASP 5 179.50 84.35 11 A ALA 7 85.78 -48.22 11 A ALA 9 -53.12 -73.20 11 A SER 17 -118.91 55.54 11 A ILE 32 -100.45 -62.63 11 A SER 47 -96.72 35.95 11 A ALA 49 167.46 54.35 12 A GLU 2 61.94 -179.61 12 A ASP 4 -140.07 58.82 12 A ASP 5 -178.85 94.84 12 A LYS 8 37.07 81.37 12 A THR 46 38.84 44.49 12 A ALA 49 -41.15 -84.73 13 A ASP 4 -116.21 75.74 13 A SER 17 -165.12 67.92 13 A ALA 18 -89.63 42.12 13 A THR 46 39.58 34.51 13 A ALA 49 -43.98 160.50 14 A GLU 2 176.92 110.12 14 A ASP 5 71.68 123.29 14 A ALA 9 -58.66 -84.53 14 A SER 17 -158.02 69.05 14 A LYS 44 -92.97 -62.31 14 A ALA 49 56.01 72.96 15 A ASP 4 -147.99 56.81 15 A ASP 5 -179.81 99.92 15 A LYS 8 -122.22 -54.63 15 A ALA 49 54.73 72.83 16 A GLU 2 57.99 76.18 16 A ASP 4 -122.88 -73.18 16 A ASP 5 -54.87 107.08 16 A ALA 7 84.06 -46.73 16 A LYS 8 -135.57 -54.62 16 A ALA 9 -37.75 -82.55 16 A SER 17 -141.91 -58.05 16 A ALA 49 53.27 -87.77 17 A GLU 2 40.98 95.10 17 A ASP 4 -161.01 86.19 17 A ASP 5 -173.00 77.08 17 A LYS 8 31.97 37.42 17 A LYS 44 -95.48 -74.12 18 A ASP 5 61.31 120.96 18 A SER 47 -161.78 -52.65 18 A LYS 48 -64.34 69.54 18 A ALA 49 -171.81 143.13 19 A GLU 2 -49.39 156.28 19 A ASP 5 58.54 97.96 19 A ALA 49 164.74 160.27 20 A GLU 2 53.83 95.88 20 A ASP 4 -97.19 -76.85 20 A ASP 5 -176.93 75.05 20 A ALA 7 -96.96 49.63 20 A LYS 8 34.52 74.83 20 A ALA 18 -93.70 50.48 20 A ALA 49 -49.76 161.39 21 A GLU 2 -44.03 106.38 21 A ASP 4 -119.12 64.61 21 A ASP 5 -176.18 142.32 21 A ALA 18 -101.03 72.92 21 A ALA 49 56.57 -176.67 22 A GLU 2 172.30 125.39 22 A ASP 5 -155.86 71.30 22 A ALA 9 -75.88 -70.64 22 A SER 17 -78.96 -76.41 22 A THR 19 -95.48 35.09 22 A SER 47 -172.11 51.32 22 A ALA 49 -43.65 92.91 23 A ASP 4 -163.72 86.41 23 A ASP 5 58.45 91.11 23 A ALA 7 -93.24 43.75 23 A LYS 8 28.46 63.23 23 A ALA 9 -100.33 -85.70 23 A TYR 24 -140.36 -44.79 23 A ALA 49 53.60 -87.20 24 A ASP 4 -114.41 79.07 24 A ASP 5 57.05 95.20 24 A ALA 7 82.63 -46.52 24 A LYS 8 -120.97 -66.77 24 A ALA 9 -43.25 -89.08 24 A SER 17 -146.74 28.63 24 A TYR 24 -142.17 -45.73 24 A LYS 44 -49.37 -70.37 24 A ALA 49 -43.75 -71.58 25 A GLU 2 56.10 177.53 25 A ASP 5 178.59 85.90 25 A LYS 8 34.49 75.74 25 A ALA 9 -81.15 -73.21 25 A ALA 18 -99.71 39.57 25 A TRP 26 -90.85 -64.10 25 A LYS 44 -58.91 -75.41 25 A THR 46 -77.62 -71.62 25 A ALA 49 43.58 -168.19 model building X-PLOR 3.1 refinement X-PLOR 3.1 phasing X-PLOR 3.1 SOLUTION NMR STRUCTURES OF THE MAJOR COAT PROTEIN OF FILAMENTOUS BACTERIOPHAGE M13 SOLUBILIZED IN SODIUM DODECYL SULPHATE MICELLES, 25 LOWEST ENERGY STRUCTURES 1 Y N A LYS 8 A LYS 8 HELX_P A GLN 15 A GLN 15 1 1 8 A TYR 24 A TYR 24 HELX_P A THR 46 A THR 46 1 2 23 VIRAL PROTEIN MAJOR COAT PROTEIN, BACTERIOPHAGE M13, ASSEMBLY, MICELLE, MEMBRANE, Viral protein COATB_BPM13 UNP 1 1 P69541 MKKSLVLKASVAVATLVPMLSFAAEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKAS 24 73 2CPS 1 50 P69541 A 1 1 50 1 P 1